三角形的证明期末复习

2024-04-12

三角形的证明期末复习(通用11篇)

篇1:三角形的证明期末复习

本章需要理解掌握的知识点有:

一、三角形的概念(要注意“不在同一直线上”)

二、三角形边的关系

1、按边分类:不等边三角形;

等腰三角形(包括等边三角形)

2、特殊三角形:等腰三角形,腰、底边;顶角、底角。

3、三边之间关系:三角形任何两边之和大于第三边

三角形任何两边之差小于第三边

4、三边关系应用:已知两边求第三边取值范围(第三边小于两边之和、大于两边之差的绝对值);

已知三条线段的长,判断能否构成三角形

(只要看“两条较小线段的长度和是否大于最长线段)

证明线段不等关系

(只要是证明线段不等关系的题目,都要考虑用”三角形两边之和大于第三边“来证,那么。首先要出现三角形,然后在三角形中来证明)

三、三角形角之间关系

1、按角分类:直角三角形;

斜三角形(包括锐角三角形和钝角三角形)

2、特殊三角形:直角三角形,直角边、斜边。

3、三角之间关系:三角形内角和是180度

4、三角关系应用:求角度

证明角的不等关系

四、三角形中重要线段

1、三角形的角平分线(1、三角形的角平分线是线段,2、角平分线的交点叫三角形的内心)

2、三角形的中线(1、中线把三角形分成了两个面积相等的三角形,2、中线的交点叫重心,3、遇到中线的问题如果难以解决,则加倍延长中线)

3、三角形的高(1、高并不一定在内部,2、把握高的定义是作三角形高的基础,3、高的交点叫垂心,4、牵扯到高的题目通常用面积相等来解决)

探究几何图形的性质可以通过观察、操作和实验的方法。但这些方法得到的结论有时候是近似的、甚至是错误的。要想结论使人信服就要用到推理、推理就需要思维、思维就需要作出判断,判断的语句就是命题。

五、命题

1、命题的定义

2、真、假命题

3、命题的构成

4、命题的形式

5、互逆命题

六、证明一个命题是假命题的方法:举反例(例子要“符合命题的题设,但不符合命题的结论”)

七、证明一个命题是真命题要用推理的方法。

八、命题的证明

1、把命题改写成“如果p,那么q”的形式,找出题设和结论,p就是题设、q就是结论

2、画出符合题意的图形,并标明字母

3、结合图形写出已知、和求证:在已知中写题设;在求证中写结论

4、分析证明思路(执果索因)

5、写出证明过程:每一步都要有依据。

篇2:三角形的证明期末复习

一、考点,热点分析:

(1)了解多边形的内角和与外角和公式,掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系.了解四边形的不稳定性;

(2)掌握平行四边形对边相等、对角相等、对角线互相平分的性质,四边形是平行四边形的条件(一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形).了解中心对称图形及其基本性质;

(3)掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件;

(4)了解等腰梯形同一底上的两底角相等,两条对角线相等的性质,以及同一底上的两底角相等的梯形是等腰梯形的结论

5.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

6.了解图形的全等,能利用全等图形进行简单的图案设计。

7.经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

8.在分别给出两角夹边、两边夹角和三边的条件下,能够利用尺规作出三角形(会写已知、求作和作法,不要求证明)。

二、知识点归纳:

三角形的概念及表示

三角形的基本要素及基本性质三边的关系,三内角的关系三角形的高,中线,角平分线三角形

三角形全等的表示及特征

三角形的全等探索三角形全等的条件三角形全等的应用

三、【例题经典】

三角形内角和定理的证明

例1.如图所示,把图(1)中的∠1撕下来,拼成如图(2)所示的图形,从中你能得到什么结论?请你证明你所得到的结论.

点证:此题是让学生动手拼接,把∠1移至∠2,已知a∥b,根据两直线平行,•同旁内角互补,得到“三角形三内角的和等于180°”的结论,由于此题剪拼的方法很多,证明的方法也很多,注意对学生的引导.

探索三角形全等的条件

例2.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,给出

下列结论:

①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.

其中正确的结论是_________.

