平行四边形证明

2024-04-24

平行四边形证明(共14篇)

篇1:平行四边形证明

证明平行四边形

证明平行四边形

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30,EF⊥AB,垂足为F,连结DF。

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,

等边△ABE ,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴ DF=√(AD+AF)=2a

∴AE=DF=2a,EF=AD=√3a =>四边形ADFE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形

2

1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..

3判定(前提:在同一平面内)(1)两组对边分别相等的.四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形 (5)两组对角分别相等的四边形为平行四边形 (注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。) (1)平行四边形对边平行且相等。 (2)平行四边形两条对角线互相平分。 (3)平行四边形的对角相等,两邻角互补。 (4)连接任意四边形各边的中点所得图形是平行四边形。(推论) (5)平行四边形的面积等于底和高的积。(可视为矩形) (6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 (7)对称中心是两对角线的交点。

性质9(8)矩形 菱形是轴对称图形。 (9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分, 一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。 (10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。 (11)平行四边形对角线把平行四边形面积分成四等分。 (12)平行四边形是中心对称图形,但不是轴对称图形。 (13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。 (14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。 编辑本段平行四边形中常用辅助线的添法一、连接对角线或平移对角线。 二、过顶点作对边的垂线构成直角三角形。 三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。 四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。 五、过顶点作对角线的垂线,构成线段平行或三角形全等。 编辑本段面积与周长1、(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah (2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,@表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sin@ 2、平行四边形周长可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b) 底×1X高

篇2:平行四边形证明

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,等边△ABE,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴DF=√(AD²+AF²)=2a

∴AE=DF=2a,EF=AD=√3a=>四边形ADFE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形

2、一组对边平行且相等的四边形是平行四边形

3、两组对边分别相等的四边形是平行四边形

4、对角线互相平分的四边形是平行四边形

21.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。

性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法

一、连接对角线或平移对角线。

二、过顶点作对边的垂线构成直角三角形。

三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。

四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。

五、过顶点作对角线的垂线,构成线段平行或三角形全等。编辑本段面积与周长

1、(1)平行四边形的面积公式:底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,@表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sin@

篇3:“三法”证明线面平行

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理, 即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行, 即证线线平行, 经常应用到的结论有: (1) 三角形的中位线平行于第三边; (2) 同旁内角互补、同位角相等、内错角相等的两直线平行; (3) 垂直于同一直线的两条直线平行; (4) 平行四边形的对边相等且平行; (5) 如果一条直线截三角形的两边或两边的延长线, 所得的对应线段成比例, 那么这条直线平行于三角形的第三边.

【例1】如图1, 五面体中, 四边形ABCD是矩形, AB∥EF, P、Q分别为AE、BD中点.

求证:PQ∥平面BCE.

证明:连接AC, 因为四边形ABCD是矩形, Q为BD的中点, 所以Q为AC的中点, 且在△AEC中.又P为AE的中点, ∴PQ∥EC, ∵

∴PQ∥CE.

点评:要证明线面平行, 可考虑证明PQ与平面内的一条直线平行, 因为P是AE的中点, Q是AC的中点, 故考虑利用中位线的性质证明线线平行, 进而证明线面, 进而证明线面平行.

【例2】在如图2所示的几何体中, △ABC是正三角形, AE⊥平面ABC, 平面BCD⊥平面ABC, BD=CD, 且BD⊥CD.

求证:AE∥平面BCD.

证明:取BC的中点M, 连接DM、AM, 由已知可 得DM⊥BC, AM⊥BC.

又因为平面BCD⊥平面ABC, 所以DM⊥平面ABC.

因为AE⊥平面ABC, 所以AE∥DM.

又因为, 所以AE∥平面BCD.

点评:在空间中, 垂直于同一平面的两直线平行, 本题已知AE⊥平面ABC, 又可证明DM⊥平面ABC, 故可得AE∥DM, 从而证明了线面平行.

【例3】如图3, 已知四棱锥P-ABCD的底面是直角梯形, AB∥CDE是PC的中点.证明:BE∥面PAD.

证明:取PD的中点F, 连接EF、AF, 则有

点评:本题中要证BE∥面PAD, 可考虑在平面PAD中寻找一条直线与BE平行, 根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时, 若根据判断定理不容易证明, 可考虑通过证明面面平行, 达到证明线面平行的目的.

