相似三角形教案

2024-05-07

相似三角形教案(精选14篇)

篇1:相似三角形教案

课题:相似三角形的证明——K型相似(教案)

学校:茶陵思源实验学校 教师姓名:段中明

教学目标:

1、通过习题引入,了解“K型图”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质;

2、利用“K型图”中两个三角的相似性解决一些计算、证明等简单问题;

3、在“K型图”变化的过程中经历图形动态思考,积累做“K型图”相似解题的特点与经验。

教学重点难点:

1、在已知图形中观察关键特征——“K型”;

2、在非“K型”图形中画辅助线,得到“K型”图形;

3、在“K型”图的两个三角形中,探索其相似条件。学情分析:

学生刚刚学习完湘教版九上数学第三章图形的相似,复习完本章各知识点后,进行一些思维拓展延伸,教师已引导学生学习相似三角形中的基本图形,如 “A”字型、“X”字型、“母子”型、“双垂直”型等。结合中考试题探究“K型图”相似这个问题,本课将在此基础上展开学习。教学过程:

一、课前寄语:

学生在老师的心里就是自己的孩子,所以老师祝福天下所有的孩子健康成长,快乐学习!

二、复习与回顾:

1.相似三角形的判定3条定理;

2.相似三角形的基本图形:A字型、反A字型、母子型、X型、蝴蝶型、双垂直型„„

3.图形演变:双垂直型变三垂直型,三垂直型变K字型。

三、新课讲解:

(一).呈现学习目标:

(1).能利用k形图证明三角形相似;(2).能构造k形图解决相关问题(3).体会“分类讨论”的数学思想

(二).轻松一刻:(突出快乐学习)

同学们,这幅画美吗?看到这幅画我就想起小学时学过的一首小诗,一首富有诗情画意的诗,哪位同学能把这首诗读出来吗?

对,是《小池》。它句句是诗,句句是画,描绘了明媚的初夏风光,自然朴实又真切感人。今天我们边欣赏古诗边学习新课。下面我们跟着这首古诗走进今天的例题探究。

(三).例题探究:

1.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连结BF,已知AE=4,ED=2,AB=3则DF=__________ 2.在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=2,CE=1, 则△ABC的边长为.A

3.如图,正方形ABCD的边长为4,E是边AB上的动点,(1)若DE⊥EF,求证:△ADE∽△BEF;

(2)若BF=1,当△ADE与△BEF相似时,求AE的长。

4.如图,已知直线l1∥l2∥l3∥l4∥l5 ∥l6,如果正方形ABCD的四个顶点在平行直线上相邻两条平行直线间的距离相等且为1,AB与l4交于点G.(1)求正方形的面积;(2)求CG的长

一、课堂练习:

1.如图,折叠矩形的一边AD,点D落在BC边上的点F处,已知AB=8cm,AD=10cm,求EC的长。(一题多解)

BFCEADEBDCDL1L2L3AGCL4L5L6B2.在直角梯形ABCF中,CB=14,CF=4, AB=6,CF∥AB,在边CB上找一点E,使以E、A、B为顶点的三角形和以E、C、F为顶点的三角形相似,则CE=_______(分类讨论)

二、课后拓展:

1.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是2,线段AB的两端点分别在直线l1、l3上并与l2相交于点E,①AE与BE的长度大小关系为

; ②若以线段AB为一边作正方形ABCD,C、D两点恰好分别在直线l2、l4上,则sinα=

2.如图,正△ABC边长为6cm,P,Q同时从A,B两点出发,分别沿AB,BC匀速运动,其中点P的速度为1cm/s,点Q的速度为2cm/s,当Q点到达C点时,两点都停止运动,设运动时间为t(s),作QR//BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.五、课堂小结:

我们今天这堂课收获了什么呢?

(1)学习了K型相似的证明;(2)我们要快乐学习。

六、作业布置:

ADCEB

篇2:相似三角形教案

【基础知识精讲】

1.理解相似三角形的意义,会利用定理判定两个三角形相似,并能掌握相似三角形与全等三角形的关系.

2.进一步体会数学内容之间的内在联系,初步认识特殊与一般之间的辩证关系,提高学习数学的兴趣和自信心.

【重点难点解析】

相似三角形的概念及相似三角形的基本定理.

【典型热点考题】

例1 如图4-21,□ABCD中,M是AD延长线上一点,BM交AC于点F,交DC于G,则下列结论中错误的是()

图4-21 A.△ABM∽△DGM B.△CGB∽△DGM C.△ABM∽△CGB D.△AMF∽△BAF

点悟:用本节概念和定理直接判断. 解:应选D.

例2 如图4-22,已知MN∥BC,且与△ABC的边CA、BA的延长线分别交于点M、N,点P、Q分别在边AB、AC上,且AP∶PB=AQ∶QC.

图4-22 求证:△APQ∽△ANM. 证明:∵ AP∶PB=AQ∶QC,∴ PQ∥BC,又MN∥BC,∴ MN∥PQ ∴ △APQ∽△ANM.

