图象与眼睛 教学方案

2024-04-12

图象与眼睛 教学方案(共9篇)

篇1:图象与眼睛 教学方案

3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。

(1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

(2) 列表、描点、连线画出此函数的图象

4.(1)画出函数y=-x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

(2)判断下列各有序实数对是不是函数。Y=-x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上:

(-2,2), (-,2), (-1,3), (,1)

5.画出下列函数的图象:

(1)y=4x-1; (2)y=4x+1

6。图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:

(1)8时,12时,20时的气温各是多少;

(2)最高气温与最低气温各是多少;

(3)什么时间气温最高,什么时间气温最低。

7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

 

-2

 

-1。5

 

-1

 

-0。5

 

0

 

0。5

 

1

 

1。5

 

2

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8。画出函数y=图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

 

-6

 

-5

 

-4

 

-3

 

-2

 

-1

 

0

 

1

 

2

 

3

 

4

 

5

 

6

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

作业的答案或提示

1. 选(C),因为对应于x的一个值的y值不是唯一的。

2. 选(D)当x<0时,=-x,所以y===-1,当x>0时,=x,所以y===1

3.

(1)y=x(6-x)其中0

(2)

X

 

0

 

1

 

2

 

3

 

4

 

5

 

6

 

y

 

0

 

5

 

8

 

9

 

8

 

5

 

0

 

4。

Y=-x+2

 

x

 

-4

 

-3

 

-2

 

-1

 

0

 

1

 

2

 

3

 

4

 

y

 

3

 

3

 

2

 

2

 

2

 

1

 

1

 

1

 

 

 

经过检验,点(-,2)及点(,1)在所画的函数图象上。

5.

Y=4x-1

 

X

 

-2

 

-1

 

0

 

1

 

2

 

y

 

-9

 

-5

 

-1

 

3

 

7

 

Y=4x+1

 

x

 

-2

 

-1

 

0

 

1

 

2

 

y

 

-7

 

-3

 

1

 

5

 

9

 

6。(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。

7.

Y=x2

 

X

 

-2

 

-1。5

 

-1

 

-0。5

 

0

 

0。5

 

1

 

1。5

 

2

 

y

 

4

 

2。25

 

1

 

0。25

 

0

 

0。25

 

1

 

2。25

 

4

 

8。

Y=

 

X

 

-6

 

-5

 

-4

 

-3

 

-2

 

-1

 

0

 

1

 

2

 

3

 

4

 

5

 

6

 

y

 

-1

 

-

 

-

 

-2

 

-3

 

-6

 

 

 

6

 

3

 

2

 

 

 

 

 

1

 

课堂教学设计说明

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

5.作业中的第1-3题,对训练函数图象很有帮助。

第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。

第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

篇2:图象与眼睛 教学方案

郑美华

〈设计思想〉新课程改革的根本目的是更加全面,更加深刻地实施素质教育,强调学生形成积极主动的学习态度,所以我在教学设计过程中倡导学生主动参与,乐于探究,培养学生学会用科学的方法获得知识,逐步形成发现问题与分析问题的能力。下面从几个方面谈我的教学设计。

﹙一﹚教材分析

1、地位和作用

本节课是在《集合与函数概念》一章中继函数性质后的第一个具体函数,通过本节课学习过程可以使学生体会研究具体函数的过程和方法,为进一步研究其它函数奠定基础。而图象变换也是本章的难点,分散难点也是本节课的设计意图。

2、教学目标

①使学生理解指数函数的概念和意义,能画出指数函数的图像 ②探索指数函数衍生函数图象

③培养学生独立分析和解决问题的能力

3、教学重点

指数函数概念和图象

4、教学难点

探索指数函数有关的图象变换 ﹙二﹚分析学生情况与教材处理

我校是一所省级师范性高中,学生普遍基础扎实,思维活跃开阔,求知欲强。但是部分学生过分依赖老师,独立分析问题解决问题能力较差,因此通过教师的引领提高这方面能力就显得尤为重要。

﹙三﹚教学方法

①以设疑,探究,解疑为主体 ②多次应用启发式教学

③设置知识台阶,将问题一分为二,化难为易 ﹙四﹚教学程序

1、指数函数概念

形如yaxa0,a1的函数叫指数函数

xx1〈思考〉①y2 ②y3 ③y5.4 是否是指数函数?

x﹙学生讨论,得出正确答案﹚

2、指数函数图象

①四组同学分别画y2,y3,y4,y5图象

②请同学讨论这四个函数的共同特点:定义域为R;值域为0,;过0,1;在R上单调递增。

◆电脑演示时指数函数图象a1

xxxx11◆四组同学分别画y,y图象

23◆请同学讨论这两个函数共同特点:定义域为R;值域为0,;过0,1;在R上单调递减。

◆电脑演示0a1时指数函数图象 ◆请同学总结两类图象

﹙三﹚研究指数函数图象与底数关系

xx11◆请同学在同一坐标系中画函数y2x,y3x,y,y的图象

23◆讨论图象与底数关系:a1时,a越大图象在Y轴右侧越接近Y轴,Y轴左侧部分越接近X轴。0a1时,a越小图象在Y轴左侧越接近Y轴,在Y轴右侧部分越接近X轴。

﹙四﹚巩固练习

1、① y2x1 ② y3x1 ③ y2x ④ y2|x|

2、画函数y|3x1|简图,并利用图象回答: ① 何时方程|3x1|k无解? ② 何时方程|3x1|k有一解?

﹙五﹚请同学总结本堂课内容

篇3:函数的图象(教学安排与设计)

1、地位和作用。函数的图象是函数关系的直观表达式, 它形象地显示了函数的性质。对于给定的函数, 能从图象的分布、变化趋势等特征研究函数的性质。通常函数图象是通过列表、描点、连线来作出的, 而大量函数都可通过基本初等函数的图象进行变换来实现, 从而形象地显示了函数的性质, 研究数量关系提供了“形”的直观性, 它是探求解题途径, 获得问题结果的重要工具, 是“数形结合”的数学思想的重要体现。由此可见, 研究函数的图象变换是多么重要。

2、教学重点、难点。函数的图象变换及其应用是这节课的重点。由于学生已掌握基本初等函数的图象, 积累了感性认识的基础, 能揭示不同函数图象变换的共性, 从而促使学生对规律表述的严密性进行探索, 自然地得出结论。

利用基本初等函数的图象, 通过步骤分解, 进行变换, 研究一般函数性质是这节课的难点。为突破难点, 强化其应用, 通过示例, 步步设问, 师生互动, 层层深入, 通过这些例题让学生深刻体会, 体现数形结合的思想。

二、教学目标

根据教学大纲的要求以及本教材的地位和作用, 结合学生的认知特点确定教学目标如下:

知识目标:复习初等函数变换的一般规律, 进而分析、判断、归纳结论。强化“形”与“数”一致并相互转化的思想方法。

能力目标:能运用规律解决实际问题, 从中体会转化化归和数形结合的思想方法, 提高思维品质, 发展应用意识。

情感目标:通过经典考题的回顾, 激发学生学习热情和求知欲望, 通过练习考题的解决, 培养学生发现问题, 及时解决问题的良好习惯。通过问题解决, 培养合作交流、独立思考等良好的个性品质, 以及勇于批判、敢于创新的科学精神。

三、学情分析

根据我校重点高中学生的特点, 以及学生已有的知识结构, 现在进一步复习研究函数图象变换及应用, 是由知识上升到能力的过程, 对学生有一定的难度。学生在学习时问题是难于用抽象的规律解决实际问题, 体现“数形结合”的数学思想。