【例4】如图4, 三棱柱ABC-A1B1C1, 底面为正三角形, 侧棱A1A⊥底面ABC, 点E, F分别是棱CC1, BB1上的点, 点M是线段AC的中点, EC=2FB.

求证:BM∥平面AEF.

证明:如图4, 取EC的中点P, 连接PF、PM、PB,

∵点M是AC的中点,

∴PM∥AE,

又, ∴PM∥面AEF.

点评:要证明BM∥平面AEF, 在平面AEF中不容易找到一条直线与BM平行, 但根据条件易证明PM∥平面AEF, PB∥平面AEF.从而得到面面平行, 根据面面平行的性质, 易得线面平行.

三、法向量法

由平面的法向量可知, 如果直线与平面的法向量垂直, 且直线在平面外, 则直线与平面平行, 当题目中的条件有利于建立直角坐标系, 且用以上两种方法不易证明时, 可考虑建立直角坐标系, 利用法向量求解.

【例5】如图5, 已知四边 形ABEF是矩形, △ABC是等腰三角形, 平面ABEF⊥平面ABC, ∠BAC=120°, AB=1/2AF=4, CN=3NA, M, P, Q分别是AF, EF, BC的中点.求证:直线PQ∥平面BMN;

篇4:“三法”证明线面平行

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

(责任编辑钟伟芳)endprint

平行关系是几何中一种常见的位置关系,其包括线线平行、线面平行及面面平行三种类型.其中线面平行是三种平行关系中最为常见的一种,是高中数学的必修内容,它既与线线平行相关,又与面面平行有一定的联系,是三种平行关系中极为重要的一种.在2013年的高考中,有一半的试卷涉及线面平行的证明,下面以题为例研究线面平行的证明方法,寻找此类题的解题规律.

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

(责任编辑钟伟芳)endprint

平行关系是几何中一种常见的位置关系,其包括线线平行、线面平行及面面平行三种类型.其中线面平行是三种平行关系中最为常见的一种,是高中数学的必修内容,它既与线线平行相关,又与面面平行有一定的联系,是三种平行关系中极为重要的一种.在2013年的高考中,有一半的试卷涉及线面平行的证明,下面以题为例研究线面平行的证明方法,寻找此类题的解题规律.

一、由线线平行证明线面平行

证明线面平行最基本的方法是根据线面平行的判定定理,即证平面外的直线与平面内的一条直线平行.此种方法的关键是找到平面内的一条直线与此直线平行,即证线线平行,经常应用到的结论有:(1)三角形的中位线平行于第三边;(2)同旁内角互补、同位角相等、内错角相等的两直线平行;(3)垂直于同一直线的两条直线平行;(4)平行四边形的对边相等且平行;(5)如果一条直线截三角形的两边或两边的延长线,所得的对应线段成比例,那么这条直线平行于三角形的第三边.

点评:本题中要证BE∥面PAD,可考虑在平面PAD中寻找一条直线与BE平行,根据条件中的线段关系考虑构造平行四边形解决.

二、由面面平行证明线面平行

在证明线面平行时,若根据判断定理不容易证明,可考虑通过证明面面平行,达到证明线面平行的目的.

点评:要证明BM∥平面AEF,在平面AEF中不容易找到一条直线与BM平行,但根据条件易证明PM∥平面AEF,PB∥平面AEF.从而得到面面平行,根据面面平行的性质,易得线面平行.

三、法向量法

由平面的法向量可知,如果直线与平面的法向量垂直,且直线在平面外,则直线与平面平行,当题目中的条件有利于建立直角坐标系,且用以上两种方法不易证明时,可考虑建立直角坐标系,利用法向量求解.

所以PQ∥平面BMN.

点评:本题具备了建立直角坐标系的条件,且点的坐标易求,故考虑利用法向量证明线面平行,应注意最后必须写明PQ平面BMN.

篇5:平行四边形证明题

我这一化解,楼主应该明白了吧!~

希望楼主采纳,谢谢~!不懂再问!!

