特殊的四边形证明题

2024-04-24

特殊的四边形证明题(共11篇)

篇1:特殊的四边形证明题

题型一:矩形

1.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1)求证:BD=CD;(2)如果AB=AC,试判断

四边形AFBD的形状,并证明你的结论。

2.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.

求证: PA=PQ.

Q

B

D C

3.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.

试判断AB与DE是否相等?并证明你的结论.

C

4.如图,在矩形ABCD中,AB=2BC,E在AB延长线上,∠BCE=60°,求∠ADE.1 E A FB E

5.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.(第23题)

6.如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC. D

B E

7.在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边与AB、BC

分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论。

题型二:菱形

8.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.

(1)求证:△ABE≌△AD′F;

(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.

BE C D

9.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a.(1)求∠ABC的度数;(2)求对角线AC的长;(3)求菱形ABCD的面积。

10.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.

过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量

关系,并证明你的结论.

11.如图,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.求证:四边形DECF为菱形. BN B C

题型三:正方形

12.四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观

察图形,猜想AE与CG之间的位置关系,并证明

13.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.

F

E

14.如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE-BF = EF.(2)当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明). C

题型四:综合证明题

15.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若AED2EAD,求证:四边形ABCD是正方形.

E

A

BC

篇2:特殊的四边形证明题

1.(2009年湖北十堰市)如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.

2.(2009年山东青岛市)已知:如图,在ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.

(1)求证:BEDG;

(2)若B60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.

【关键词】全等三角形的性质与判定、菱形的性质与判定

D

B C

E F

3.(2009 年佛山市)如图,在正方形ABCD中,CEDF.若CE10cm,求DF的长.

A

E

B

F C

4.(2009年娄底)如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是

菱形?并说明理由.

5.(2009年佳木斯)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由

.【关键词】矩形的性质,全等三角形的判定

6.(2009年安顺)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。

(1)求证:BD=CD;

(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

ACD30°,BD6.7.(2009肇庆)如图 5,ABCD是菱形,对角线AC与BD相交于O,A(1)求证:△ABD是正三角形;

(2)求 AC的长(结果可保留根号).

8.(2009肇庆)如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F.

A D

B F C

(1)求证:△ABF≌△DAE;

(2)求证:DEEFFB.

9.(2009年广西钦州)(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;

【关键词】矩形性质、全等三角形判定

A B

D图

110.(2009年广西梧州)如图,△ABC中,AC的垂直平分线MN交AB于

点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.

(1)求证:AD=CE;

(2)填空:四边形ADCE的形状是

【关键词】垂直平分线、全等三角形、菱形判定

A

M

N

B11.(2009年宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=2,求菱形ABCD的周长.

【关键词】菱形的性质,全等三角形的判定

B

FD第21题图C

AB5,AC6.12.(2009年广东省)在菱形ABCD中,对角线AC与BD相交于点O,过

点D作DE∥AC交BC的延长线于点E.

(1)求△BDE的周长;

(2)点P为线段BC上的点,连接PO并延长交AD于点Q.

求证:BPDQ.

Q

P C E

篇3:特殊四边形的性质检测题

一、选择题

1. 若矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是().

A. 20° B. 40°

C. 80° D. 100°

2. 矩形ABCD中,O是BC的中点,∠AOD = 90°,矩形的周长为20 cm,则AB的长为().

A. 1 cmB. 2 cm

C. 2.5 cm D.cm

3. 如图1,矩形ABCD中,DE⊥AC于E,∠ADE ∶ ∠EDC = 3 ∶ 2,则∠BDE =

().

A. 12°

B. 36°

C. 18°

D. 22°

4. 已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是

().

5. 已知菱形的周长是40 cm,两对角线长度之比为3 ∶ 4,则两对角线的长度分别为().

A. 6 cm,8 cmB. 3 cm,4 cm

C. 12 cm,16 cmD. 24 cm,32 cm

6. 如图2,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M、N分别是AB、BC边的中点,MP + NP的最小值是().

A. 2B. 1

C. D.

7. 用两个全等的直角三角形拼下列图形:①平行四边形(不包含矩形、菱形、正方形),②矩形,③菱形,④正方形,⑤等腰三角形.一定可以拼成的图形有().