四、教法分析

新课程教育强调教师要调整自己的角色, 改变传统的教育方式, 教师要由传统意义上的知识的传授者和学生的管理者, 转变为学生发展的促进者和帮助者, 简单的教书匠转变为实践的研究者, 或研究的实践者, 在教育方式上, 也要体现出以人为本, 以学生为中心, 让学生真正成为学习的主人而不是知识的奴隶, 基于此, 本节课重点采用了问题探究和启发式相结合的教学方法。在生生合作, 师生互动中解决问题, 为提高学生分析问题、解决问题的能力打下了基础。利用多媒体辅助教学, 节省了时间, 增大了信息量, 提高了效率, 增强了直观形象性。

五、学法分析

“授之以鱼, 不如授之以渔”, 基础教育要求加强学习方式的改变, 提倡素质教育, 各学科课程通过引导学生主动参与, 亲身实践, 独立思考, 合作探究, 发展学生搜集处理信息的能力, 获取新知识的能力, 分析和解决问题的能力, 以及交流合作的能力, 基于此, 本节课教学流程我采取以下设计:复习填空→合作交流 (基础练习) →推广应用→探究反思 (思考题)

整个始终让学生主动参与, 亲身实践, 独立思考, 与合作探究相结合, 在生生合作, 师生互动中, 使学生真正成为知识的发现者和知识的研究者。

六、教学过程分析

(一) 经典回顾、引入课题

首先让我们一起回顾一下2005年上海理科高考第16题, 请大家思考这道题的思路。

设定义域为R的函数则关于x的方程f2 (x) +bf (x) +c=0有七个不同x=1x≠1

实根的充要条件是 ( )

A.b<0且c>0;B.b>0且c<0;C.b<0且c=0;D.b≥0且c=0

(通过提问, 学生回答, 点拨:“这个方程是关于f (x) 的方程, 至多有两个不同的解, 那为什么x的解会有七个呢?那我们可以利用函数y=lnx的图象强调通过平移、翻折变换得到f (x) 的图象, 来解决”这个思路, 以此而不给出具体答案, 激发学生的学习热情和求知欲, 由特殊到一般地提出了课题。但是如果就此而由教师直接给出结论, 那就不仅会失去开发学生思维的机会, 影响学生的理解, 而且会使教学变得枯燥乏味, 抑制学生学习的主动性和积极性。)

(二) 复习填空、合作交流、简要概括总结

问:1、在中学数学中, 画函数图象的基本方法是_____.引出变换法。

2、当a>0时, 把y=f (x) 的图象向左平移a个单位得到_____的图象;把y=f (x) 的图象向右平移a个单位得到的图象;

当b>0时, 把y=f (x) 的图象向上平移b个单位得到_____的图象;把y=f (x) 的图象向下平移b个单位得到的图象.归纳:y=f (x) y±b=f (x±a)

3、将y=f (x) 的图象作关于x轴对称得到_____的图象;将y=f (x) 的图象作关于y轴对称得到_______的图象;将y=f (x) 的图象作关于原点对称得到_______的图象.

4、函数y=f (x) 与y=f-1 (x) 的图象关于直线_____对称.

若f (a+x) =f (a-x) , 则y=f (x) 的图象的对称轴为______。

若f (a+x) =f (b-x) , 则y=f (x) 的图象的对称轴为______。

将y=f (x) 的图象关于直线y=-x+2对称的______的图象。

5、y=|f (x) |的图象:先保留函数y=f (x) 的图象在x轴及_____的部分, 再把x轴下方的图象作关于_____对称到x轴上方 (去掉原来下方部分) , 得到y=|f (x) |图象.

6、y=f (|x|) 是____函数, y=f (|x|) 的图象关于____对称。把y=f (x) 的图象位于y轴______侧的部分去掉, 保留y轴及y轴右侧y=f (x) 的图象, 再将y轴右侧y=f (x) 的图象作关于______对称, 得到y=f (|x|) 的图象.

要启动学生的思维, 就要有一个明确的可供思考的问题, 使学生的思维有明确的指向。在学生求知欲极强时, 不失时机提出课题, 学生归纳并简要概括, 培养其合作交流, 讨论、归纳的能力。

(三) 基础训练, 初步掌握

1、为了得到y=2x-3-1图象, 只需把y=2x图象上所有点 ( )

(A) 向右平移3个单位长度, 再向下平移1个单位长度

(B) 向左平移3个单位长度, 再向下平移1个单位长度

(C) 向右平移3个单位长度, 再向上平移1个单位长度

(D) 向左平移3个单位长度, 再向上平移1个单位长度

2、将y=f (x) 的图象经过怎样的图象变换得到y=f (-x+2) +1图象?3、函数y=x2-2|x|的图象是 ( )

4、函数f (x) =|log2x|的图象是 ( )

(四) 示例演练, 指导应用, 提升能力

数学规律是要在运用中得以巩固, 通过运用与练习, 可以纠正错误的认识, 促使对规律的正确理解, 通过反复重现, 可以不断领悟、加强记忆。这里安排的“初步应用”, 目的也在于帮助学生正确理解规律, 分解步骤, 实现本节课的教学目标。结合学情, 题目都较全面, 但力求简单。 (让学生思考后回答下列问题)

1、利用函数图象研究函数的性质

例1:函数的递减区间是_____, 在 (-2, 1]上的最小值是_____.

例2:若奇函数f (x) 在区间[3, 7]上是增函数且最小值为5, 则f (x) 在区间[-7, -3]上是 ()

(A) 增函数且最小值为-5; (B) 增函数且最大值为-5

(C) 减函数且最小值为-5; (D) 减函数且最大值为-5

2、利用函数图象解决方程与不等式问题

例3:k为何值时, 方程|2x-1|=k-x2无解?有一解?有两解?

例4:已知函数f (x) =|log2 (x+1) |, g (x) =1-x2, 定义函数F (x) :当f (x) ≥g (x) 时, F (x) =f (x) ;当g (x) >f (x) 时, F (x) =-g (x) .则F (x) ()

采用教师启发学生, 共同完成的方式。这样安排的意图是先集中注意力在图象怎样变换上, 对利用基本初等函数的图象, 通过变换, 研究一般函数性质留在这里解决, 层层深入, 以此突破本节的难点并提升学生的应用能力。

(五) 思考题的解答中反思.

1、若f (x+2010) =x2-4x+5, 则函数f (x) 的值域为____。

2、把下面不完整的命题补充完整, 并使之成为真命题.若函数f (x) =3+log2x的图象与g (x) 的图象关于_____对称, 则函数g (x) =_____ (注:填上你认为可以成为真命题的一种情形即可)

强化四种:x轴、y轴、原点、y=x。

3、若函数f (x) 是定义在R上的偶函数, 在 (-∞, 0]上是减函数, 且f (2) =0, 则使得f (x) <0的x的取值范围是 ()

4、上海理科高考题

设定义域为R的函数则关于x的方程f2 (x) +bf (x) +c=0有七个不同实数的充要条件是 ( )

A.b<0且c>0;B.b>0且c<0;C.b<0且c=0;D.b≥0且c=0

把开头中的高考题做为课堂思考, 前后呼应既可以巩固知识, 强化基本技能的效果, 又培养了学生发现问题, 立即解决问题的良好学习、处世态度。

(六) 小结

1、主要复习了函数图象的简单变换和利用函数图象解决一些函数、方程与不等式问题的方法.