此题关键就是对于三角形的中位线定理熟不!~!~·

已知:F,G是△CDA的中点,所以FG是△CDA的中位线,所以FG平行DA

同理HE是△BAD的中位线,所以HE平行DA,所以FG平行HE

同理可得:FH平行GE!~

即四边形FGEH是平行四边形(两组对边分别平行的四边形是平行四边形

2证明:∵E,F,G,H分别是AB,CD,AC,BD的中点

∴FG//AD,HE//AD,FH//BC,EG//BC

∴FG//HE,FH//EG

∴四边形EGFH是平行四边形

3.理由:连接一条对角线,AC吧。

∵AD平行BC,AB平行DC(平行四边形的性质)

∴∠DAC=∠ACB,∠BAC=∠DCA

在△ABC和△DAC中,∠DAC=∠ACB

AC=CA

∠BAC=∠DCA

所以,△ABC全等于△DAC(A.S.A)

所以,AB=DA,AD=BC

证明:∵四边形ABCD为平行四边形;

∴DC‖AB;

∴∠EAF=∠DEA

∵AE,CF,分别是∠DAB、∠BCD的平分线;

∴∠DAE=∠EAF;∠ECF=∠BCF;

∴∠EAF=∠CFB;

∴AE‖CF;

∵EC‖AF

∴四边形AFCE是平行四边形

41.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。

性质9(8)矩形菱形是轴对称图形。(9)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。*注:正方形,矩形以及菱形也是一种特殊的平行四边形。(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(11)平行四边形对角线把平行四边形面积分成四等分。(12)平行四边形是中心对称图形,但不是轴对称图形。(13)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(14)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。编辑本段平行四边形中常用辅助线的添法

一、连接对角线或平移对角线。

篇6:证明(三)平行四边形

课 题3.1平行四边形(1)

班级姓名

教学目标

1.能够用综合法证明平行四边形的性质定理和其他相关的结论。2.灵活运用平行四边形的性质定理和其他相关的结论。教学重点、难点:

重点掌握平行四边形的性质定理和其他相关的结论。难点探索证明的思路和方法。教学过程

一、预习反馈 明确目标1.回顾平行四边形的性质定理; 2.回顾等腰梯形的性质; 3.等腰梯形的判定。

二、创设情境 自主探究1.证明平行四边形的性质: 定理:平行四边形的对边相等。

分析:命题的题设和结论是什么?如何借助于已有的知识来证明它?可以借助于三角形的全等来证明,通过添加辅助线,将四边形的问题转化为三角形来证明。已知:。

求证:。

证明:

2.由上面的证明过程,你还能得到什么结论? 定理:平行四边形的对角相等。

证明:

学生讨论,教师总结,得到平行四边形的性质2。

三、展示交流 点拨提高

1.例 证明:等腰梯形在同一底上的的两个角相等。

已知:如图,在梯形ABCD中,AD∥BC,AB=DC。求证:∠B=∠C,∠A=∠D。

提示:我们证明过“等腰三角形的两个底角相等”如果可以将∠B与∠C转化为等腰三角形的两个底角,那么就容易证明了,为此,可以将AB平移到DE的位置。

证明:

2.这个命题的逆命题成立吗?如果成立,请证明它。定理:同一底上的两个角相等的梯形是等腰三角形。

山丹育才中学讲学稿

四、师生互动 拓展延伸课本P84页 随堂练习:

1.证明:平行四边形的对角线互相平分。

2.证明:夹在两条平行线间的平行线段相等。

五、达标测试 巩固提高

已知:如图,AC,BD是□ABCD的两条对角线,且AE⊥BD,CF⊥BD,垂足分别为E,F, 求证:AE=CF。

◆ 作业布置

1.证明:等腰梯形的两条对角线相等。

2.已知:如图,平行四边形的对角线AC,BD相交与点O,过点O的直线与AD,BC分别相交于点E,F.求证:OE=OF.3已知:在□ABCD中,点E,F在对角线AC上,且AF=CE。① 线段BE与DF之间有什么关系?请证明你的结论;

E

F

② 若去掉题设中的AF=CE,请添加一个条件使BE与DF有以上同样的性质。

◆ 教学札记

图3-5

篇7:平行四边形证明提高

.[例1]如图,在ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由

.11.在□ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN是平行四边形吗?为什么?