A. ①②⑤

B. ②③⑤

C. ①④⑤

D. ①②③

8. 如图3,在正方形ABCD中,点E是BC边的中点,如果DE = 5,那么四边形ABED的面积是().

A. 5B. 15

C. 20D. 30

9. 在梯形ABCD中,AD∥BC,AB = 4,BC = 7,AD = 2,CD = x,则x的取值范围是().

A. 2 < x < 7

B. 1 < x < 9

C. 1 < x < 13

D. 0 < x < 13

10. 如图4,点P是梯形ABCD的腰CD的中点,△ABP的面积是6 cm2,则梯形ABCD的面积为

().

A. 8 cm2 B. 9 cm2

C. 12 cm2D. 15 cm2

二、填空题

11. 矩形的对角线相交所成的钝角为120°,短边等于8 cm,则矩形的对角线长为cm.

12. 如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么这个矩形的面积为cm2.

13. 菱形的两条对角线长分别为8 cm、6 cm,则菱形的边长为,面积为.

14. 如图5,正方形ABCD中,E为BC延长线上一点,且CE = AC,AE交DC于点F,则∠AFC =

.

15. 等腰梯形有一角为120°,腰长为3 cm,一底边长为4 cm,则另一底边长为cm.

16. 梯形ABCD中,AB∥CD,周长为30 cm,DE∥BC交AB于点E,CD = 5cm,则△ADE的周长为cm.

17. 如下页图6,菱形AB1C1D1 的边长为1,∠B1 = 60° ;作 AD2⊥B1C1于点D2 ,以AD2为一边,作第2个菱形AB2C2D2 ,使∠B2 = 60 °;作AD3⊥B2C2于点D3 ,以AD3为一边作第3个菱形AB3C3D3 ,使∠B3 = 60°…… 依此类推,这样作的第n个菱形 ABnCnDn的边ADn的长是

.

三、解答题

18. 如图7,菱形ABCD中,E是AB的中点,DE⊥AB,AB = 5,求

(1)∠ABC的大小.

(2)AC的长.

(3)菱形ABCD的面积.

19. 如图8,梯形ABCD中,AD∥BC,AD = 1,BC = 4,AC = 3,BD = 4,求梯形ABCD的面积.

20. 如图9,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.请你猜想DE与DF的大小有什么关系,并说明你的理由.

21. (1)请用两种不同的方法,用尺规在图10所给的两个矩形中各作一个不为正方形的菱形,且菱形的4个顶点都在矩形的边上.(保留作图痕迹)

(2)写出你的作法.

22. 有一底角为60°的直角梯形,上底长为10 cm,与底垂直的腰长为10 cm,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15 cm,第三个顶点落在下底上.请计算所作的三角形的面积.

23. 如图11,把矩形纸片ABCD 沿EF 折叠,使点B 落在边 AD上的点 B′处,点A 落在点A′ 处.

(1) B′E = BF成立吗?为什么?

(2)设AE = a, AB = b,BF = c,试猜想a、b、c 之间有何等量关系,并给出说明.

篇4:特殊平行四边形:证明题

1、如图8,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD. 

(1)求证:△ADE≌△CBF.

(2)若ADBD,则四边形BFDE是什么特殊四边形?请证明你的结论.

F C

A E B2、如图,四边形ABCD中,AB∥CD,AC平分BAD,CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.

(1)求证:AD=CE;

(2)填空:四边形ADCE的形状是.

A

DMN

B

4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

5.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.

(1)求证:△ABC≌△DCB ;

(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

6、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.

(1)求证:△BOE≌△DOF;

(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.

F

A

B

E

D B N

7.600,它的两底分别是16cm、30cm。求它的腰长。

(两种添线方法)

C

8.如图

(七),在梯形ABCD中,AD∥BC,ABADDC,ACAB,将CB延长至点F,使BFCD.

(1)求ABC的度数;

(2)求证:△CAF为等腰三角形.

C

篇5:特殊的四边形证明题

XueDa PPTS Learning Center

第1页

第2页

第3页

1.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;

(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

2.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.