例3 写出下列各组相似三角形的对应边的比例式.

(1)如图4-23(1),已知:△ADE∽△ABC,且AD与AB是对应边.(2)如图4-23(2),已知:△ABC∽△AED,∠B=∠AED.

图4-23 点悟:要写出两个相似三角形的对应边的比例式,首先要确定两个相似三角形的对应边.因为相似三角形是全等三角形的推广,所以要确定两个相似三角形的各组的对应边,可以参照确定全等三角形对应边的方法,从确定这两个相似三角形对应的顶点出发.

解:(1)已知△ADE∽△ABC,且AD和AB是对应边,它们所对的顶点E和C为对应顶点,而A是两三角形的公共顶点,∠BAC为公共角,所以两三角形另两组对

ADDEBCEACA应边为DE和BC,EA和CA,得AB.

(2)已知△ABC∽△AED,且∠ABC=∠AED,A为公共顶点,另一对应顶点为D和C,三组对应边分别是AD和AC,AE和AB,DE和CB.

ADAEABDECB得AC.

本题两类相似三角形的图形是相似三角形的基本图形. 第一类为平行线型.

平行线型是由两条平行线和其他直线配合构成的两个相似三角形,它的对应元素比较明显,对应边,对应角,对应顶点有同样的顺序性,对应边平行或重合.基本图形有两种(图4-24):

图4-24 第二类是相交线型.

这一类型的对应元素不十分明显,对应顺序也不一致,对应边相交.它的基本图形,也有两种,一种是有一个公共角,另一种是一组对顶角(图4-25).

图4-25 其他类型的相似形多可以分解成这两种基本类型或转化为这两种基本类型. 例4 如图4-26,已知:△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于F.求证:AB·DF=BC·EF.

图4-26 点悟:如果我们把条件和结论涉及的线段AD,CE,AB,DF,BC,EF在图中都描成红线,可以发现一个完全由红线构成的三角形,即△DBE,还有一条线AC,是△DBE的截线,分别截△DBE的三边DB,BE,DE(或它们的延长线)于A,C,F.这类问题添辅助线的方法至少有三种,即过红线三角形任一顶点作对边的平行线,并与该三角形的截线或其延长线相交(如图4-27),在每一种图形中,虽然只有一对平行线,但与这对平行线有关的基本图形都能找到两对,根据每一个基本图形都可以写出包含辅助线段在内的一个比例式.

图4-27

ADDFBHEFCEBC以(2)为例,可以写出ABBHABDFAD,又可以写出BH.前两式均有BH,于是

BC可得,及

BHBCEF,所以,有

ABDFEF.又因为ADCEADCE=CE,于是有AB·DF=BC·EF.(证略)利用比例线段也可以证明两直线平行或两线段相等.

例5 如图4-28,已知:梯形ABCD中,AD∥BC,E,F分别是AD,BC的中点,AF与BE相交于G,CE和DF相交于H,求证:GH∥AD.

图4-28 点悟:条件中的AD∥BC,给出了两个基本图形,而AE=ED,BF=FC,又使从两

AGDHHF个基本图形中给出的比例式有一个公共的比值,从中可以得到GF.所以GH∥AD.

证明:∵ AD∥BC,AEAGGFEDDHHF∴ BF,FC.

∵ AE=ED,BF=FC,AGDHHF∴ GF,∴ GH∥AD.

例6 如图4-29,已知:AD平分∠BAC,DE∥AC,EF∥BC,AB=15cm,AF=4cm. 求:BE和DE的长.

图4-29 点悟:题设中的两对平行线起着不同的作用.由DE∥AC,AD平分∠BAC,可以得到AE=DE.这样已知及欲求的线段BE,AE,AB,AF都在AB和AC这两条边上,利用EF∥BC,就可以得到相应的比例线段.求得答案. 解:∵ DE∥AC,∴ ∠3=∠2,又AD平分∠BAC,∴ ∠1=∠2,∴ ∠1=∠3,∴ ED=AE. ∵ EF∥BC,ED∥CF,∴ EDCF为平行四边形,∴ ED=CF=AE.

设AE=x,则 CF=x,BE=15-x. ∵ EF∥BC,AEAFCFx4x∴ BE,即15x,2∴ x4x600

解得,x110(舍),x26. ∴ DE=6cm,BE=9cm.

例7 如图4-30,已知:在△ABC中,AD和BE相交于G,BD∶DC=3∶1,AG=GD. 求BG∶GE.

图4-30 点悟:按照例4的分析,过点G作GM∥AC,根据平行线截得比例线段定理,得BG∶GE=BM∶MC,于是只要求出BM∶MC的值即可. 解:作GM∥AC交BC于M,则 BG∶GE=BM∶MC. ∵ AG=GD,DMMC12DC∴ .

BD∵ DCBD131,61BD即2DC,MC61161.

71BDMCMCBM,即MC,∴ BG∶GE=7∶1.

点拨:以上四例中,我们复习了线段成比例和平行线分线段成比例的有关知识.