12.如图,□ABCD中,E、F分别在BA、DC的延长线上,且AE=

12AB,CF=

12CD,AF和CE的关系如何?说明理由

.13.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

14.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.15.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?

篇8:巧用“射影”证明直线和平面平行

一、点射影

例1如图1所示,直线a是平面α外的一条直线,点O是不在直线a上且不在平面α内的任意一点,在直线a上取不同两点A、B,若OA、OB与平面α分别相交于点A1、B1,则直线A1B1叫做直线a关于点O在平面α内的射影,简称为点射影 。

二、方向射影

例2如图2所示,直线a是平面α外的一条直线,直线m是与平面α相交的任意直线,在直线a上取不同两点A、B,过点A、B分别作AA2、BB2平行于直线m交平面α于点A2、B2,则直线A2B2叫做直线a关于直线m在平面α内的射影,简称为方向射影。

三、应用举例

例3 已知在三棱柱ABC-A1B1C1中,E、F分别是棱B1C1、A1A上的点,且A1F∶A1A=B1E∶B1C1。求证:A1E//平面B1FC

分析一:如图3所示,取点B,连结BA1、BE分别交B1F、B1C于点P、Q,连结PQ,则PQ是A1E关于点B在平面B1FC上的射影(点射影),要证A1E//平面B1FC,只须根据平面内平行线分线段成比例定理的逆定理证:A1E//PQ。

证法一:连结BA1、BE分别交B1F、B1C于点P、Q,连结PQ。

∵B1C1//BC,B1C1=BC

∴B1E∶B1C1= B1E∶BC=EQ∶QB

∵AA1//BB1,AA1=BB1

∴A1F∶A1A= A1F∶BB1=A1P∶PB

∵A1F∶A1A=B1E∶B1C1

∴EQ∶QB= A1P∶PB

∴A1E//PQ

又∵A1E 平面B1FC ,PQ 平面B1FC

∴A1E//平面B1FC

分析二:如图4所示,取CC1为方向,过点E作EM//CC1交B1C于点M,连结FM,则FM是A1E关于直线CC1在平面B1FC上的射影(方向射影),要证A1E//平面B1FC,只须根据平行四边形的判定和性质证:A1E//FM。

证法二:过点E作EM//CC1交B1C于点M,连结FM。

∵CC1//AA1 ∴A1F//EM

∴B1E:B1C1=EM:C1C

∵A1F:A1A=B1E:B1C1

∴A1F:A1A = EM:C1C

∵A1A=C1C

∴A1F=EM

∴四边形A1FME是平行四边形

∴A1E//FM

又∵A1E 平面B1FC ,FM 平面B1FC

∴A1E//平面B1FC

篇9:与四边形有关的计算和证明

■平行四边形

与平行四边形有关的考题重点涉及平行四边形的性质及判定方法,解决有关问题需要熟练掌握平行四边形的性质和判定方法.

■ (2011四川凉山)如图1,E,F是平行四边形ABCD对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系,并对你的猜想加以证明.

■?摇猜想:BE∥DF,且BE=DF. 因为四边形ABCD是平行四边形,所以CB=AD,CB∥AD. 所以∠BCE=∠DAF. 在△BCE和△DAF中,CB=AD,∠BCE=∠DAF,CE=AF,所以△BCE≌△DAF. 所以BE=DF,∠BEC=∠DFA. 所以BE∥DF. 所以BE∥DF,且BE=DF.

■矩形

与矩形有关的考题通常为矩形折叠问题和矩形的判定,解决折叠问题,需要把折叠的特征、勾股定理及平行线的相关知识综合应用;解决矩形的判定问题应熟练掌握矩形的判定方法,并能根据所给的条件灵活选用.

■ (2011黑龙江大庆)如图2,ABCD是一张边AB长为2、边AD长为1的矩形纸片,沿过点B的折痕将∠A翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.

(1)求∠DA1E的大小.

(2)求△A1BE的面积.

■?摇(1)由Rt△ABE≌Rt△A1BE知A1B=AB=2,又BC=1,所以∠BA■C=30°. 因为∠BA1E=∠BAE=90°,所以∠DA1E=60°.