C

B A

E

3.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;

(2)若AB=AC,求证:四边形BFCE是菱形.

4.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;

A

(2)若AB=6,BC=8,求四边形OCED的面积. OEB

5.如图,菱形ABCD的对角线AC与BD相交于点O,点E、F分别为边AB、AD的中点,连接EF、OE、OF.求证:四边形AEOF是菱形.B D

O

篇6:四边形的证明题

1.如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.F

AD

BEC

(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)

(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.

(3)若AB=m,BC=n,当m.n满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)

【答案】(1)当点E运动到BC的中点时,四边形AEDF是菱形;

(2)存在.当x5时,四边形AEDF的面积最大为25;

(3)当m≤1n时,四边形AEDF能成为一个矩形.

2【解析】

试题分析:(1)根据矩形的性质得出AB=CD,∠B=∠C=90°,求出四边形是平行四边形,根据勾股定理求出AE=DE,即可得出答案;

(2)求出S四边形AEDF=2S△AED=S矩形ABCD,设AB=x,则BC=10﹣x,四边形AEDF的面积为y,求出y=x(10﹣x),求出二次函数的最值即可;

(3)根据矩形能推出△BAE∽△CED,得出比例式,代入得出方程,求出方程的判别式,即可得出答案. 试题解析:(1)当点E运动到BC的中点时,四边形AEDF是菱形,理由是:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵E为BC中点,∴BE=CE,由勾股定理得:AE=DE,∵点O是边AD上的中点,OE=OF,∴四边形AEDF是平行四边形,∴平行四边形AEDF是菱形;

(2)存在.∵点O是AD的中点,∴AO=DO ,∵OE=OF,∴四边形AEDF是平行四边形 ,∴S四边形AEDF2SAEDS矩形ABCD ,设AB=x,则BC=10x,四边形AEDF的面积为y,yx(10x)

x210x

(x5)22

5当x5时,四边形AEDF的面积最大为25;

(3)当m≤1n时,四边形AEDF能成为一个矩形, 2

理由是:设BE=z,则CE=n﹣z,当四边形AEDF是矩形时,∠AED=90°,∵∠B=∠C=90°,∴∠BAE+∠BEA=90°,∠BEA+∠DEC=90°,∴∠BAE=∠DEC,∴△BAE∽△CED, ABBE, CECD

mz, ∴nzm∴

∴z﹣nz+m=0,22当判别式△=(﹣n)﹣4m≥0时,方程有根,即四边形AEDF是矩形, 解得:m≤

∴当m≤221n, 21n时,四边形AEDF能成为一个矩形. 2

考点:四边形综合题.

2.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.

(1)求证:四边形AODE是菱形;

(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.

【答案】(1)证明见解析;(2)矩形,理由见解析.【解析】

试题分析:(1)根据矩形的性质求出OA=OD,证出四边形AODE是平行四边形即可;(2)根据菱形的性质求出∠AOD=90°,再证出四边形AODE是平行四边形即可.试题解析:(1)∵矩形ABCD的对角线相交于点O,∴AC=BD(矩形对角线相等),OA=OC=11AC,OB=OD=BD(矩形对角线互相平分).∴OA=OD.22

∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形(两组对边分别平行的四边形是平行四边形).∴四边形AODE是菱形(一组邻边相等的平行四边形是菱形).(2)矩形,理由如下:

∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形.∵菱形ABCD,∴AC⊥BD.∴∠AOD=90°.∴平行四边形AODE是矩形.

考点:1.矩形的判定和性质;2.平行四边形的判定;3.菱形的判定和性质.3.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.

①求证:BD⊥CF;

②当AB=4,FG的长.