篇4:图象与眼睛 教学方案

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2015)07A-

0071-02

一、教材分析

本节课“二次函数的图象与性质”内容,主要是能够利用描点法准确画出二次函数的图象,确定二次函数的性质特征。在利用描点法画二次函数图象时,其具体步骤是:确定自变量取值范围,分析x、y的变化规律,估量函数图象的位置和趋势,通过“列表—描点—连线”这一系列步骤画出函数图象,并由此得出画函数图象的规律所在。

二、教学目标

教学目标:1.学生能够使用描点法画出二次函数y=ax2的图象,掌握抛物线相关概念知识;2.学生通过对二次函数y=ax2图象的分析,确定其性质特征,对学生的自主学习能力和探究思维的培养起到较大的促进作用。

教学重点:学生能够使用描点法画出二次函数y=ax2的图象,掌握抛物线相关概念知识。

教学难点:学生能够使用描点法画出二次函数y=ax2的图象,能够通过对二次函数y=ax2图象的分析,确定其性质特征。

三、学情分析

九年级学生学习积极性比较高,学习能力也不差,他们在学习数学知识的过程中,善于使用直观思维,并能够对直观图象进行抽象概括,其认知水平已处于一个上升趋势。在学习本节课之前,学生已熟练掌握一次函数的相关知识和函数图象的描点法,同时也基本掌握了二次函数的相关概念,做好了学习二次函数的前期知识积累,为顺利学好“二次函数y=ax2的图象与性质”提供了保障。

四、教学过程

(一)旧知引入

师:一次函数的相关知识,同学们还记得吗?

生:记得。

师:那什么是一次函数?

生1:形如y=ax+b的函数,其中a、b为常数,且a≠0。

师:回答正确。谁能够使用我们学过的描点法把一次函数的图象画出来呢?(请一个学生说出描点法的步骤,并上台将一次函数的图象画在黑板上)

生2:描点法有列表—描点—连线这三个步骤,首先要建立一个直角坐标系,接着取x为任意值,将其代入函数中求出y的结果,然后把每一对x、y所对应的数值在坐标轴上一一准确描出,最后把这些点一一连接成线。(学生上台画图)

师:这位同学回答得不错,图象也画得很正确。大家仔细看图象,试着总结出画图的规律?

(学生深入思索,交流讨论,得出各种各样的答案)

师:看刚才的同学画一次函数的图象的整个过程,我们就应该知道,只要求出足够多的点坐标,把点一一对应连接,就可以得出函数的图象。这节课我们要学习的二次函数的图象也可以用这个方法。

[设计意图]在学习“二次函数的图象与性质”之前,学生已经熟练掌握一次函数的相关知识,虽然一次函数和二次函数在概念、图象以及性质等方面存在差异,但是学生可以利用在学习一次函数时的模式来学习二次函数,这样可以唤起学生对函数的熟悉度,降低学生学习新知识的紧张心理,让学生能够顺利开展二次函数的学习。

(二)探究新知

1.画图:画y=2x2与y=-2x2的图象。(学生独立完成,并邀请一名学生到讲台上将自己所画的图象板演出来)

步骤如下:(1)列表。在自变量取值范围内(全体实数),选择适当的x值,并计算相应的y值,完成表格;(2)描点。以自变量与其对应的函数值分别为横、纵坐标,建立直角坐标系,将其对应值在坐标轴上一一准确描出;(3)连线。使用平滑曲线,将描好的对应点一一连接,二次函数y=2x2与y=-2x2的图象就完成了。

[设计意图]让学生回忆描点法作图的注意事项,并动手完成图象的绘制,体会二次函数图象与一次函数、反比例函数图象的异同点,为学生讨论二次函数图象的性质做好铺垫。

2.观察图象:要求学生认真观察画好的二次函数y=2x2与y=-2x2的图象,从图象的形状、开口方向、位置、增减性、最高(低)点,以及图象是否与对称轴有交点这六个方面思考、讨论,最后总结出二次函数的性质。

学生在观察图象后进行了积极发言,其答案各种各样,有对有错,教师有针对性地对学生的回答进行了点评,并做出归纳:

①图象:y=2x2与y=-2x2的图象都呈抛物线状态,都是轴对称图形,对称轴是y轴。

②y=2x2与y=-2x2的图象与对称轴都有交点,交点坐标(0,0)。

③开口方向:y=2x2的开口方向向上,y=-2x2的开口方向向下。

④位置:y=2x2在x轴上方,y=-2x2在x轴的下方。

⑤增减性:y=2x2:x<0时,x增大y 减小,x>0时,x增大y增大。y=-2x2与y=2x2的情况正好相反。

⑥最高(低)点:y=2x2有最低点(0,0),y=-2x2有最高点(0,0)。

[设计意图]教师设置的思考题,有效地为学生指明了探究的方向,避免了学生进入盲目探究的极端,节约了时间,提高了课堂效率。

(三)总结

二次函数y=2x2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。

(四)作业(略)

五、教学反思

教师在整个教学情境中,与学生一起实践、一起思考,把教师的点拨与学生的解决问题有机结合起来,培养了学生自主学习的能力和深入探究的精神。同时在教学过程中对于学生勇于实践、大胆发表自己的见解做出及时性的、激励性的评价。

篇5:图象与眼睛 教学方案

教学年级。辽河油田第二高级中学高一学年 版本:人教B版 课时:第10课时

一、教学目标

知识与技能:掌握正切函数的性质与图象,会应用正切函数的性质解决问题 过程与方法:类比正弦函数的性质和图象得出正切函数的性质和图象,体会类比与归纳的应用

情感态度与价值观:类比不同的函数得出不同的性质,学会分析问题,透过现象看本质

二、教学重点与难点

重点:正切函数的图象和性质 难点:利用正切线画正切曲线

三、教学方法:启发、引导自学探究

四、教学流程(一)导入新课

1、正弦函数、余弦函数的图象与性质及作图过程

作图利用描点法、采用几何方法,平移正弦线作正弦函数图象 教学处理:学生回顾正弦函数的研究过程。

设计意图:通过对正弦函数研究过程的回顾,为研究正切函数的图象与性质做好准备。

(二)新课讲析

2、给出正切函数定义,探究正切函数的图象并研究正切函数的性质。

教学处理:学生自主探究,交流结果,分析方法,教师引导学生归结作图的基本方法与研究正切函数性质的基本方法。设计意图:学生通过对正弦函数的学习,学会利用学过的知识与方法通过类比的方式去解决具体问题。

3、归纳图象、性质

教学处理:归纳正切函数的性质

设计意图:使学生掌握正切函数的图象与性质。

4、例题:求函数ytanx的定义域、周期、和单调区间

23教学处理:学生自主探究,归纳方法与结论。

设计意图:学生利用正切函数的图象自主研究形如yAtan5、比较大小

(1)tan1380与tan143(2)tan13与tan17

0x的性质。

45教学处理:学生独立思考,归纳方法

设计意图:应用正切函数的性质解决具体问题

(三)课堂教学检测

1、求函数ytanx62的定义域

2、求函数ytan2x,x512k2kZ的最小正周期 3

3、比较大小

(1)tan与5tan3 7(2)tan15190与tan14930

4、写出下列不等式成立的x的集合

(1)1tanx0(2)tanx30

篇6:三角函数的图象与性质教学设计

●知识梳理

1.三角函数的图象和性质

函 数

性 质=sinx=csx=tanx

定义域

值域

图象

奇偶性

周期性

单调性

对称性

注:读者自己填写.