(2)在Rt△A1BC中,A1B=2,BC=1,所以A1C=■. 所以A1D=2-■. 设AE=x(x>0),则ED=1-x,A1E=x.?摇 在Rt△A1DE中,A1D2+DE2=A1E2,即(2-■)2+(1-x)2=x2,解得x=4-2■. 在Rt△A1BE中,A1E=4-2■,A1B=AB=2,所以S△A1BE=■×2×(4-2■)=4-2■.

■菱形

与菱形有关的考题重点考查菱形的判定,常以解答题或探索题的形式出现,解决有关的计算题需要将菱形与勾股定理相结合;解决有关的判定题,需从边、对角线两个方面进行判定.

■ (2011福建福州)已知,在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O. 如图3,连结AF,CE,求证四边形AFCE为菱形.

篇10:平行四边形证明训练

1、如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE. 求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.

2、如图所示,已知在平行四边形ABCD中,BE=DF求证:AE=CF.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗? 说明理由.4、如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.

求证:∠EBF=∠FD

5.如图20—1—26,平行四边形ABCD中,AC是对角线,DF⊥AC于F,BE ⊥AC于E,连接BF、DE,你认为四边形BEDF是平行四边形吗?给出合理的解释.

6、如图,在□ABCD中,E、F、G、H分别是四条边上的点,且满足BE=DF,CG=AH,连接EF、GH。求证:EF与GH互相平分。

A

BEFD

7.如图所示,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.8.如图,在□ABCD中,对角线AC,BD相交于点O,MN是过O点的直线,交BC于M,交AD于N,BM=2,AN=2.8,求BC的长.9.如图所示,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.10.如图所示,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?

11、如图所示,ABCD中的对角线AC、BD相交于O,EF经过点O与AD延长线交于E,与CB延长线交于F。E求证:OE=OF

D

A

12.如图, ABCD 中,G是CD上一点,BG交AD延长线于E,AF=CG,DGE100.(1)求证:DF=BG;(2)求AFD的度数.D

AF

ECBG

CB13、如图,ABCD中,E、F分别为AD、BC的中点,AF与BE相交于G,DF与CE相交于H,连结EF、GH。求证:EF、GH互相平分。

AE

BF

14.如图,□ABCD O为D的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,•点E、F在直线MN上,且OE=OF.

(1)图中共有几对全等三角形,请把它们都写出来;

(2)求证:∠MAE=∠NCF.

15.如图12-1-8,△ABC中AB=AC,点P在BC上任一点,PE∥AC,PF∥AB分别交AB,AC于E、F,试证明线段PE+PF=AB.

D

16如图12-1-14所示,已知中,E,F分别是AD,BC的中点,AF与EB交于G,CE与DF交于H,试说明四边形EGFH为平行四边形.

17.已知如图12-1-9,平行四边形ABCD中E,F分别是BC,AD边上的点,且BE=DF,AC与EF交于点O.求证:

OE=OF

18如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.

请判断四边形EFGH的形状?并说明为什么;

19如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.

20、如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.

21.如图20—1—11,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.

篇11:平行四边形的应用证明

1.如图,□ABCD中,AE、CF分别与直线DB 相交于E和F,且AE//CF, 求证:CE//AF.C

A

2..如图,□ABCD中,BM垂直AC于M,DN垂直AC于N, 求证:四边形BMDN是平行四边形。

C

A

3.如图,□ABCD中,点M、N是对角线AC上的点,且AM=CN,DE=BF,求证:四边形MFNE是平行四边形。

E

C

A

4.如图,AB、CD相交于点O,AC//DB,AO=BO,E、F分别为OC、OD的中点,连接AF、BE,求证:AF//BE.A

C

D

5.在四边形ABCD中,AB//CD,对角线AC、BD交于点O,EF过O交AB于E,交CD于F,且OE=OF,求证,ABCD是平行四边形。

D

B

6.如图,过□ABCD对角线的交点O作直线EF交AD、BC分别于E、F,又G、H分别为OB、OD的中点,求证:四边形EHFG为平行四边形。

AE

D

B

7.如图,在□ABCD中,E、F、G、H分别是四条边上的点,且满足BE=DF,CG=AH,连接EF、GH。求证:EF与GH互相平分。

AF

DB

E

8.如图,以△ABC的三条边为边向BC的同一侧作等边△ABP、等边△ACQ,等边△BCR,求证:四边形PAQR为平行四边形。

P

Q

9.如图所示,平行四边形ABCD中,BC=2AB,AF=AB=BE,且点E、F在直线AB上,求EOF的度数.C

F

A B

篇12:证明平行四边形是菱形

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30?,EF⊥AB,垂足为F,连结DF。

求证:四边形ADFE是平行四边形。

设BC=a,则依题意可得:AB=2a,AC=√3a,

等边△ABE ,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a

∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴ DF=√(AD?+AF?)=2a

∴AE=DF=2a,EF=AD=√3a =>四边形ADFE是平行四边形

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形

2

1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..