【答案】(1)BD=CF成立,证明见解析;(2)①证明见解析;②FG=.5

【解析】

试题分析:(1)证明线段相等的常用方法是三角形的全等,直观上判断BD=CF,而由题目条件,旋转过程中出

现了两个三角形△BAD和△CAF,并且包含了要证明相等的两条线段BD和CF,∵△ABC是等腰直角三角形,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,只差夹角相等,在Rt△BAC中,∠BAD+∠DAC=90°,∠CAF+∠DAC=90°, ∴∠BAD=∠CAF, ∴△BAD≌△CAF, BD=CF.(2)①要证明BD⊥CF,只要证明∠BGC=90°,即∠GBC+∠BCG=∠GBC+∠ACF+∠ACB=90°,在Rt△BAC中,∠ABC+

∠ACB=∠ABG+∠GBC+∠BCA=90°,有(1)知,∠ACF=∠ABG,所以∠GBC+∠ACF+∠ACB=∠GBC+

∠ABG +∠ACB =90°,所以BD⊥CF.②求线段的方法一般是三角形的全等和勾股定理,题目中没有和FG直接相关的线段,而CG从已知条件中又无法求出,所以需要作辅助线,连接FD,交AC于点N, 在正方形ADEF中,, AN=1, CN=3, 由勾股定理CF=,设FG=x,CG=x,在Rt△FGD中,∵FD=2,∴GD=4x2,∵在Rt△BCG中,CGBGBC,∴(x)2(4x2)2(42)2,解之得FG=

试题解析:②解法一:

如图,连接FD,交AC于点N,222.5

∵在正方形ADEF中,, 1AE=1,FD=2, 2

∵在等腰直角△ABC 中,AB=4,∴CN=AC-AN=3,∴AN=FN=

∴在Rt△FCN中,CFFN2CN2232,∵△BAD≌△CAF(已证),∴BD=CF=,设FG=x,在Rt△FGD中,∵FD=2,∴GD=4x2, ∵CF=,∴CG=x,∵在等腰直角△ABC 中,AB=AC=4,∴BC

∵在Rt△BCG中,CGBGBC, ∴(x)2(4x2)2(42)2 ,整理,得5x2x60, 解之,得x122223,x2(不合题意,故舍去)55

∴FG=.5

解法二:

如图,连接FD,交AC于点N;连接CD,同解法一,可得:DG=4x2,CG=x,易证△ACD≌△ABD(SAS),可得CD=BD=,在Rt△CGD中,CGDGCD,即(x)2(4x2)2()2 解之,得x222,故FG=.55

篇7:谈特殊四边形的识别

[一、平行四边形]

例1(2007年·吉林省)如图1,有一矩形纸片ABCD,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE、AG与AB、CD的交点.求证:四边形AECG是平行四边形.

分析:要证明四边形AECG是平行四边形,题中已有条件CG∥AE,因此可考虑证明CG= AE,利用“一组对边平行且相等的四边形是平行四边形”;也可以考虑证明AG∥CE,利用“两组对边分别平行的四边形是平行四边形”.下面用第二种思路证明.

证明:在矩形ABCD中,因为AD∥BC,所以∠DAC=∠BCA.由题意,得∠GAH=∠1/2DAC,∠ECF=∠1/2BCA,所以∠GAH=∠ECF,所以AG∥CE.又因为CG∥AE,所以四边形AECG是平行四边形.

点评:平行四边形常见的判定方法还有:①两组对边分别相等的四边形;②对角线互相平分的四边形;③两组对角分别相等的四边形.运用时,要灵活选择.如果一种方法不易解出,可以尝试其他的方法.

[二、矩形]

例2(2007年·东营)如图2,在△ABC中,AB=AC.AD⊥BC,垂足为点D.AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.

分析:要证明四边形ADCE为矩形,题设中已有两个角是直角的条件,可考虑利用“有三个角是直角的四边形是矩形”来证明,故只要证明∠DAE是直角即可.

证明:在△ABC中,AB=AC,AD⊥BC,所以∠BAD=∠DAC.因为AN是△ABC外角∠CAM的平分线,所以∠MAE=∠CAE.故∠DAE=∠DAC+∠CAE=×180°=90°.又因为AD⊥BC,CE⊥AN,所以四边形ADCE为矩形.

点评:矩形常见的判定方法有:①三个角是直角的四边形;②有一个角是直角的平行四边形;③两条对角线相等的平行四边形.

[三、菱形]

例3(2007年·双柏)如图3,在梯形纸片ABCD中,AD∥BC,AD>CD.将纸片沿过点D的直线折叠,使点C落在AD上的点C1处,折痕DE交BC于点E.求证:四边形CDC1E是菱形.