解析:由∠E=∠F,∠B=∠C,AE=AF

可判定△AEB≌△AFC,从而得∠EAB=∠FAC. ∴∠1=∠2,又可证出△AEM≌△AFN.

依此类推得①、②、③

点评:注意已知条件与隐含条件相结合.

全等三角形的应用

例3.(2006年重庆市)如图所示,A、D、F、B在同一直线

上,AD=BF,AE=BC,且AE∥BC.

求证:(1)△AEF≌△BCD;(2)EF∥CD.

【解析】(1)因为AE∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD,又因AE=BC,所以△AEF≌△BCD

.(2)因为△AEF≌△BCD,所以∠EFA=∠CDB,所以EF

∥CD.

【点评】根据平行寻求全等的条件,由三角形全等的性质证两直线平行.

利用平行四边形的性质求面积

例4.(2006年河南省)如图,在ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F,求证:S△ABF=SABCD.

【解析】∵四边形ABCD为平行四边形,∴AD∥BC.

∵E是DC的中点,∴DE=CE.

∴△AED≌△FEC.

∴S△AED =S△FEC.

∴S△ABF =S四边形ABCE+S△CEF =S四边形ABCE+S△AED =SABCD

会根据条件选择适当方法判定平行四边形

例5.(2005年山东省)如图,在ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()

A.OE=OFB.DE=BFC.∠ADE=∠CBFD.∠ABE=∠CDF

【分析】虽然判别平行四边形可从“边、角、对角线”三个角度来考虑,但此例图中已有对角线,所以最适当方法应是“对角线互相平分的四边形为

平行四边形”.

能利用平行四边形的性质进行计算

例6.(2005年西宁市)如图,在ABCD中,已知对角线AC和BD相交于点O,△AOB•的周长为15,AB=6,那么对角线AC+BD=_______

【分析】本例解题依据是:平行四边形的对角线互相平分,先求出

AO+BO=9,•再求得AC+BD=18.

四、【考点精练】

(一)、基础训练

1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=_______.

(1)(2)(3)

2.如图2,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D•点到直线AB的距离是_______cm.

3.如图3,AD、AF分别是△ABC的高和角平分线,已知∠B=36°,∠C=•76•°,则∠DAF=______度.

4.(2006年烟台市)如图4,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC内,若∠1=20°,则∠2的度数为______.

(4)(5)(6)

.如图

5,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD•交于点O,•且AO•平分∠BAC,那么图中全等三角形共有________对.

6.(2006年河南省)如图6,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E•是AB边上一动点,则EC+ED的最小值是________.

7.以下列各组线段长为边,能组成三角形的是()

A.1cm,2cm,4cmB.8cm,6cm,4cm

C.12cm,5cm,6cmD.2cm,3cm,6cm

8.(2006年绍兴市)若有一条公共边的两个三角形称为一对“共边三角形”,•则图中以BC为公共边的“共边三角形”有()

A.2对B.3对C.4对D.6对

(7)(8)(9)

9.(2006年德阳市)已知△ABC的三边长分别为20cm,50cm,60cm,现要利用长度分别为30cm和60cm的细木条各一根,做一个三角形木架与△ABC相似.•要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边.那么另外两边的长度(单位:cm)分别为()

A.10,25B.10,36或12,36

C.12,36D.10,25或12,36

10.(2005年黄冈市)如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=

12S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P

旋转时(点E•不与A、B重合),上述结论中始终正确的有()

A.①④B.①②C.①②③D.①②③④

11.如图1,该多边形的内角和为_______度.

(1)(2)(3)

12.如图2,E、F是ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.

13.(2006年长沙市)如图3,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可).