【易错例题分析】

例1 已知:在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP. 证明:在正方形ABCD中,∵ Q是CD的中点,AD2∴ QCBP,3BC4DQ∵ PC,∴ PC.又∵ BC=2DQ,∴ PCDQPC,∠C=∠D=90°,2.

AD在△ADQ和△QCP中,QC∴ △ADQ∽△QCP. 警示:证此类题应避免没有目标而乱推理的情况.

例2 一块直角三角形木板的一条直角边AB长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲、乙两位同学的加工方法分别如图4-31(1)、(2)所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).

解:由AB=1.5米,SΔABC1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE∥AB,Rt△CDE∽Rt△CBA,CDDEAB672xx1.5∴ CB,即2.

解得 x,过点B作Rt△ABC斜边AC上的高BH,交DE于P,交AC于H.

由AB=1.5米,BC=2米,SΔABC1.5平方米得AC=2.5米,BH=1.2米. 设乙加工的桌面边长为y米,∵ DE∥AC,∴ Rt△BDE∽Rt△BAC.

BPDEAC1.2yy2.5∴ BHy,即1.2

3037303722即x>y,xy,解得,6因为7所以甲同学的加工方法符合要求. 警示:解此类要避免看不出相似直角三角形而无法解的情况,更要避免看不出对应线段造成的比值写错而形成的计算错误.

例3 如图4-32,AD是直角△ABC斜边上的高,DE⊥DF,且DE和DF分别交AB、AFBEBDAC于E、F.求证:AD.

图4-32(2002年,安徽)正解:∵ BA⊥AC,AD⊥BC,∴ ∠B+∠BAD=∠BAD+∠DAC=90°,∴ ∠B=∠DAC.又∵ ED⊥DF,∴ ∠BDE+∠EDA=∠EDA+∠ADF=90°,∴ ∠BDE=∠ADF,∴ △BDE∽△ADF.

BDBEAFAFBEBD∴ AD,即 AD.

警示:本例常见的错误是不证三角形相似,直接进行线段的比,这是规范的一种情况.

【同步达纲练习】

一、选择题

1.如图4-33,在△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有()

A.1个 B.2个 C.3个 D.多于3个

2.某班在布置新年联欢晚会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图4-34在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3…若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是()

A.24 B.25 C.26 D.27

图4-33 图4-34

二、填空题

3.如图4-35,△AED∽△ABC,其中∠1=∠B,则AD∶________=________∶BC=________∶AB.

图4-35 图4-36 4.如图4-36,D、E、F分别是△ABC的边AB、BC、CA的中点,则图中与△ABC相似的三角形共有________个,它们是_______________.

5.阳光通过窗口照到室内,在地面上留下2.7m宽的亮区,已知亮区到窗下的墙脚最远距离是8.7m,窗口高1.8m,那么窗口底边离地面的高等于________.

三、解答题

6.如图4-37,在△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2PEPF.

7.已知:如图4-38,等腰△ABC中,AB=AC,∠BAC=36°,AE是△ABC的外角平分线,BF是∠ABC的平分线,BF的延长线交AE于E.求证:(1)AF=BF=BC;(2)EF∶BF=BC∶FC.

图4-37 图4-38 8.四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于F,∠ECA=∠D.求证:AC·BE=AD·CE.

参考答案

【同步达纲练习】

1.C 2.C 3.AC,ED,AE 4.4,△ADF、△DBE、△FEC、△EFD

5.4m 6.连结PC,先证明△ABP≌△ACP,∴PB=PC,再证明△PCF∽△PEC,∴PC∶PE=PF∶PC.∴PC2PEPF,∴PB2PEPF

7.(1)由已知可求得∠ABF=∠BAC=36°,∠C=∠BFC=72°,∴BC=BF=AF

(2)∵△EAF、△BCF都是底角为72°的等腰三角形,∴△EAF∽△BCF,∴EF∶BF=AF∶CF,又AF=BC,∴EF∶BF=BC∶FC

篇3:相似三角形教案

教学实录:

师:同学们, 我们在学习全等三角形的内容时知道, 三角对应相等, 三边对应相等的两个三角形全等。你们还记得三角形全等的判定条件吗?

生1:知道。有角边角、边角边、边边边、角角边等判定方法。

生2: (补充) 如果是直角三角形还有“斜边、直角边”判定方法。

师:以上两位同学回答的很全面。同学们上节课我们学习了相似三角形的定义, 你们能把它口述出来吗?

生:三角对应相等, 三边对应成比例的两个三角形叫做相似三角形。

[点评:情境导入的目的是设疑激趣。这里从学生已有的体验开始, 从直观的和容易引起想象的问题出发, 让数学背景包含在学生熟悉的事物和相关联的情景之中。]

师:根据这个定义, 判定两个三角形相似, 要求三个角对应相等, 三边对应成比例, 这个过程显然较复杂。请同学们类比一下, 我们能不能像判定两个三角形全等的条件那样, 用较少的条件去判定两个三角形相似呢?若能, 你认为判定两个三角形相似至少需要哪些条件呢?