分析:由于是折叠问题,因此有很多边相等、角相等,可以考虑利用“四条边都相等的四边形是菱形”来证明.

证明:由题意可知△CDE≌△C1DE,则有CD=C1D,∠C1DE=∠CDE,CE=C1E.因为AD∥BC,所以∠C1DE=∠CED.故∠CDE=∠CED,于是CD=CE.所以CD=C1D=C1E=CE,四边形CDC1E是菱形.

点评:菱形常见的判定方法有:①四条边都相等的四边形;②有一组邻边相等的平行四边形;③对角线互相垂直的平行四边形.在折叠问题中,如果有平行线的条件,一般都会有等腰三角形存在.这点应当重视.

[四、正方形]

例4(2006年·深圳)如图4所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加的一个条件是________.

分析:这是一道开放型题目.根据已知条件知四边形ABCD是菱形,要使四边形ABCD是正方形,按其判定方法只要增加条件∠BAD=90°,或∠ABD=45°,或AC=BD等.

解:略.

点评:正方形常见的判定方法有:①有一组邻边相等的矩形;②有一个角是直角的(或对角线相等的)菱形.

[五、等腰梯形]

例5(2007年·连云港)如图5,在等腰△ABC中,AB=AC.BD⊥AC,CE⊥AB,垂足分别为点D、E,连接DE.求证:四边形BCDE是等腰梯形.

分析:要证明四边形BCDE是等腰梯形,首先要证明它是梯形,再证明其两腰相等即可.由图形知BE与CD显然不平行,因此要证明DE∥BC,可通过“同位角相等,两直线平行”来解决.要证明这个梯形是等腰梯形,可通过说明两腰相等的方法达到.

证明:在等腰△ABC中,AB= AC,∠ABC=∠ACB.因为BD⊥AC,CE⊥AB,所以∠BEC=∠CDB=90°.又BC=CB,所以△BEC≌△CDB(AAS).于是BE=CD.从而AB-BE= AC-CD,即AE=AD.所以∠AED=∠ADE.所以 ∠ABC=∠AED=1/2(180°-∠A).所以DE∥BC.而BE与CD不平行,所以四边形BCDE是梯形.又因为BE=CD,故四边形BCDE是等腰梯形.

篇8:添加辅助线解特殊四边形题

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.

一、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.

1.利用一组对边平行且相等构造平行四边形

例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.

求证:OE与AD互相平分.

分析:因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证. 证明:连结AE、OD,因为是四边形OCDE是平行四边形,所以OC//DE,OC=DE,因为0是AC的中点,所以A0//ED,AO=ED,所以四边形AODE是平行四边形,所以AD与OE互相平分.

图1 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.

2.利用两组对边平行构造平行四边形

例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.

分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.

证明:过点E作EH//BC,交AC于H, 因为ED//AC,所以四边形CDEH是平行四边形, 所以ED=HC, 又FG//AC,EH//BC, 所以∠AEH=∠B,∠A=∠BFG, 又AE=BF, 所以△AEH≌△FBG, 所以AH=FG,图2 所以FG+DE=AH+HC=AC.

说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.

3.利用对角线互相平分构造平行四边形 例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.

证明:延长AD到G,使DG=AD,连结BG,CG,因为BD=CD,所以四边形ABGC是平行四边形,所以AC=BG,AC//BG,所以∠1=∠4,因为AE=EF,所以∠1=∠2,又∠2=∠3,所以∠1=∠4,所以BF=BG=AC.

图3

图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.

二、和菱形有关的辅助线的作法

和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.

例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形. 分析:要证明四边形CDEF是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD是∠BAC的平分线,AE=AC,可通过连接CE,构造等腰三角形,借助三线合一证明AD垂直CE. 求AD平分CE.

证明:连结CE交AD于点O,由AC=AE,得△ACE是等腰三角形,因为AO平分∠CAE,所以AO⊥CE,且OC=OE,因为EF//CD,所以∠1=∠2,图5 又因为∠EOF=∠COD,所以△DOC可以看成由△FOE绕点O旋转而成,所以OF=OD,所以CE、DF互相垂直平分.所以 四边形CDEF是菱形.