2.图象与性质是一个密不可分的整体,研究性质要注意联想图象.

●学生练习

1.函数=sin( -2x)+sin2x的最小正周期是

A.2πB.πC. D.4π

解析:= cs2x- sin2x+sin2x= cs2x+ sin2x=sin( +2x),T=π.

答案:B

2.若f(x)sinx是周期为π的奇函数,则f(x)可以是

A.sinxB.csxC.sin2xD.cs2x

解析:检验.

答案:B

3.函数=2sin( -2x)(x∈[0,π])为增函数的区间是

A.[0, ]B.[ , ]

C.[ , ]D.[ ,π]

解析:由=2sin( -2x)=-2sin(2x- )其增区间可由=2sin(2x- )的减区间得到,即2π+ ≤2x- ≤2π+ ,∈Z.

∴π+ ≤x≤π+ ,∈Z.

令=0,故选C.

答案:C

4.把=sinx的图象向左平移 个单位,得到函数____________的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数____________的图象.

解析:向左平移 个单位,即以x+ 代x,得到函数=sin(x+ ),再把所得图象上所有点的横坐标伸长到原来的2倍,即以 x代x,得到函数:=sin( x+ ).

答案:=sin(x+ ) =sin( x+ )

5.函数=lg(csx-sinx)的定义域是_______.

解析:由csx-sinx>0 csx>sinx.由图象观察,知2π- <x<2π+ (∈Z).

答案:2π- <x<2π+ (∈Z)

●典例剖析

【例1】 (1)=csx+cs(x+ )的最大值是_______;

(2)=2sin(3x- )的图象的两条相邻对称轴之间的距离是_______.

剖析:(1)=csx+ csx- sinx

= csx- sinx= ( csx- sinx)

= sin( -x).

所以ax= .

(2)T= ,相邻对称轴间的距离为 .

答案:

【例2】 (1)已知f(x)的定义域为[0,1),求f(csx)的定义域;

(2)求函数=lgsin(csx)的定义域.

剖析:求函数的定义域:(1)要使0≤csx≤1,(2)要使sin(csx)>0,这里的csx以它的值充当角.

解:(1)0≤csx<1 2π- ≤x≤2π+ ,且x≠2π(∈Z).

∴所求函数的定义域为{x|x∈[2π- ,2π+ ]且x≠2π,∈Z}.

(2)由sin(csx)>0 2π<csx<2π+π(∈Z).又∵-1≤csx≤1,∴0<csx≤1.故所求定义域为{x|x∈(2π- ,2π+ ),∈Z}.

评述:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.

【例3】 求函数=sin6x+cs6x的最小正周期,并求x为何值时,有最大值.

剖析:将原函数化成=Asin(ωx+ )+B的形式,即可求解.

解:=sin6x+cs6x=(sin2x+cs2x)(sin4x-sin2xcs2x+cs4x)=1-3sin2xcs2x=1- sin22x= cs4x+ .

∴T= .

当cs4x=1,即x= (∈Z)时,ax=1.

深化拓展

函数=tan(ax+θ)(a>0)当x从n变化为n+1(n∈Z)时,的`值恰好由-∞变为+∞,则a=_______.

分析:你知道函数的周期T吗?

答案:π

●闯关训练

夯实基础

1.若函数f(x)=sin(ωx+ )的图象(部分)如下图所示,则ω和 的取值是

A.ω=1, = B.ω=1, =-

C.ω= , = D.ω= , =-

解析:由图象知,T=4( + )=4π= ,∴ω= .

又当x= 时,=1,∴sin( × + )=1,

+ =2π+ ,∈Z,当=0时, = .

答案:C

2. f(x)=2cs2x+ sin2x+a(a为实常数)在区间[0, ]上的最小值为-4,那么a的值等于

A.4B.-6C.-4D.-3

解析:f(x)=1+cs2x+ sin2x+a

=2sin(2x+ )+a+1.

∵x∈[0, ],∴2x+ ∈[ , ].

∴f(x)的最小值为2×(- )+a+1=-4.

∴a=-4.

答案:C

3.函数= 的定义域是_________.

解析:-sin ≥0 sin ≤0 2π-π≤ ≤2π 6π-3π≤x≤6π(∈Z).

答案:6π-3π≤x≤6π(∈Z)

4.函数=tanx-ctx的最小正周期为____________.

解析:= - =-2ct2x,T= .

答案:

5.求函数f(x)= 的最小正周期、最大值和最小值.

解:f(x)=

= = (1+sinxcsx)

= sin2x+ ,

所以函数f(x)的最小正周期是π,最大值是 ,最小值是 .

6.已知x∈[ , ],函数=cs2x-sinx+b+1的最大值为 ,试求其最小值.

解:∵=-2(sinx+ )2+ +b,

又-1≤sinx≤ ,∴当sinx=- 时,

ax= +b= b=-1;

当sinx= 时,in=- .

培养能力

7.求使 = sin( - )成立的θ的区间.

解: = sin( - )

= ( sin - cs ) |sin -cs |=sin -cs

sin ≥cs 2π+ ≤ ≤2π+ (∈Z).

因此θ∈[4π+ ,4π+ ](∈Z).

8.已知方程sinx+csx=在0≤x≤π上有两解,求的取值范围.

解:原方程sinx+csx= sin(x+ )=,在同一坐标系内作函数1= sin(x+ )与2=的图象.对于= sin(x+ ),令x=0,得=1.

∴当∈[1, )时,观察知两曲线在[0,π]上有两交点,方程有两解.

评述:本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法.

探究创新

9.已知函数f(x)=

(1)画出f(x)的图象,并写出其单调区间、最大值、最小值;

(2)判断f(x)是否为周期函数.如果是,求出最小正周期.

解:(1)实线即为f(x)的图象.

单调增区间为[2π+ ,2π+ ],[2π+ ,2π+2π](∈Z),

单调减区间为[2π,2π+ ],[2π+ ,2π+ ](∈Z),

f(x)ax=1,f(x)in=- .

(2)f(x)为周期函数,T=2π.

●思悟小结

1.三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性.

2.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误.

●教师下载中心

教学点睛

1.知识精讲由学生填写,起到回顾作用.

2.例2、例4作为重点讲解,例1、例3诱导即可.

拓展题例

【例1】 已知sinα>sinβ,那么下列命题成立的是

A.若α、β是第一象限角,则csα>csβ

B.若α、β是第二象限角,则tanα>tanβ

C.若α、β是第三象限角,则csα>csβ

D.若α、β是第四象限角,则tanα>tanβ

解析:借助三角函数线易得结论.

答案:D

【例2】 函数f(x)=-sin2x+sinx+a,若1≤f(x)≤ 对一切x∈R恒成立,求a的取值范围.

解:f(x)=-sin2x+sinx+a

=-(sinx- )2+a+ .

由1≤f(x)≤

1≤-(sinx- )2+a+ ≤

a-4≤(sinx- )2≤a- .①

由-1≤sinx≤1 - ≤sinx- ≤

(sinx- ) = ,(sinx- ) =0.