生1: (用迟疑的口语) 可能是有三角对应相等就满足了吧?

生2:至少需要有三边对应成比例吧?

……

[点评:在这里, 教师依据学生的心理特点, 培养学生的问题意识, 不把结论过早的告诉学生, 引起学生去发现问题、提出问题、解决问题, 做到多问多思, 主动参与。]

师:刚才同学们不能作出肯定地回答是很正常的, 因为这个内容我们还没学到。这也就是我们这节课所要探究的问题 (板书:探索三角形相似的条件) 。我们首先从角开始探索, 请每位同学在准备好的一张纸上, 画出一个△ABC, 使得∠BAC=60°, 并与同伴交流一下, 你们所画的三角形相似吗?

生: (通过观察自己和同学画的) 不一定相似, 因为我们之间画出的一个角对应相等的两个三角形形状明显不相同。

师:那我们由此可得出一个什么样的结论?

生1:两个三角形中有一个角对应相等, 不能作为判定这两个三角形相似的条件。

生2:我认为一个角对应相等的两个三角形不一定相似。

[点评:这里降低了探索问题的难度, 尽量让有不同意见的学生发表见解, 这样可以避免不动脑筋被动听课的现象。]

师:通过刚才的操作和探索, 我们发现:仅有一个角对应相等不能判定两个三角形相似。请同桌的两位同学分工, 一人画△ABC, 使∠A=30°, ∠B=70°, 另一人画△A′B′C′, 使∠A′=30°, ∠B′=70°, 然后比较你们画的两个三角形, ∠C与∠C′相等吗?

生:相等。∵∠C=180°-30°-70°=80°, ∠C′=180°-

师:请各小组成员合作一下, 用刻度尺测量一下各线段的长度, 并计算对应边的比的值。

生: (在操作中发现) 老师, 我们度量的线段的长度的值是近似的, 对应边的比值计算出来也是近似值。

师:用刻度尺测量线段长度存在误差是正常的, 所以你们小组计算出来的比值也只是近似的其他小组情况如何?

生:我们的结果与前面小组的结果一样。

[点评:这里, 学生在合作学习交流过程中, 通过相互表达与倾听, 不仅使自己的想法、思路更好的表现出来, 而且还可以了解他人对问题的不同理解, 使学生的理解逐步加深。]

师:同学们, 你们在计算对应边的值后发现了什么?

生:经过测量和计算, 发现它们这些线段的比是近似相等的。

师:通过刚才探究、合作交流的过程, 你们能得出△ABC与△A′B′C′相似吗?

生:能得出△ABC∽△A′B′C′, 这是因为它们满足三角对应相等, 三边对应成比例的条件。

师:这个探索过程得到的结果说明了什么问题?

生:有两个角对应相等的两个三角形相似。

师:上面的结论是否成立呢?还是按前面的分组:请一位同学再画一个△ABC使∠A=15°, ∠B=95°, 另一位同学画△A′B′C′, 使∠A′=15°, ∠B′=95°, 画完后再互相比较一下。

生: (学生操作后) 同上面的结论一样。

[点评:这里通过动手操作来验证结论, 比较直观和比较形象, 既加深了学生对两角对应相等的两个三角相似的结论的理解和记忆, 又培养了学生学习数学的兴趣, 同时也使学生意识到数学规律的发现离不开验证这一过程。]

师:今天因时间关系, 我们不能再继续操作下去, 请你们课后把∠A与∠A′、∠B与∠B′的度数再改变一下试一试。通过上面的反复操作, 发现判定△ABC∽△A′B′C′只需要有两个角对应相等即可。从此以后我们可以把这个结论作为判定两个三角形相似的一个条件了。结合图形可以写成如下的推理过程 (板书) :∵∠A=∠A′, ∠B=∠B′, ∴△ABC∽△A′B′C′。

篇4:判断三角形相似三绝招

第一招:两组角对应相等的两个三角形相似

例1 如图1,在Rt△ABC中,已知∠BAC=90°,AB=AC=2.点D在BC上运动(不能到达点B).过D作∠ADE=45°,DE交AC于E.求证:△ABD∽△DCE.

分析:△ABD、△DCE中已有一组相等的角,即∠B=∠C.若再能找到一组相等的角,即可证明△ABD∽△DCE.

证明:∵∠BAC=90°,AB=AC,

∴∠B=∠C=45°.

又∵∠B+∠BAD=∠ADC=∠ADE+∠EDC,而∠B=∠ADE=45°,

∴∠BAD=∠EDC.

∴△ABD∽△DCE.

点评:“两组角对应相等的两个三角形相似”是判定三角形相似最简单、好用的方法.在应用时,注意寻找“∠A+∠B=∠C+∠D,由∠B=∠D,则∠A=∠C”类型的角的相等关系.

第二招:两组边对应成比例且夹角相等的两个三角形相似

例2 如图2,△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=,BC=1.连接BF.

求证:△BFG∽△FEG.