14.(2006年扬州市)ABCD的对角线交于点O,下列结论错误的是()

A.ABCD是中心对称图形B.△AOB≌△COD

C.△AOD≌△BOCD.△AOB与△BOC的面积相等

15.(2005年天津市)如图4,在ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()

A.7个B.8个C.9个D.11个

16.(2006年广东省)如图5所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()

A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD

(4)(5)(6)

17.(2006年淄博市)如图6,在△MBN中,BM=6,点A,C,D分别在MB,NB,MN•上,•四边形ABCD为平行四边形,∠NDC=∠MDA,则ABCD的周长是()

A.24B.18C.16D.1

218.(2006年怀化市)如图7,AB=AC,AD⊥BC,AD=BC,若用剪刀沿AD剪开,•则最多能拼出不同形状的四边形个数是()

A.2个B.3个C.4个D.5个

19.如图8,ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为(•)

A.1:2B.1:3C.1:4D.2:

(7)(8)(9)

20.(2006年南通市)如图9,ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()

A.6mB.12cmC.4cmD.8cm

(二)、能力提升

21.已知:如图,点C、D在线段AB上,PC=PD.请你添加一个条件,•使图中存在全等三角..

形,并给予证明.所添条件为________.你得到的一对全等三角形是△_______≌△_____.

22.已知:如图,△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,•在GD的延长线上取点E,使DE=DB,连结AE、CD.

(1)求证:△AGE≌△DAC;

(2)过点E作EF∥DC,交BC于点F,请你连结AF,并判断△AEF是怎样的三角形,试证明你的结论.

23.(2005年大连市)如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C,求证:AE=CF.(说明:证明过程中要写出每步的证明依据).

24.(2006年内江市)如图,在△ABD和△ACE中,有下列四个等式:

①AB=AC②AD=AE③∠1=∠2④BD=CE.

请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(•

要求写出已知,求证及证明过程)

25.如图,在ABCD中,E、F是对角线AC上的两点,AE=CF,求证:BE=DF.

26.(2006年德阳市)如图,已知点M、N分别是ABCD的边AB、DC的中点,•求证:•∠DAN=∠BCM.

27.(2006年临安市)已知:如图,E、F是平行四边形ABCD•的对角线AC•上的两点,AE=CF.

求证:(1)△ADF≌△CBE;(2)EB∥DF.

28.如图,DB∥AC,且DB=

12AC,E是AC的中点,求证:BC=DE.

(三)、应用与探究

29.(2006年浙江省)如图,△ABC与△ABD中,AD与BC

相交于O点,∠1=∠2,•请你添加一个条件(不再添加其

它线段,不再标注或使用其他字母),使AC=BD,并给出证明.

你添加的条件是:__________.

30.(2006年江阴市)已知平行四边形ABCD中,点E、F分别在边AB、BC上.

(1)若AB=10,AB与CD间距离为8,AE=EB,BF=FC,求△DEF的面积.

(2)若△ADE、△BEF、△CDF的面积分别为5、3、4,求△DEF的面积.

答案:

考点精练

1.95°2.33.20°4.60°5.4对6

7.B8.B9.D10.C

11.答案不唯一,比如:∠A=∠B,△PAC≌△PBD

12.(1)证略(2)连接AF,•则△AEF是等边三角形.证略

13.∵AB∥CD,AB=CD,∠A=∠C,∴△ABE≌△CDF(ASA)•,•

∴AE=CF(全等三角形对应边相等)

14.①②③为题设④为结论,证略

15.∠C=∠D,证略.

例题经典

例2.B

考点精练

1.9002.答案不唯一,如BE=DF等3.答案不唯一,如AB=CD等•

4.D5.C6.C7.D8.D9.B10.D

11.证△ABE≌△CDF(SAS),即可得到BE=•DF

12.证△BCM≌△DAN(SAS),即可得∠DAN=∠BCM

13.(1)根据(•SAS)•证△ADF•≌△CBE

(2)连接BF、DE、DB,•根据对角线互相平分的四边形是平行四边形.

证四边形BEDF是平行四边形即可

14.证四边形BCED是平行四边形即可

篇3:浅析三角形内角和定理的证明思路

思路一:用平角等于180°求证三角形内角和等于180°.

说明:此思路证明结论需要作适当的辅助线, 目的是把三角形三个内角迁移一个平角的位置上得出结论.下面列举三种常见辅助线供大家参考.

证法1:如图1, 延长BC到D, 过C作CE//AB

因为CE//AB,

所以∠1=∠A, ∠2=∠B.