∴要使①式恒成立,

篇7:反比例函数的图象与性质教学设计

5.2反比例函数的图象与性质(1)

焦作市道清中学 许斌

★教学分析

一、教学目标

1.经历探索反比例函数的图象的过程,掌握函数作图的方法、步骤,会作反比例函数的图象。2.了解、掌握反比例函数图象的特征和主要性质,提高学生从函数图象上获取信息的能力,了解、体会函数的三种表示方法的互相转换。对函数的概念进行认识上的提升、整合。3.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点。

4.让学生在学习过程中体验数与形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决问题的能力。

二、教学重难点

重点:掌握反比例函数的图象及性质。

难点:反比例函数图象的作图及性质的探究。

三、教学准备

多媒体课件、三角板、彩色粉笔。

四、学情分析

反比例函数的图象是学生中学阶段首次遇到的非线性函数的图象,而且反比例函数的图象还是不连续的断开的两支曲线(即:双曲线),而学生的认知结构中仅有正比例、一次函数即所谓的线性函数的作图经验,因此二者作图的难易差别很大。

★教学设计 教学过程

(一)回顾旧知 ,引入新课 1.提出问题

(1)回忆我们所学过得一次函数y=kx+b(k≠0),同学们还记得作函数图象的一般步骤吗?(2)对照图象回忆一次函数的性质。

2.引入新课:我们在前面学习了正比例函数和一次函数的图象,知道它们的图象都是一条直线,那么反比例y=k(k≠0)的图象又会是什么形状呢?本节课就让我们一起来探索反比例yx=k(k≠0)的图象吧!

x【设计意图】

通过复习提问创设情境,引入新课,此环节意在唤醒学生知识储存中的正比例函数,一次函数的图象、性质研究的方法、步骤,激发学生探索反比例函数的图象、性质的热情。

(二)自主学习,合作交流,探究新知 1.读一读,画一画

请学生阅读教材147页反比例函数y =

4的图象的作图方法、步骤,结合课本在练习本上画一x画,并思考下列问题:

(1)填写书中函数的对应值表,注意其自变量x的取值特点。(2)如果在列表时取的值不同,是否会影响函数图象的形状。(3)为什么必须用光滑的曲线连接各点?能否连成折线?

(4)曲线的发展趋势如何?图象可能与x轴相交吗?可能与y轴相交吗?为什么?(5)函数的图象分别位于哪几个象限内?

【师生活动】 教师要求学生认真阅读教材,动手画一画,相互看一看,力求图象漂亮、准确,结合图 象思考老师提出的五个问题。学生合作交流,踊跃发言。

教师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因。

【设计意图】

学生初次作非线性函数的图象,缺乏必要的知识上的直观,因此在作图过程中应先给学生安排足够的阅读、思考、交流的时间。以使学生对反比例函数图象有一定的感性认识,进而解决“为什么”的问题。2.做一做,想一想

(1)按学习小组分别选派代表在黑板上板演反比例函数y =

26,y =的图象,并简述其xx共同特性和个性差异,同组同学可以补充、优化,之后不同组之间可以相互质疑。

(2)老师利用多媒体展示出在同一坐标系内上面三个函数图象,比较各学生小组的图象,引导学生观察图中三个图象,发现图象的区别和联系。如果学生的回答是以上问题的相关解释,老师要给予充分的肯定并进行适时小结。对学生没有注意到的问题,老师可给以适当点拨,直至得到比较完备的结论。

86y(x)= 42x2y(x)= 54x10105y(x)= 6x246【学生活动】 学生尝试独立完成,小组交流,完善图象。观察、评判其他学习小组做的图象。

【设计意图】

前面有了作反比例函数y4图象的感性知识,此环节是要学生进一步熟悉、辨析反比x例函数图象的作图的方法和图象特征,以生生互动,师生互动,合作交流形式最好,此处要给学生提供充足的作图、辨析时间,以达成固化知识的目的,切不要急于求成。3.比一比

请同学们画出y=的依存关系)4.议一议

用多媒体展示当k=-2,-4,-6时,反比例函数y=它们有哪些共同特征?反比例函数y= 8644的图象,比较它和y=的图象二者有哪些异同。(注意数量和图形

xxk在同一象限内的图象并提出问题:xk中的参数k是如何影响函数图象的? x

y(x)= 2x5y(x)= 6x4y(x)= 1054x21024 62 8

(鼓励学生尝试对函数的性质进行描述。老师根据学生的回答进行修正和补充,最终获得完整而规范的结论。)

【设计意图】

使学生掌握反比例函数图象在K<0时的相关性质,从而归纳出唯一影响反比例函数y=形状、位置的参数k的几何意义。

(三)当堂检测

(教师限定时间由学生自己独立完成,并请学生反馈答案.)1.下列函数中,其图象位于第一、三象限的有___________。(1)y =

kx10.3107;(2)y =;(3)y =;(4)y = 2x100xxx2.已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数y =的图象上,计算或x通过图象比较y1,y2 与y3的大小。

3.想一想:反比例函数的图像绕原点旋转180°后,能与原来的图象重合吗?

(四)归纳小结 收获新知

1.通过今天的学习,你们对反比例函数有了那些新认识? 2.画反比例函数图像时要注意哪几点? 3.反比例函数的图像性质:

当k>0时,两支曲线分别位于第___、___象限,当k<0时,两支曲线分别位于第___、___象限。

【学生活动】 根据老师提出的问题,学生认真思考,相互补充。

【设计意图】

教师引导学生对本节课所学内容进行归纳、总结,加深对反比例函数图象的认识,使学生对所学知识形成完整的知识体系。

(五)作业布置

必做题:课本习题5.2的第2题。

选做题:已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且当x=2与x=3时,y的值都等于19。求y与x间的函数关系式,并求x=4时y的值。备选题:

1.若m1,则下列函数①ymx,x1,③ym④ym1xx0,②ym中,xD.4个

答案:B y的值随x的值增大而增大的函数共有()A.1个 B.2个

C.3个

2.已知反比例函数ym5的图象在第二、四象限,则m的取值范围是()xA.m≥

5B.m5

C.m≤5

D.m5

答案:D,4),在第一象限内正比例函数图象在反比例函数3.正比例函数与反比例函数图象都经过点(1图象上方的自变量x的取值范围是。

答案:x1.4.在平面直角坐标系xOy中,直线yx绕点O顺时针旋转90得到直线l.直线l与反比k3),试确定反比例函数的解析式。的图象的一个交点为A(a,x9答案:所以反比例函数的解析式为y.x例函数y 3 5.在函数y答案:最大的数8,最小的数-8。8中,x取任意整数,求y能取得的最大的数和最小的数。x★课后反思

1.本节课的设计是以“先学后教”的模式为基本框架建构的,通过学生自主学习,合作交流,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极求知的情感态度,有利于学生良好的数学观的形成。

篇8:图象与眼睛 教学方案

本案例源于浙教版九 (上) 《二次函数图象 (3) 》。本节课的目标是:会根据二次函数的一般形式y=ax2+bx+c确定二次函数的开口方向、对称轴、顶点坐标;能用配方法将一般形式y=ax2+bx+c化成顶点式;会用顶点式求二次函数的解析式。

学生根据预习提纲课前完成预习。课堂上, 在完成学生预习问题交流并进行一定量的变式练习后, 我们重点交流了预习提纲中的如下问题 (课本“课内练习”3改编) :

你能求如图所示的二次函数图象吗? (如果可以, 请尝试用不同方法)

[教学片段]

问题一展出, 学生纷纷举手。

我请一位成绩偏下的小A同学回答:

“老师, 我觉得这个二次函数可设成y=a (x-2) 2+4, 再把 (0, 1) 代进去, 就可以求出a的值。”

“你是怎么想到设成y=a (x-2) 2+4的呢?”我紧跟着问。

“从图形中, 我注意到 (2, 4) 是抛物线的顶点坐标, 知道了顶点坐标就可以写出二次函数的解析式。”

“非常好, 你能把你的解题过程给大家展示一下吗?”