例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.

分析:要证明EF+BF的最小值是DE的长,可以通过连结菱形的对角线BD,借助菱形的对角线互相垂直平分得到DF=BF,然后结合三角形两边之和大于第三边解决问题. 证明:连结BD、DF.

因为AC、BD是菱形的对角线,所以AC垂直BD且平分BD,所以BF=DF,所以EF+BF=EF+DF≥DE,当且仅当F运动到DE与AC的交点G处时,上式等号成立,所以EF+BF的最小值恰好等于DE的长.

图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.

三、与矩形有辅助线作法

和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.

例6 如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.

分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.

解:过点P分别作两组对边的平行线EF、GH交AB于E,交CD于F,交BC于点H,交AD于G.

因为四边形ABCD是矩形,所以PF2=CH2=PC2-PH2,DF2=AE2=AP2-EP2,PH2+PE2=BP2,所以PD2=PC2-PH2+AP2-EP2=PC2+AP2-PB2=52+32-42=18,所以PD=32 .

图7 说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD与PA、PB、PC之间的关系,进而求到PD的长.

四、与正方形有关辅助线的作法

正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.

例7如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:∠BCF= 1∠AEB. 2分析:由BE//AC,CF//AE,AE=AC,可知四边形AEFC是菱形,作AH⊥BE于H,根据正方形的性质可知四边形AHBO是正方形,从AH=OB=∠BCF=15°.

证明:连接BD交AC于O,作AH⊥BE交BE于H.

1AC,可算出∠E=∠ACF=30°,2在正方形ABCD中,AC⊥BD,AO=BO,又BE//AC,AH⊥BE,所以BO⊥AC,所以四边形AOBH为正方形,所以AH=AO=

1AC,2因为AE=AC,所以∠AEH=30°,因为BE//AC,AE//CF,所以ACFE是菱形,所以∠AEF=∠ACF=30°,因为AC是正方形的对角线,所以∠ACB=45°,所以∠BCF=15°,所以∠BCF=

图8 说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题.

五、与梯形有关的辅助线的作法

和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等. 例8 已知,如图9,在梯形ABCD中,AD//BC,AB=AC,∠BAC=90°,BD=BC,BD交AC于点0.求证:CO=CD.

分析:要证明CO=CD,可证明∠COD=∠CDO,由于已知∠BAC=90°,所以可通过作梯形高构造矩形,借助直角三角形的性质解决问题.

证明:过点A、D分别作AE⊥BC,DF⊥BC,垂足分别是E、F,则四边形AEFD为矩形,因为AE=DF,AB=AC,AE⊥BC,∠BAC=90°,所以AE=BE=CE=所以AE=DF=

1∠AEB.

21BC,∠ACB=45°,21,2180DBC75,2又DF⊥BC,所以在Rt△DFB中,∠DBC=30°,又BD=BC,所以∠BDC=∠BCD=所以∠DOC=∠DBC+∠ACB=30°+45°=75°. 所以∠BDC=∠DOC,所以C0=CD.

图9 说明:在证明线段相等时,一般利用等角对等边来证明,本题作梯形的高将梯形转化为矩形和直角三角形,进而根据直角三角形知识解决.

例9 如图10,在等腰梯形ABCD中,AD//BC,AC⊥BD,AD+BC=10,DE⊥BC于E.求DE的长. 分析:根据本题的已知条件,可通过平移一条对角线,把梯形转化为平行四边形和直角三角形,借助勾股定理解决.

解:过点D作DF//AC,交BC的延长线于F,则四边形ACFD为平行四边形,所以AC=DF,AD=CF,因为四边形ABCD为等腰梯形,所以AC=DB,BD=FD,因为DE⊥BC,所以BE=EF==

111BF=(BC+CF)=(BC+AD)2221×10=5. 2因为AC//DF,BD⊥AC,所以BD⊥DF, 因为BE=FE,所以DE=BE=EF=5, 即DE的长为5.

图10 说明:当有对角线或垂直成梯形时,常作梯形对角线的平行线,构造平行四边形,等腰三角形或直角三角形来解决.