分析:△BFG与△FEG有一个公共角∠G.已知条件告诉了等腰三角形的边长,现只需证明夹∠G的两组边对应成比例,即可证明△BFG∽△FEG.

证明:由题意知FG=FE=AB=,EG=BC=1,BG=3BC=3.

∴==,==.

∴=.

又∵∠G=∠G,

∴△BFG∽△FEG.

点评:利用“两组边对应成比例且夹角相等”判定三角形相似,类似于三角形全等的“边角边”的判定方法.运用时注意把握好两边与夹角的位置关系.

第三招:三组边对应成比例的两个三角形相似

例3 如图3,在2×5的正方形网格中(每个小正方形边长均为1),有格点△ABC和格点△ADE.

(1)证明:△ABC∽△ADE;(2)求∠1+∠2.

分析:(1)△ABC、△ADE中,角之间的相等关系不明显,所以第一招、第二招都不好使用.考虑到△ABC、△ADE是正方形网格中的格点三角形,可以利用勾股定理求得各边的长,然后判定三组对应边是否成比例,从而确定三角形相似与否.(2)利用相似三角形的性质,求出∠ADE的大小,即可计算出∠1+∠2.

解:(1)由勾股定理得:

AD==,DE==,AB==,AC==.

又因为AE=5,BC=2,所以==,= ,==.

∴==.

∴△ABC∽△ADE.

(2)因为△ABC∽△ADE,所以∠ADE=∠ABC=90°+45°=135°,故∠1+∠2=180°-135°=45°.

篇5:初中相似三角形教案

知识目标:

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

能力目标:

2.进一步培养学生类比的数学思想.

情感目标:

3.通过学习,养成严谨科学的学习品质

二、教学重点、难点、疑点及解析

1.重点是性质定理的应用.

2.难点是相似三角形的判定与性质等有关知识的综合运用.

3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.

三、教学方法

新授课.

四、教学过程

(一)复习提问

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

(二)讲解新课

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

∵△ABC∽△ABC,

ADBC,ADBC,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论∽(欠缺条件)∽(已知)

∵ △ABC∽△ABC,

BM=MC,BM=MC,

∵ △ABC∽△ABC,

2,4,

以上两种情况的证明可由学生完成.

小结:

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

(三)练习

课后练习节选

(四)作业

篇6:相似三角形的判定教案

阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正

①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.

甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,

ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.

活动1 小组讨论 例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3

解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A, ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,

342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?

在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形(

)

A.1对

B.2对

C.3对

D.4对

按照一定的顺序去寻找相似三角形. 活动3 课堂小结

篇7:相似三角形的性质 教案

教学目标

1、经历探索相似三角形性质的过程,并会运用相似三角形的性质解决有关的问题。

2、通过探索相似三角形性质的过程,渗透逻辑推理的方法,引导学生从直观发现向自觉说理过渡,从而获得发现问题、解决问题的经验,发展了学生的数学问题意识和创新意识,为候机学习奠定基础。

3、通过相似三角形定理及应用的学习,培养学生类比思想、归纳思想及特殊到一般的认识规律,拓展学生思维。教学重点:

相似三角形性质及其应用。教学难点:

相似三角形判定和性质的综合运用。教学方法:

小组合作探究、启发式教学

教学过程

一:复习引入

1、什么样的三角形是相似三角形?

2、怎样判断两三角形是相似三角形?

3、我们已经知道了相似三角形的那些儿性质?

(①对应角相等,②对应边成比例)

相似三角形还有其他性质吗?

二:探究新知

问1:与三角形相关的线段我们学过哪些?

(中线、角平分线、高、中位线……)

思考:如果两三角形相似,且相似比为k,那两三角形对应的高会有怎样的关系?

已知如图△ABC∽△A1B1C1,且它们的相似比为k,AD、A1D1是对应高。求证:ADk.A1D1

证明:略(见课本87页)

定理1:相似三角形对应高、对应中线、对应角平分线的比都等于相似比。

(相似三角形对应线段的比都等于相似比)注:对于对应的理解

三:典例分析

例1:如图,一块铁皮呈锐角三角形,它额边BC=80cm,高AD=60cm。要把该铁皮加工成矩形零件,使矩形两边之比为2;1,且矩形长的一边在BC上,另两个顶点在边AB、AC上,求这个矩形零件的周长。

解:设PS为xcm,则PQ为2xcm.PQ//BC

APQABC AQPACB

APQ∽ABC

PQAE BCAD2x60x

8060

解得

x=24

2x=48

周长C=2(24+48)=144 cm

变式1:将例题中“矩形长的一边在BC上”改为“矩形短的一边在BC上”,其他条件相同,求矩形零件周长。

变式2:在例题中三角形中,如果是加工一个正方形零件,求正方形周长。

四:课堂小结

请同学回顾今天学的知识:1 相似三角形对应线段的比等于相似比 2 定理的简单应用

五:课堂作业

1必做题:①证明相似三角形的中线比等于相似比

篇8:相似三角形教案

例1某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.