“好。”小A同学在实物投影上展示了他非常清晰的解题过程。

“肯定没错, 我旁边几个同学答案跟我一样的。”临下讲台之前, 小A自信地说。

“老师, 我觉得还可以设成y=ax2+bx+c。”小B同学马上抢着站起来说。

“我觉得图形中虽然没有三个点, 但y=ax2+bx+c的顶点坐标是再把 (0, 1) 代入, 就得到三个方程, 可求出a, b, c的值。”

很多同学频频点头表示赞同。少部分只想到一种解法的组的同学在专注地整理自己的思路, 教室里很安静。大部分同学在准备进入下一个练习的交流。

“老师, 我还有不同的解法。”突然小C的声音打破了沉静。

“还有?好, 请讲。”我有些意外, 但更多的是惊喜。全班同学不由自主地将目光齐刷刷盯向了小C。

“我们还是设成y=ax2+bx+c, 我是这样想的:顶点坐标是 (2, 4) , 对称轴就是直线x=2, 在图象中可以写出点 (0, 1) 关于对称轴的对称点是 (4, 2) , 把这三个点分别代入y=ax2+bx+c, 就可以求出a, b, c。”

“是的, 我怎么就没想到。”教室里不由得掌声响起。这确实是一种非常有价值的发现, 对后续的学习意义非同一般。何况, 我一直认为学生不会有第三种解法了。

“简直太了不起了。你刚才用了‘我们’, 看来是小组讨论完成的。你能给大家讲讲你们是怎么想到的吗?”

小C很干脆地说:“好的。我们想把函数设成y=ax2+bx+c, 但题目中只有两个点, 肯定不够, 于是我们试着找第三个点, 刚开始也不知道找什么点, 后来小D提到了图形中的对称轴, 小E马上想起抛物线上的点关于对称轴对称, 于是我们就找到了 (4, 2) 这个点。”

“我们再次把掌声送给这组了不起的同学。”教室里的掌声更响了。

……

[教学反思]

1. 创造性地使用教材, 引领学生多角度思考

创造性地开发和利用教材资源是新教育理念和新课程目标的体现。教科书作为重要的课程资源, 在备课过程中, 教师要充分挖掘教材的内在教育因素, 结合学生实际, 精心设计, 组织引导学生富有个性地开展学习, 充分调动学生的学习兴趣。更可通过适当的变式而把问题的解决延伸到课堂以外, 拓展学生探究的空间, 引领学生触类旁通、举一反三, 培养学生的发散性思维。

2. 恰当的课前预习, 提供学生充足的思考时间

现在的教学采用多媒体教学, 课堂的知识密度比较大, 节奏快, 而且数学的逻辑性强, 再加上九年级时间紧任务重, 若一个环节出了问题, 将直接会导致整节课都无法理解, 甚至会影响到下一节的学习, 从而严重伤害学生学习数学的积极性。“凡事预则立, 不预则废”, 恰当的课前预习是非常必要的。

在具体的预习过程中, 教师应淡化学生的最终学习结果, 要重点关注学生学习的过程。因此, 教师可根据教材和学生实际, 预测学生可能存在的预习障碍, 设置一定量的预习问题, 引导学生通过阅读、独立思考、查资料、询问探讨等方式, 在有较充足时间保证的前提下, 先进行一系列的热身, 还有不能解决的或不够完善的问题留到课堂上集体讨论解决。这样, 不仅使学生的思维能力得到锻炼, 同时还把课本知识当工具去启迪学生的心智和“发现”的能力, 对培养学生创新精神、创造能力尤为重要。这是授人以渔, 将使学生终身受益。

3. 良好的课外合作学习, 能让学生碰撞出独特的思维火花

我们平时讲的合作学习, 一般都是在课内开展的, 但很多时候因局限于课堂的时间、任务, 往往草草了事, 不能深入地开展, 甚至有些时候纯粹是一种作秀, 起不到应有的作用。其实, 学习小组的课外作用更应引起教师的高度关注, 课外的合作学习较课堂环境更为宽松的, 时间相对更充足, 更适合同伴之间的深入交流探讨, 更易碰撞出思维的火花。

篇9:函数与函数的图象

◎ 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 其中x叫作自变量,x的取值范围A叫作函数的定义域;与x对应的y值叫作函数值,函数值的集合{f(x)x∈A}叫作函数的值域. 注意:函数是映射的特例(对应集合为非空数集).

◎ 函数三要素:定义域、对应法则、值域

如果两个函数的定义域和对应法则相同,则这两个函数是同一个函数.

◎ 函数定义域的求法

由整体到局部,列出使函数有意义的自变量的不等关系式(组)并求解.常见依据为:

①分式中分母不为0;

②偶次根式(n为偶数)中被开方数x≥0;

③对数logax的真数x>0,底数a>0且a≠1;

④零指数幂x0的底数x≠0;

⑤求抽象函数定义域要认准自变量,如: f(x-1)的定义域为:x∈[2,3),则f(t)的定义域为:t∈[1,2);

⑥应用题要考虑实际意义等.

【提醒】

①对于函数定义域中的任意一个数x,在值域中都有唯一确定的数f(x)和它对应.

②解定义域不等式组时注意利用图象和数轴等几何工具,确保不疏不漏,且定义域和值域都应写成集合或区间的形式.

③定义域是一个基本且重要的概念,不能只机械地掌握以上所列定义域的求解方法,要深刻理解定义域在函数问题中的作用,把对函数定义域的认识深化到任何与字母范围有关的问题中去,形成求定义域的意识.

易错情景有:解方程忽略方程本身要有意义;求函数解析式、函数值域、函数最值时忽视定义域;判断函数单调性、奇偶性时忽视定义域的影响;代数变形中扩大或缩小了定义域;换元过程忽视换元变量与原变量之间的关系,导致扩大或缩小变量取值范围;忽视新引入变量的取值范围等.

【自查题组】

(1) 已知函数f(x),x∈F,那么集合{(x,y)y=f(x),x∈F}∩{(x,y)x=1}中所含元素的个数有 个.

(2) 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”. 那么函数解析式为y=2x2+1、值域为{5,19}的“孪生函数”共有 .

(A) 10个 (B) 9个 (C) 8个 (D) 7个

(3) 下列四组中,函数f(x),g(x)表示同一函数的是 .

(A) f(x)=()2,g(x)=x (B) f(x)=()2,g(x)=x

(C) f(x)=x0,g(x)= (D) f(x)=,g(x)=x-1

(4) 若函数y= f(x)的定义域是[0,2],则函数g(x)=的定义域是 .

知识要点:函数值域的求法

◎ 单调函数直接法:直接判断函数在给定区间范围内的单调性,常用于求定义在闭区间上函数的值域. 如:函数f(x)=2x-,x∈[1,3]在给定区间[1,3]上单调递增,所以值域为[f(1),f(3)],即1,.

◎ 复合函数换元法: 将函数中的变量单元看作整体,转化为求常用基本函数的值域.这个过程重在对基本初等函数的模式识别以及换元后变量取值范围的求解和使用.