六、和中位线有关辅助线的作法

例10 如图11,在四边形ABCD中,AC于BD交于点0,AC=BD,E、F分别是AB、CD中点,EF分别交AC、BD于点H、G.求证:OG=OH.

分析:欲证0G=OH,而OG、OH为同一个三角形的两边,又E、F分别是AB、CD中点,所以可试想作辅助线,构造三角形中位线解决问题. 证明:取AD中点P,连结PE,PF. 因为E是AB的中点,F是CD的中点,所以PE//BD,且PE=11BD,PF//AC,且PF=AC,22所以∠PEF=∠PFE,又∠PEF=∠OGH,∠PFE=∠OHG,所以∠OGH=∠OHG,所以OG=OH.

说明:遇中点,常作中位线,借助中位线的性质解题.

篇9:四边形证明题复习

(1)求证:△ABE≌△CDF;

(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

2.如图,平行四边形ABCD中,E、F分别为BC、AD的中点。连接EF交AC于O,连接AE、FC。

(1)证:AOFCOE;

(2)证:四边形AECF是平行四边形;

(3)当ABC满足什么条件时(只能添加一个条件),四边形AECF是矩形。

3.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.

(1)求证:△AOD≌△EOC;

(2)连接AC,DE,当∠B=∠AEB= _________ °时,四边形ACED是正方形?请说明理由.

4.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D;

(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

1.如图,在矩形ABCD中,DE平分∠ADC交AC于E,BF平分∠ABC交AC于F,试问四边形BEDF是什么四边形,请证明你的结论.

2.如图,在△ABC中,O是边AC上的一动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:OE=OF;

(2)当点O运动到何处时,四边形AECF是矩形?

3.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.

(1)求证:四边形BMDN是菱形;

(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.

1.已知:如图①,在□ABCD中,AB=3cm,BC=5cm.AC⊥AB。△ACD沿AC的方向匀速平移得到 △PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解

答下列问题:

(1)当t为何值时,PQ∥MN?

(2)设△QMC的面积为y(cm),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;

若不存在,请说明理由.

(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说

明理由.

(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.

(4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成两部分?若存在,求出相应的t值;若不存在,说明理由. 的

2.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1)解答下列问题:

(1)当t为何值时,四边形AQDM是平行四边形?

篇10:四边形几何拓展证明题

C ACB MF

图19-12 CB 图19-14 图19-1

541.如图19-14,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于F. 试

确定AD与EF的位置关系,并说明理由.

42.如图19-15,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.

A D

E

图19-16图

19-23图19-2

343.如图19-16,等腰梯形ABCD中,E为CD的中点,EF⊥AB于F,如果AB=6,EF=5,求梯形ABCD的面积.

50.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE

=15°,试求∠COE的度数。

51.如图19-24,在正方形ABCD中,Q是CD的中点,P在BC上,且AP=PC+CD,求证:AQ平分∠DAP。

55.如图19-26,在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到的△AEF和四边形EBCF

可以拼成平行四边形EBCP,剪切线与拼图如图示1,仿上述P(E)的方法,按要求完成下列操作设计,并在规定位置画出图示,⑴在△ABC中,增加条件_____,沿着_____B C(A)一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置;

图19-26 ⑵在△ABC中,增加条件,沿着_____

一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置; ⑶在△ABC中,增加条件_______,沿着_____一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置

⑷在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:_______________________________________________________________________

然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置.E

F

P(E)

C(A)

图示

1图示

2图示3

图示5

29.如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点

移动t秒(0

(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出

此时点P的位置;若不能,请说明理由。

图示4

27.如图,正方形AOBC的边长为4,反比例函数y

k

经过正方形AOBC的重心D点,E为AB边x

上任一点,F为OB延长线上一点,AE=BF,EF交AB于点G.(1)求反比例函数的解析式;

(2)判断CG与EF之间的数量和位置关系;

25.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,k

(x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)x

k

若将菱形ABCD向右平移,使点D落在反比例函数y(x>0)的图象上,求菱形平移的x

距离

.点A在反比例函数y

22.如图,已知Rt△ABC中,AB=AC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM,若点D在边AC上,点E在边AB上且与点B不重合。求证:BM=DM且BM⊥DM。

41.如图,在直角梯形ABCD中,AD∥BC,∠A=900,AD=16cm,AB=12cm,动点P从点B出发,在线段BC上以2cm/s的速度向点C运动;点Q从点A出发,在线段AD上以1cm/s的速度向点D运动;点P,Q分别从点B,A同时出发,当点P运动到点C时,点Q随之停止运动,设运动时间为t。

(1)当t=5s时,求线段PQ,PD的长度;

(2)当t为何值时,以D,P,Q三点顶点的三角形是等腰三角形?