方法如下:如图1,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图1,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.

如图1,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

【解析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.

答:“望月阁”的高AB的长度为99米.

例2如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为多少?

【解析】在同一时刻,不同物体的物高与影长成比例.根据这一模型可以避免直接测量较高的物体如高楼、旗杆等的高度.只需测量出人与人影、楼影这些较易测量的长度就能计算出楼高.

由△BAC∽△EDF可得BC∶AC=EF∶DF,再将AC=1.6米,EF=15米,BC=0.5米代入,可求得大楼的高度为48米.

例3如图3,小丽利用影长测量学校旗杆的高度.由于旗杆靠近一个建筑物,在某一时刻旗杆影子中的一部分映在建筑物的墙上,小丽测得旗杆AB在地面上的影长BC为20m,在墙上的影长CD为4m,同时又测得竖立于地面的1m长的标杆影长为2m,请帮助小丽求出旗杆的高度.

这个问题有以下三种构造相似模型的方法:

方法一:如图4,延长AD、BC交于点E.可知在没有建筑物的情况下旗杆的影子应为BE,根据标杆的有关情况即可知AB∶BE=1∶2.再由△EAB∽△EDC可得DC∶AB=EC∶EB,从而可求得EC=8m,EB=28m,则旗杆高度AB=14m.

方法二:如图5,过C作AD的平行线交AB于E.此时四边形ADCE为平行四边形,AE=DC=4m.而BE的影长即为BC,由已知可求得BE=10m.因此旗杆高为14m.

方法三:如图6,过点D作DE⊥AB于点E,易得BE=CD=4m,BC=DE=20m.AE的影长可看作DE,由标杆条件可得AE=10m,因此旗杆高度为14m.

除了测量高度,相似模型还应用于测量各种距离,如河面的宽度等,这样既简化了测量过程,也节约了操作成本.

篇9:《相似三角形》测试题

—— 冯·诺伊曼(美国数学家,1903-1957)

一、选择题(每小题5分,共30分)

1. 下列说法中正确的是().

A. 相似三角形一定全等

B. 不相似的三角形可能全等

C. 全等三角形不一定是相似三角形

D. 全等三角形一定是相似三角形

2. 下列说法中正确的是().

①三边对应成比例的两个三角形相似

②两边对应成比例且一个角对应相等的两个三角形相似

③一个锐角对应相等的两个直角三角形相似

④一个角对应相等的两个等腰三角形相似

A. ①③ B. ①④ C. ①②④ D. ①③④

3. 已知△ABC的三边长分别为、、2,△A′B′C′的两边长分别是1和.如果△ABC与△A′B′C′相似,那么△A′B′C′的第三边长应该是().

A.B.C.D.

4. 若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于().

A. 30° B. 50° C. 40° D. 70°

5. 一个三角形三边之比为3∶5∶7.与它相似的另一个三角形最长边是21 cm,则此三角形另两边之和是().

A. 15 cm B. 18 cm C. 21 cm D. 24 cm

6. △ABC∽△A1B1C1,相似比为2∶3;△A1B1C1∽△A2B2C2,相似比为5∶4.则△ABC与△A2B2C2的相似比为().

A.B.C. 或 D.

二、填空题(每小题5分,共30分)

7. 相似三角形中,对应边的比叫做或相似系数.

8. 已知一个三角形三边的长分别为3、4、5,另一个三角形的三边长分别为6、8、10,则这两个三角形是三角形(填“相似”或“不相似”).

9. 如图1,△ABC中,BD是角平分线.过D点作DE∥AB交BC于点E.AB=5 cm,BE=3 cm,那么EC=.

10. 一个钢筋三角架,三边长分别为20 cm、50 cm、60 cm.现要做一个与其相似的钢筋三角架,但只有长30 cm和50 cm两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有种.

11. 如图2,△ABC与△ADB中,∠ABC=∠ADB=90°,AC=5 cm,AB=4 cm.如果图中的两个直角三角形相似,则AD的长是.

12. 如图3,在正方形网格上有6个斜三角形:

①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK.

在②~⑥中,与①相似的是(填序号).

三、解答题

13. (10分)如图4,△ABC∽△ACP,AC=4,AP=2,则AB的长为多少?

14. (10分)△ABC中,AB=12 cm,BC=18 cm,AC=24 cm.若△A′B′C′∽△ABC,且△A′B′C′的周长为81 cm,求△A′B′C′各边的长.

15. (10分)如图5,分别连接等边△ABC各边的中点D、E、F,得△DEF.设△ABC的边长为a.

(1)△DEF与△ABC相似吗?如果相似,相似比是多少?

(2)分别求出这两个三角形的面积.

(3)这两个三角形的面积比与边长之比有什么关系吗?

16. (10分)如图6,在等腰梯形ABCD中,AD∥BC,AD=3 cm,BC=7 cm,∠B=60°.P为BC上一点(不与B、C重合),连接AP.过P点作PE交CD于E,使得∠APE=∠B.