3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形 (5)两组对角分别相等的四边形为平行四边形 (注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。) (1)平行四边形对边平行且相等。 (2)平行四边形两条对角线互相平分。 (3)平行四边形的对角相等,两邻角互补。 (4)连接任意四边形各边的中点所得图形是平行四边形。(推论) (5)平行四边形的面积等于底和高的积。(可视为矩形) (6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 (7)对称中心是两对角线的交点。

平行四边形性质定义

(矩形(长方形)、菱形、正方形都是特殊的平行四边形。)

性质:

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”)

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)

( 3)如果一个四边形是平行四边形,那么这个四边形的邻角互补

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(平行线间的高距离处处相等)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形).

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

平行四边形性质判定

已知四边形ABCD中,AB=BC=CD=DA,因为AB=CD,AD=BC。所以四边形ABCD为平行四边形,又因为AB=BC。根据菱形的定义:有一组邻边相等的平行四边形是菱形,可得平行四边形ABCD为菱形。所以四条边相等的四边形是菱形。

平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

平行四边形对角线把平行四边形面积分成四等份。

平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

篇13:平行四边形证明

1 中点用于平行问题的证明

在立体几何的平行证明问题中若出现了中点的已知条件,这时我们应特别留意这一条件,因为它往往是解决本题的关键.在立体几何中若能利用好中点,平行问题的证明将会变得更具特征性,其遵循的原理即为若知一中点,即想办法找出另一个中点,那常常应注意能否应用三角形中位线、梯形中线等来证明线线平行,使之能利用中位线性质,从而得到两直线平行或平行四边形,进而可以证明线面平行的问题,从而达到证明线面的平行关系.

例1如图1,已知S是△ABC所在平面外一点,O是边AC的中点,点P是SA的中点,求证:SC∥平面BOP.

分析要证SC∥平面BOP,根据线面平行的判定定理,应证线线平行,即要证SC平行平面BOP内的一条直线.

证明因为P为AS中点,O为AS中点,所以PO为△ASC的中位线,所以PO∥SC,即SC∥PO.又SC平面BOP,PO平面BOP,所以SC∥平面BOP.

例2如图2,PA⊥平面AC,四边形ABCD是矩形,E,F分别是AB,PD的中点,求证:AF∥平面PCE.

分析要证明AF∥平面PCE,根据线面平行的判定定理,应证线线平行,即在平面PCE内找一条直线与AF平行.

证明取PC中点K,连结EK,FK.因为F为PD中点,在△PCD中,KF是△PCD的中位线,所以KF∥CD,KF=CD.

又E为AB中点,四边形ABCD是矩形,所以AE∥CD,AE=CD,所以KF瓛AE,四边形AEKF为平行四边形,AF∥EK.

又AF平面PCE,EK⊂平面PCE,所以AF∥平面PCE.

本例条件中已经告知E,F分别为AB,PD中点这一重要信息,这一重要信息如何用上呢?由于AB,PD为两条异面直线,不能直接将现有中点连接构成三角形中位线,所以需另觅中点,当再添加PC的中点K,就会使所求证的问题出现了例1中的应用三角形中位线的情况.在△PCD中即可应用中位线定理得到KF∥CD且KF=CD这一重要桥梁信息,进而可证得四边形AEKF为平行四边形,由平行四边形的性质可得到线线平行的结论.

例3如图3,在底面是菱形的四棱锥P-ABCE中,点E是PD的中点,求证:PB∥平面EAC.

分析要证明线面平行,很自然就会想着证明线线平行,而题中已知条件有点E是PD中点,若能出现第二个中点,即可以转化为前例中三角形中位线的问题,所证问题即可迎刃而解.