常见基本函数类型有:二次函数型、幂函数型、指数函数型、对数函数型、三角函数型、双勾函数型.要结合各自的函数图象来帮助记忆函数的性质、特点.

◎ 其他常用方法:

①利用导数求高次多项式等非基本函数类型的最值(极值).(必修不作要求)

②利用函数与方程的思想,把函数转换为方程求解. 如二次函数型可利用一元二次方程求解、三角函数可利用其有界性求值域等.

③利用基本不等式或联系几何意义求解. 如利用均值不等式或根据题意联想斜率、距离等几何意义,含二元变量的问题也可作为线性规划问题来解决.

【提醒】

①求基本函数及其复合函数的值域是很重要的考查类型,采用换元法求值域时注意通过换元所设变量与原变量之间的函数关系,应求出所设变量的取值范围,在此范围内求解.

②求特定范围内的函数值域问题,在不清楚所求范围内的函数单调性情况时,切不可盲目代值求解,应结合函数图象,找出图象的最低点(最小值)和最高点(最大值).

③形如y=(分式型函数)的最值是高考解析几何等综合问题常考的类型,求解时常常先转化为双勾型函数、反比例型函数或二次函数的形式,再求最值.

【自查题组】

(5) y=2x-5+log3,x∈[2,10]的值域为 .

(6) y=2x+1-的值域是 .

(7) 若函数f(x)=2+log3 x(1≤x≤9),则函数y=[f(x)]2+f(x2)的最大值为 .

(8) 用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+2,10-x} (x≥0),则f(x)的最大值为 .

(9) 函数y=+的值域是 .

(10) 函数y=的值域是 .

知识要点:函数图象

◎ 两类易混淆的函数图象

①对称函数:若对于一切x∈R,都有f(a-x)=f(b+x),那么函数y=f(x)的图象关于直线x==对称,称为“自身对称”;

函数y=f(a-x)与y=f(b+x)的图象关于直线x=(由a-x=b+x求得)对称,称为“相互对称”.

②周期函数:若函数y=f(x)对于一切x∈R,都有f(x+a)=f(x+b),那么函数y=f(x)是周期函数,a-b是它的一个周期.

◎ 常用图象变换方法

①平移:函数y=f(x+a)的图象可由y=f(x)的图象沿x轴向左(a>0时)或向右(a<0时)平移a个单位得到;

函数y=f(x)+a的图象可由y=f(x)的图象沿y轴向上(a>0时)或向下(a<0时)平移a个单位得到.

②伸缩:函数y=f(ax)(a>0)的图象可由函数y=f(x)的图象的横坐标长度伸长或缩短为原来的得到;

函数y=af(x)(a>0)的图象可由函数y=f(x)的图象的纵坐标长度伸长或缩短为原来的a倍得到.

③翻折:y=f(x)的图象可以看作y=f(x)的图象在x轴上方部分不变,把x轴下方部分沿x轴向上翻折后所得;

y=f(x)的图象可以看作y=f(x)的图象在y轴右侧部分沿y轴向左翻折覆盖y轴左侧图象,并保留y轴右侧图象所得.

④对称:函数y=f(x)与y=f(-x)的图象关于直线x=0对称;

函数y=f(x)与y=-f(x)的图象关于直线y=0对称;

函数y=f(x)与y=-f(-x)的图象关于坐标原点对称.

【提醒】

①识图、辨图类题目,应先找出选项的差异,然后结合函数性质和特征,如单调、对称、特殊点、函数值的正负等来解决.

②在进行函数图象变换时,一定要准确确认变换过程和步骤,尤其是针对自变量多重变换的问题,切记“要变只变自变量”. 如函数y=sin(2x+1)的图象右移1个单位的过程是:y=sin[2(x-1)+1].

③数形结合是解决函数问题的重要思想方法,利用数形结合思想解题时要注意把握所画函数图象的特征点、对称轴(点)、渐近线等关键特征,必要时需要通过运算比较,提高准确性.

【自查题组】

(11) 函数y=的图象大致为 .

(12) 已知函数y=f(x)的图象如图1所示,则函数y=f(x)的图象为

(13) 已知函数f(x)的图象如图2所示,那么f(x)的解析式可以是 .

(A) f(x)=x2-1

(B) f(x)=x2-2x

(C) f(x)=x2-2x

(D) f(x)=

(14) 为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点 .

(A) 向左平行移动1个单位长度

(B) 向右平行移动1个单位长度

(C) 向左平行移动π个单位长度

(D) 向右平行移动π个单位长度

(15) 如图3所示,函数y=f(x)的图象由两条射线和三条线段组成.若对于所有的x∈R, f(x)>f(x-1),则正实数a的取值范围为 .

【参考答案】

(1) 0或1

(2) B 【x的取值必须满足从{-,}中至少选择一个元素,且从{-3,3}中也至少选择一个元素,组合方法共9种】

(3) C 【关键是分析各函数的定义域】

(4) (0,1)

(5) ,33 【 f(x)=2x-5和 g(x)=log3在x∈[2,10]上均为增函数】

(6) ,+∞ 【令t=,则t≥0,y=2(x-1)-+3=2t2-t+3=2t-2+】

(7) 13 【y=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,f(x)的定义域为1≤x≤9,则在y中应有x>0且1≤x2≤9,即1≤x≤3,因为log3x为增函数,故当x=3时,y的最大值为13】

(8) 6 【在同一坐标系中分别画出当x≥0时函数y=2x,y=x+2,y=10-x的图象,如图4所示.相关区域内不满足题意的部分函数图象,在图中用虚线表示】

(9) [10,+∞)

(10) -, 【原式等价于y(x2+4)=3x,整理得:yx2-3x+4y=0.当y=0时,得x=0;当y≠0时,关于x的一元二次方程有解,则Δ=(-3)2-4×4y2≥0,解得y∈-,0∪0,.综上可得,y∈-,】

(11) B 【由f(-x)=f(x)可知y是偶函数,图象关于y轴对称,当x→∞时函数值趋近于1】

(12) B

(13) B 【由图象知f(0)=0,排除选项A; f(1)>0,排除选项C、D】

(14) A

(15) 0, 【f(x-1)的图象是f(x)的图象向右平移1个单位后所得,若对任意x∈R都有f(x)>f(x-1),则两个函数图象不能有交点,示意图如图5所示,故0<6a<1】

②周期函数:若函数y=f(x)对于一切x∈R,都有f(x+a)=f(x+b),那么函数y=f(x)是周期函数,a-b是它的一个周期.

◎ 常用图象变换方法

①平移:函数y=f(x+a)的图象可由y=f(x)的图象沿x轴向左(a>0时)或向右(a<0时)平移a个单位得到;

函数y=f(x)+a的图象可由y=f(x)的图象沿y轴向上(a>0时)或向下(a<0时)平移a个单位得到.

②伸缩:函数y=f(ax)(a>0)的图象可由函数y=f(x)的图象的横坐标长度伸长或缩短为原来的得到;

函数y=af(x)(a>0)的图象可由函数y=f(x)的图象的纵坐标长度伸长或缩短为原来的a倍得到.

③翻折:y=f(x)的图象可以看作y=f(x)的图象在x轴上方部分不变,把x轴下方部分沿x轴向上翻折后所得;

y=f(x)的图象可以看作y=f(x)的图象在y轴右侧部分沿y轴向左翻折覆盖y轴左侧图象,并保留y轴右侧图象所得.