(1)求证:△ABP∽△PCE;

篇10:数学教案-相似三角形

相似三角形的性质教学示例1

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的.学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

篇11:《相似三角形的性质》教案说明

鼓山中学

高芳霞

我讲课的内容是九年义务教育课程标准人教版教科书九年级下册第二十七章27.2“相似三角形的性质”。下面,我从教材分析、教法、学法、教学程序四个方面对本课的设计进行说明。

一、教材分析

1、教材所处的地位及作用

“相似三角形的性质”是九年级下册“相似”一章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特征,以完成对相似三角形的全面研究,它既是全等三角形性质的拓展,也是研究相似三角形的基础。这些性质是解决有关实际问题的重要工具,因此,这一节课无论在知识上,还是对学生能力的培养上,都起着十分重要的作用。

2、教学目标的确定

1)通过探究相似三角形的对应高、中线与角平分线的比、周长比、面积比与相似比的关系,使学生掌握相似三角形的对应高、中线、角平分线、周长比等于相似比,面积比等于相似比的平方并学会应用。

2)在学习过程中,培养学生独立思考、合作学习、自主评价的能力,渗透数学当中的类比思想、转化思想。

3、教学重点及难点

因为相似三角形的对应高、中线、角平分线、周长比、面积比与相似比的关系是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,因此,它是本节教材的重点。学生应用数学知识解决实际问题,需要具备一定的综合能力,这对大部分学生有一定的难度,因此,将相似三角形的周长比、面积比与相似比的关系的应用确定为本节课的难点。通过学生动手操作及合作交流,进行探究相关问题来突出重点,突破难点。

二、教学方法与教学手段的选用

为了充分调动学生学习的积极性,使学生变被动学习为主动愉快学习,使空间与图形中的几何问题上得有趣、生动和高效,而且,本课主要是针对于我们之前的课题:基于初中生课堂差异性教学的这一方面进行一种实验,顺便吸纳了一些厦门蔡塘的授课模式,利用学生讨论培养各个学生能力,在一节课中去体现因材施教,达到不同程度的学生根据自己的能力,都有所收获。

但是福州鼓山中学具有现对的特点,95%学生是外来务工子女,小时候没有养成一种很好的预习习惯,所以在合作型的课堂中,对学生的学习习惯有一定的要求。所以在前一周的时间里,教师都利用课余时间教学生“勾圈点划”。利用勾圈点划让学生自己发掘每节课教材的重难点。

我引导学生从活动中的讨论入手,让学生经历看微课----观察——思考—-归纳对应高的比等于相似比这个证明过程的思维启发,然后合作探究的一种学习过程,分别总结两个相似三角形的对应高、中线、角平分线与相似比的关系,经过教师点拨思维发散到周长比等于相似比,面积比与相似比的关系。在教学中,我应用启发、诱导、探究贯穿于始终。

采用投影、微课,PPT等电教手段,增大教学的容量和直观性,以提高教学效率和教学质量。

三、关于教法的指导

为了培养学生的逻辑思维能力、自学能力和自己发现问题---提出问题----解决问题的学习方法,在教学上我采用“精心设疑、变式训练”等方法,充分调动学生的积极性,使学生始终处于最佳的思维状态之中,激发学生的兴趣.四、关于教学程序的设计

本节课的利用复习引入,这样的设计,既可以锻炼学生的对整体相似这章节的思维导图的建立,又可以使学生不同层次的学生都在自己能力范围内接纳数学。

为了让学生亲身体验知识发现产生的过程,我利用微课,设计了<<相似三

角形的性质>>中相似三角形对应高的比等于相似比,通过学生模仿与归纳进一步得出中线和角平分线的比等于相似比,而后发散思维但周长和面积,探究过程,并利用小组合作方式,培养学生的合作意识。

在得出定理后,及时进行由浅入深、由易到难的思维训练。通过探究、论证,到运用解决问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学规律性。

对例题的变式训练是培养学生多层次、多角度思维能力的一种较好形式,复杂图形中观察基本图形对学生来说有一定的难度。

篇12:相似三角形教案

〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。〔教学重点与难点〕重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程

篇13:相似三角形教学中的错题研究

导致学生解题经常出错的原因是多方面的.就相似三角形问题的出错来说, 总结起来主要有以下几个方面:

1. 用错对应边

例1如图, 在△ABC中, DE∥BC, 且AD/DB=5/7, DE=8 cm, 求BC的长.

错解∵DE∥BC,

∴△ADE∽△ABC,

∴AD/DB=DE/BC,

∴5/7=8/BC,

即BC=56/5.

评析本题用错了相似三角形的对应边, 由DE∥BC只能得到AD/AB=DE/BC, 错解中把AB误认成DB.

正解∵DE∥BC,

∴△ADE∽△ABC,

∴AD/AB=DE/BC,

∴5/5+7=8/BC, 即BC=96/5.

2. 用错对应顶点

例2如图, 四边形ABCD, CDEF, EFGH都是正方形, △ACF与△ACG相似吗?说明理由.