证明如图3,连结BD交AC于点O,连结EO.因为四边形ABCD为菱形,所以O为PD中点.又E是PD的中点,在△DPB中,EO是△DPB的中位线,所以EO∥PB.

又EO平面EAC,PB平面EAC,所以PB∥平面EAC.

本例通过连结BD交AC于点O,巧妙地构造出第二个中点,结合条件中的E是PD的中点,这就出现了三角形中两边中点问题,利用三角形中位线定理就可轻松地把问题解决.

2 中点用于垂直问题的证明

在立体几何的有关垂直问题的证明中,常见的是以证明线线垂直,线面垂直和面面垂直的题型为主,究其规律,该类垂直问题常由线线垂直证得线面垂直,由线面垂直进而证得面面垂直,这证明思路源于证明垂直问题的判定定理和垂直的定义.当题目中给出中点或在一个三角形中有两边相等时,利用好中点往往是解题的关键.

例4如图4,P是边长为1的正六边形ABCDEF所在平面外的一点,P在平面ABC内的射影为BF的中点O,求证:PA⊥BF.

分析PA,BF为两条异面直线,要证明线线垂直,不能直接证得,唯有通过线面垂直证得线线垂直.即证明PA垂直BF所在的平面或证明BF垂直PA所在的平面来实现.

证明连结AO.因为AF=AB,O为BF的中点,所以AO⊥BF即BF⊥AO.

又O为P在平面ABC内的射影,所以PO⊥BF,即BF⊥PO.

又AO∩PO=O, AO, PO⊂平面PAO, 所以BF⊥平面PAO.

又PA⊂平面PAO,所以BF⊥PA,即PA⊥BF.

上例通过证明BF⊥平面PAO,进而证明了PA⊥BF,而这一证明过程中用了O为BF的中点,且AF与AB相等这一重要条件,而当连结AO时,由等腰三角形底边上的中线也为底边上的高这一结论可知有BF⊥AO,即得到了线线垂直.从而得到了证明本题的关键.

例5如图5,在三棱锥P-ABC中,AB=AC, PB=PC, 求证:PA⊥BC.

分析要证明PA⊥BC,即证明线线垂直,可证明PA垂直BC所在的平面或证明BC垂直PA所在的平面,本题有AB=AC,PB=PC两个等腰三角形,若能用好等腰三角形三线合一的性质便可使求证的问题得到解决.

证明取BC中点O,连结AO,PO.

因为AB=AC,PB=PC,O为BC中点,所以BC⊥AO,BC⊥PO.

又AO∩PO=O, AO, PO平面PAO, 所以BC⊥平面PAO.而PA平面PAO, 所以BC⊥PA, 即PA⊥BC.

本例关键是取BC的中点,由等腰三角形底边上的中点引出线线垂直,进而证得了线面垂直.

例6如图6,三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC,求证:AB⊥BC.

分析本题要证明的AB⊥BC是同一个平面内的两条直线,结合题中所给出的条件,想通过证明线面垂直来证明,这显然是走不通的,但它有条件PA=PB=PC,即它的突破点依旧是中点问题,这缘于有等腰三角形的出现.

证明如图6,取AC中点O,连结PO,BO.因为PA=PC,所以PO⊥AC.

又侧面PAC⊥底面ABC,PO⊥底面ABC,所以OB为PB在底面ABC的射影.

又PA=PB=PC,所以OA=OB=OC,即OB=AC.所以AC为直角三角形ABC的斜边,所以AB⊥BC.

要证明线线垂直,当两直线为共面直线,又无法用线面垂直进行证明时,应积极寻求其他的垂直证明依据,而出现有等腰三角形时,关注这个三角形底边上的中点常会使求证问题得到突破.

例7如图7,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点,求证:EF⊥平面PAB.

分析欲证线面垂直,应证线线垂直,即证EF⊥平面PAB内的两条相交线.

证明如图7,取PA中点O,连结DO,FO.因为AD=PD,所以OD⊥PA.

又底面ABCD为矩形,所以AB⊥AD.

又PD⊥底面ABCD,所以PD⊥AB,即AB⊥PD.

又PD∩AD=D,PD,AD平面PAD,所以AB⊥平面PAD.