④对称:函数y=f(x)与y=f(-x)的图象关于直线x=0对称;

函数y=f(x)与y=-f(x)的图象关于直线y=0对称;

函数y=f(x)与y=-f(-x)的图象关于坐标原点对称.

【提醒】

①识图、辨图类题目,应先找出选项的差异,然后结合函数性质和特征,如单调、对称、特殊点、函数值的正负等来解决.

②在进行函数图象变换时,一定要准确确认变换过程和步骤,尤其是针对自变量多重变换的问题,切记“要变只变自变量”. 如函数y=sin(2x+1)的图象右移1个单位的过程是:y=sin[2(x-1)+1].

③数形结合是解决函数问题的重要思想方法,利用数形结合思想解题时要注意把握所画函数图象的特征点、对称轴(点)、渐近线等关键特征,必要时需要通过运算比较,提高准确性.

【自查题组】

(11) 函数y=的图象大致为 .

(12) 已知函数y=f(x)的图象如图1所示,则函数y=f(x)的图象为

(13) 已知函数f(x)的图象如图2所示,那么f(x)的解析式可以是 .

(A) f(x)=x2-1

(B) f(x)=x2-2x

(C) f(x)=x2-2x

(D) f(x)=

(14) 为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点 .

(A) 向左平行移动1个单位长度

(B) 向右平行移动1个单位长度

(C) 向左平行移动π个单位长度

(D) 向右平行移动π个单位长度

(15) 如图3所示,函数y=f(x)的图象由两条射线和三条线段组成.若对于所有的x∈R, f(x)>f(x-1),则正实数a的取值范围为 .

【参考答案】

(1) 0或1

(2) B 【x的取值必须满足从{-,}中至少选择一个元素,且从{-3,3}中也至少选择一个元素,组合方法共9种】

(3) C 【关键是分析各函数的定义域】

(4) (0,1)

(5) ,33 【 f(x)=2x-5和 g(x)=log3在x∈[2,10]上均为增函数】

(6) ,+∞ 【令t=,则t≥0,y=2(x-1)-+3=2t2-t+3=2t-2+】

(7) 13 【y=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,f(x)的定义域为1≤x≤9,则在y中应有x>0且1≤x2≤9,即1≤x≤3,因为log3x为增函数,故当x=3时,y的最大值为13】

(8) 6 【在同一坐标系中分别画出当x≥0时函数y=2x,y=x+2,y=10-x的图象,如图4所示.相关区域内不满足题意的部分函数图象,在图中用虚线表示】

(9) [10,+∞)

(10) -, 【原式等价于y(x2+4)=3x,整理得:yx2-3x+4y=0.当y=0时,得x=0;当y≠0时,关于x的一元二次方程有解,则Δ=(-3)2-4×4y2≥0,解得y∈-,0∪0,.综上可得,y∈-,】

(11) B 【由f(-x)=f(x)可知y是偶函数,图象关于y轴对称,当x→∞时函数值趋近于1】

(12) B

(13) B 【由图象知f(0)=0,排除选项A; f(1)>0,排除选项C、D】

(14) A

(15) 0, 【f(x-1)的图象是f(x)的图象向右平移1个单位后所得,若对任意x∈R都有f(x)>f(x-1),则两个函数图象不能有交点,示意图如图5所示,故0<6a<1】

②周期函数:若函数y=f(x)对于一切x∈R,都有f(x+a)=f(x+b),那么函数y=f(x)是周期函数,a-b是它的一个周期.

◎ 常用图象变换方法

①平移:函数y=f(x+a)的图象可由y=f(x)的图象沿x轴向左(a>0时)或向右(a<0时)平移a个单位得到;

函数y=f(x)+a的图象可由y=f(x)的图象沿y轴向上(a>0时)或向下(a<0时)平移a个单位得到.

②伸缩:函数y=f(ax)(a>0)的图象可由函数y=f(x)的图象的横坐标长度伸长或缩短为原来的得到;

函数y=af(x)(a>0)的图象可由函数y=f(x)的图象的纵坐标长度伸长或缩短为原来的a倍得到.

③翻折:y=f(x)的图象可以看作y=f(x)的图象在x轴上方部分不变,把x轴下方部分沿x轴向上翻折后所得;

y=f(x)的图象可以看作y=f(x)的图象在y轴右侧部分沿y轴向左翻折覆盖y轴左侧图象,并保留y轴右侧图象所得.

④对称:函数y=f(x)与y=f(-x)的图象关于直线x=0对称;

函数y=f(x)与y=-f(x)的图象关于直线y=0对称;

函数y=f(x)与y=-f(-x)的图象关于坐标原点对称.

【提醒】

①识图、辨图类题目,应先找出选项的差异,然后结合函数性质和特征,如单调、对称、特殊点、函数值的正负等来解决.

②在进行函数图象变换时,一定要准确确认变换过程和步骤,尤其是针对自变量多重变换的问题,切记“要变只变自变量”. 如函数y=sin(2x+1)的图象右移1个单位的过程是:y=sin[2(x-1)+1].

③数形结合是解决函数问题的重要思想方法,利用数形结合思想解题时要注意把握所画函数图象的特征点、对称轴(点)、渐近线等关键特征,必要时需要通过运算比较,提高准确性.

【自查题组】

(11) 函数y=的图象大致为 .

(12) 已知函数y=f(x)的图象如图1所示,则函数y=f(x)的图象为

(13) 已知函数f(x)的图象如图2所示,那么f(x)的解析式可以是 .

(A) f(x)=x2-1

(B) f(x)=x2-2x

(C) f(x)=x2-2x

(D) f(x)=

(14) 为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点 .

(A) 向左平行移动1个单位长度

(B) 向右平行移动1个单位长度

(C) 向左平行移动π个单位长度

(D) 向右平行移动π个单位长度

(15) 如图3所示,函数y=f(x)的图象由两条射线和三条线段组成.若对于所有的x∈R, f(x)>f(x-1),则正实数a的取值范围为 .

【参考答案】

(1) 0或1

(2) B 【x的取值必须满足从{-,}中至少选择一个元素,且从{-3,3}中也至少选择一个元素,组合方法共9种】

(3) C 【关键是分析各函数的定义域】

(4) (0,1)

(5) ,33 【 f(x)=2x-5和 g(x)=log3在x∈[2,10]上均为增函数】

(6) ,+∞ 【令t=,则t≥0,y=2(x-1)-+3=2t2-t+3=2t-2+】

(7) 13 【y=(2+log3x)2+(2+log3x2)=(log3x+3)2-3,f(x)的定义域为1≤x≤9,则在y中应有x>0且1≤x2≤9,即1≤x≤3,因为log3x为增函数,故当x=3时,y的最大值为13】

(8) 6 【在同一坐标系中分别画出当x≥0时函数y=2x,y=x+2,y=10-x的图象,如图4所示.相关区域内不满足题意的部分函数图象,在图中用虚线表示】

(9) [10,+∞)

(10) -, 【原式等价于y(x2+4)=3x,整理得:yx2-3x+4y=0.当y=0时,得x=0;当y≠0时,关于x的一元二次方程有解,则Δ=(-3)2-4×4y2≥0,解得y∈-,0∪0,.综上可得,y∈-,】

(11) B 【由f(-x)=f(x)可知y是偶函数,图象关于y轴对称,当x→∞时函数值趋近于1】

(12) B

(13) B 【由图象知f(0)=0,排除选项A; f(1)>0,排除选项C、D】

(14) A

上一篇:看完后你就是电脑维修工程师 第十一载下一篇:卫生文明用语