错解△ACF与△ACG不相似设正方形的边长为a, 则:.

∴AC/AC≠AF/AG≠CF/CG.

在△ACF与△ACG中,

∵AC/AC≠AF/AG≠CF/CG,

∴△ACF与△ACG不相似.

评析错解是因为思维定势, 错认为△ACF与△ACG相似的对应顶点就是A与A, C与C, F与G对应.

正解设正方形的边长为a, 则:

∴AC/GC=AF/GA=CF/CA.

在△ACF与△GCA中,

∵AC/GC=AF/GA=CF/CA,

∴△ACF∽△GCA.

3. 考虑问题不全面

例3如图, 在△ABC中, AB=6, AC=8, D是AB的中点, 试在AC上确定一点E, 使得△ADE与原三角形相似, 并求出AE的长?

错解当DE∥BC时, △ADE与原三角形相似.

此时有, AD/AB=AE/AC,

即1/2=AE/8, ∴AE=4.

评析解法不完整, 由于考虑问题不全面, 因而致错△ADE与原三角形相似不是只有当DE∥BC时这一种情况.

正解∵△ADE与原三角形有公共角∠A,

∴A的对应点是A,

当△ADE∽△ABC时, AD/AB=AE/AC, 即1/2=AE/8,

∴AE=4.

当△ADE∽△ACB时, AE=2.25.

例4如图, 正方形ABCD的边长为2, BE=CE, MN=1线段MN的两端在CD, AD上滑动, 当DM=______时, △ABE与以D, M, N为顶点的三角形相似.

错解∵正方形ABCD的边长为2, BE=CE,

∴BE=1, AE=,

当△ABE与△DMN相似时, AB/DM=AE/MN,

即.

评析本题也是考虑问题不全面, 导致错误.

正解∵正方形ABCD的边长为2, BE=CE,

∴BE=1, AE=,

当△ABE∽△DMN,

当△ABE与△DNM相似时, .

∵A的对应点只能是D, ∴没有第三种情况了.

4. 没掌握相似三角形的性质

例5如图, DE∥BC, 分别交AB, AC于点D, E, DE把△ABC分成的两部分的面积比为1∶3, 试计算AD/AB的值.

错解∵相似三角形的面积比等于相似比的平方,

评析本题错在对相似三角形的性质不熟.我们知道相似三角形的面积比等于相似比的平方, 但题目中的1∶3并不是两个相似三角形的面积比.

正解∵DE∥BC, DE把△ABC分成的两部分的面积比为1∶3,

∴△ADE∽△ABC, △ADE与△ABC的面积比为1∶4.

∵相似三角形的面积比等于相似比的平方,

∴AD/AB=1/2.

摘要:相似三角形是中学数学的重要内容, 学生在解题时出错是一个普遍现象, 经常对错题进行分析、总结, 将有利于理清学生学习过程中产生错误的类型, 把握学生出错的特征, 分析学生产生错误的归因以及影响因素和各因素相互关系.笔者对相似三角形教学中的常见错误做了分析.

篇14:光学原理与相似三角形

例1为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图1所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为米(精确到0.1米).

分析:观察分析图形可知要求树AB的高度,只要说明△CDE

∽△ABE,再列出比例式即可求出,而事实上,根据光的反射定律可知∠CED=∠AEB,又∠D=∠B=90°,这样得到两个三角形相似.

解:过E作BD的垂线EN,根据光的反射定律知,∠CEN=∠AEN,

∴∠CED=∠AEB.

又因为∠D=∠B=90°,所以△CDE∽△ABE.

所以=,即=,即AB=5.6米. 所以树AB的高度约为5.6米.

二、利用影子计算建筑物的高度

例2如图2,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和1.5米.已知小华的身高为1.6米,那么他所住楼房的高度为米.

分析:图2是一个实物图,要求楼房的高度,可以根据题意画出示意图,如图3所示,这样借助于△DBE∽△ACF列出比例式,求出AC,即为楼房的高度.

解:如图3,容易知道CF=1.5米,EB=0.5米,BD=1.6米.

因为DB∥AC,DE∥AF,

所以∠DBE=∠C,∠E=∠AFC.

所以△DBE∽△ACF.

所以=,即=,得AC=4.8(米).

即楼房的高度为4.8米.

例3如图4,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于().

A.4.5米B.6米

C.7.2米D.8米

分析:根据题意可以知道EM、EF、CD、CN的长,而BF=BC+CF,BD=BC

+CD,再由CN∥AB∥EM,得到△CDN∽△BDA和△MEF∽△ABF,这样列出关于AB和BC的两个等式即可求解路灯A的高度AB.

解:因为CD=1米,CE=3米,EF=2米,CN=EM=1.5米,所以CF=5米.

因为CN∥AB,所以△CDN∽△BDA,所以=,即=.

又因为AB∥EM,所以△MEF∽△ABF,所以=,即

=.

所以=.所以BC=3.

上一篇:人教版小学期末试卷下一篇:一模中考化学试卷