又OD⊂平面PAD,所以AB⊥OD,即OD⊥AB.

又AB∩PA=A,AB,PA⊂平面PAB,所以OD⊥平面PAB.

又E,F分别为CD,PB的中点,所以ED

所以四边形EFOD为平行四边形,所以EF∥OD,所以EF⊥平面PAB.

本题是一道比较抽象的线面垂直证明题,从题中已知条件是无法直接证明EF⊥平面PAB,证明的突破口出现在等腰三角形PDA与已知条件中的E,F分别为CD,PB的中点的这两个条件上,总之还是由中点问题进行求证的突破,从而使求证得以证明.由此可见中点问题在立体几何证明问题应用中的重要性.

由于知识的不断深化,立体几何的证明问题将会有越来越多的变式题,但不论其如何变化,我们都可以通过对已知条件进行整理,最后回归到我们所常见的、基本的题型进行寻求解答.

参考文献

[1]王申怀.高中数学必修2 (A版) [M].北京:人民教育出版社, 2008.

[2]王林全.中学数学思想方法概论[M].广州:暨南大学出版社, 2003.

[3]陈德崇.中学数学教学论[M].广州:广东高等教育出版社, 1995.

[4]王金贵.怎样解题[M].北京:北京教育出版社, 2005.

[5]李玉琪.简明数学方法论[M].北京:科学技术文献出版社, 1994.

篇14:认识平行四边形

1.让学生经历讨论、探索平行四边形基本特征的过程,掌握它的基本特征,能正确判断平行四边形的底和高。

2.让学生在观察、操作、比较、判断等活动中,积累认识图形的经验,发展空间观念。

3.让学生感受图形与生活的联系,进一步发展“空间与图形”的学习兴趣。

【教学重、难点】探索平行四边形的特征

【教学过程】

一、创设情境,引入新课

谈话:你能指出每幅图中的平行四边形吗?

【设计意图:由学生熟悉的图画引入新课,激发学习兴趣,调动学习积极性。】

二、合作探索,学习新知

1.探索平行四邊形的特征

(1)感知平行四边形的特征

谈话:你能利用准备好的材料动手制作一个平行四边形吗?

汇报、交流、展示:说说你是怎么做平行四边形的?

(2)小组合作探究特征

谈话:如果把平行四边形画下来,怎么画?

提问:你是怎样画平行四边形的?

(3)小组汇报、交流

提问:你认为平行四边形有什么特点?

质疑:平行四边形是不是有这些特点?你能想办法验证吗?小组合作完成。

提问:验证后得到了什么结论?

(4)总结平行四边形的特点

提问:你能完整说说平行四边形有哪些特点吗?

【设计意图:引导学生经历操作、比较、观察、讨论、交流等活动,从中认识平行四边形,发现平行四边形的基本特征。】

2.认识平行四边形底和高

(1)独立尝试量出对边之间的距离

谈话:你能量出平行四边形对边之间的距离吗?

(2)集体汇报交流

提问:对边之间的距离是多少?你是怎样量的?

追问:在量对边之间的距离时,你认为要注意什么?

(3)明确底和高的概念

【设计意图:通过学生自主探索、动手实践,很方便得到了平行四边形底和高的概念。】

三、拓展应用,巩固新知

1.“试一试”

(1)出示题目,提出要求:量出它们各自的底和高。

(2)追问:如果把另一条边看做底,你还会测量出它的高吗?

2.“想想做做”第一题

让学生说一说哪些图形是平行四边形,并说明判断理由。

3.“想想做做”第二题

谈话:你能用两块完全一样的三角尺拼成一个平行四边形吗?4块呢?

4.“想想做做”第三题

(1)照样子拼出一个平行四边形,再要求移动其中的一块,将它改拼成长方形。

(2)提问:你认为把平行四边形改拼成长方形后,什么变了,什么没有变?

【设计意图:通过练习,使学生熟练掌握平行四边形的特征,能够正确画高。】

四、全课总结

提问:这节课你有哪些收获?

【设计意图:让学生说说自己的收获,可以让学生对学习过程进行反思,使学生学会学习,提高学习的能力。】

(作者单位 安徽省合肥师范附小三小)

上一篇:支教社会实践过程概述下一篇:生物制药专业大学毕业自我评价总结