38.在梯形ABCD中,AD∥BC,ABAC,B45,AD

BCDC的长.

25.如图,M为正方形ABCD内一点,MA=2,MB=4,∠AMB=135°,计算MC的长。

34.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm,等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止。(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由______形变化为________形;

(2)设当等腰直角△PMN移动x(s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积

为y(cm)。

篇11:特殊的四边形证明题

在几何中,四边形的一般定义为:四条首尾相接的线段组成的图形叫做四边形.组成四边形的四条线段,叫做四边形的四条边.按照四条边是否共面,可以把四边形分为两类:四条边在同一平面内的四边形叫做平面四边形;四条边不在同一平面内的四边形叫做空间四边形.例如,把一张方形的纸铺平,它的四边就组成一个平面四边形;把这张纸沿对角线折一下,使对角线两旁的部分不在同一平面内,这张纸的四条边就组成了一个空间四边形(如图1).初中数学中主要讨论平面四边形.

平面四边形又可以进一步分为两类:画出平面四边形的任意一条边所在直线时,如果整个四边形都在直线的同侧,则它是凸四边形(如图2(1));否则它是凹四边形(如图2(2)).初中数学中讨论的四边形主要是凸四边形.

对于一般的四边形,四条边只要能够首尾相接即可,并无其他关于边的位置或长短的要求.梯形、平行四边形、矩形、菱形、正方形则不仅都是四边形,并且各自满足一定的附加条件.像这样满足一定附加条件的四边形称为特殊的四边形.进一步可以看出,矩形、菱形和正方形又是满足一定附加条件的平行四边形,即它们是特殊的平行四边形.

[二、四边形的“性质与判定”]

通常,教科书中在给出一种图形的定义后,会继续讨论由这个定义能进一步推出哪些结论,即得出这种图形的一些性质.这些性质往往是经常用到的主要性质.这种图形很可能还有一些其他性质,教科书则未曾涉及.例如,平行四边形除具有教科书中所说的“对边平行且相等”“对角相等”“对角线互相平分”等主要性质之外,还有“对角线的平方和等于四条边的平方和”这个性质.它可以证明如下.

如图3,作▱ABCD的高线DE,CF. 利用全等三角形可以证明AE=BF.

AC2=AF2+CF2=(AB+BF)2+BC2-BF2=AB2+BC2+2AB·BF,①

BD2=BE2+DE2=(AB-AE)2+DA2-AE2=AB2+DA2-2AB·AE.②

∵AB=CD,AE=BF,

∴①+②,得AC2+BD2=AB2+BC2+CD2+DA2.

实际上,图形的所有性质都是由图形定义所确定的.虽然定义本身并未直接表述出所有性质,但是定义中已经隐含了它们.故而以定义为出发点,可以逐步推导出所有性质.

图形的“性质”和“判定”,是两类不同的问题.讨论一种图形的性质,是在确定对象已经是这种图形的前提下进行的;讨论一种图形的判定,是为确定对象是这种图形而进行的.有时,在分析某个问题的过程中,两类问题都会出现,如先判定某对象是一种特定的图形,再推导出它的一些性质.

是不是只要一种图形有某条性质,就可以反过来把这条性质当成这种图形的一个判定条件呢?不是!并非一种图形的每个性质都可以拿来作为这种图形的判定条件.例如,正方形具有“对边平行,邻边相等”的性质,但是仅根据一个四边形满足“对边平行,邻边相等”不能判定它是正方形,而只能判定它是菱形.

上一篇:碑文格式范例下一篇:开校学生会讲话稿