又∠ACB+∠1+∠2=180°,

所以∠ACB +∠A+∠B=180°.

即:△ABC内角和等于180°.

证法2:如图2, 过A作DE//BC,

因为DE//BC,

所以∠1=∠B, ∠2=∠C.

又∠1+∠BAC+∠2=180°.

所以∠B +∠BAC+∠C=180°.

即:△ABC内角和等于180°.

证法3:如图3, 在BC上任取一点D, 过D分别作DE//AC交AB于E, DF//AB交AC于F.

因为DE//AC,

所以∠1=∠C, ∠2=∠3,

又∠DF//AB,

所以∠4 =∠B, ∠3=∠A,

所以∠2=∠A.

又∠1+∠2+∠4=180°,

所以∠C+∠A+∠B=180°.

即:△ABC内角和等于180°.

思路二:用平行线同旁内角互补求证三角形内角和等于180°

说明:此思路证明结论也需要作适当辅助线, 目的是把三角形三个内角迁移到平行线同旁内角的位置上得出结论.下面举两种辅助线供大家参考.

证法1:如图4, 过A作AD//BC,

因为AD//BC,

所以∠1=∠C,

∠1+∠2+∠B=180°.

所以∠C +∠2+∠B=180°

即:△ABC内角和等于180°.

证法2:如图5, 过点A、B、C分别作AD//BE//CF.

因为AD//BE//CF

所以∠1=∠5, ∠2=∠6,

∠5+∠3+∠4+∠6=180°.

所以∠1 +∠3+∠4+∠2=180°.

即:△ABC内角和等于180°.

篇4:三角形的证明期末复习

曾老师设计的教案中,第一部分是让学生运用猜想、图形剪拼、测量、归纳等方法发现这样一个结论:“三角形的内角和是180°”,第二部分教学内容就是运用演绎方法证明结论(教学过程如下)。

“(二)运用演绎方法证明结论

师:三角形的内角和确实是180°,如何用我们学过的数学知识来证明这个结论呢?

生:对于直角三角形,可以用两个完全一样的直角三角形拼成一个长方形(图略)。长方形四个角是直角,其内角和为90°×4=360°,这样每个直角三角形的内角和为180°。对于锐角和钝角三角形,我还没想出来。

生:对于非直角三角形,可以在内部作一条高,将其分成两个直角三角形(图略)。这样两个直角三角形的内角和为360°,减去高与底边所成的两个直角的度数,就得到所求的非直角三角形的内角和为180°。……

师:嗯,非常好!这样,我们就成功地证明了‘三角形的内角和为180°’这个非常重要的数学结论。”

事实上,这个被教师称为“成功的证明”并不是用演绎推理方法进行的“证明”,其“证明”过程中存在着两个值得商榷的问题。

一、 “长方形的内角和是360°”是怎么得到的

证明过程中用到了“长方形的内角和是360°”这个结论,这个结论是怎么得到的?

一般地,“四边形的内角和是360°”是通过将四边形用对角线分成两个三角形,再由“三角形内角和是180°”推导出来的。因为长方形是四边形,所以内角和是360°(当然也可直接将长方形分成两个三角形进行推导)。人教版教材在“三角形内角和”的教学中还安排了这样一个练习:“根据三角形内角和是180°,你能求出下面的四边形和正六边形的内角和吗?”由此可知,小学中求多边形内角和确实以“三角形内角和是180°”为依据。这样一来,证明过程就会有“循环证明”之嫌。好在长方形是特殊的四边形,教师可以不用“三角形内角和是180°”为依据,而是可以根据它的定义“有一个角是直角的平行四边形是矩形(长方形)”及平行线的某些性质(例如同旁内角互补)推导出长方形四个角都是直角,从而得到了“长方形内角和是360°”的结论,但是“平行线的性质”是初中数学的教学内容,并不是四年级小学生所掌握的知识,论证过程中不好应用。曾老师也许考虑到了这一点,因此提出了另一种说法,认为长方形四个角都是直角是“默认为正确的而不加以证明,相当于平面几何中的公理”。为了证明需要,就把“长方形四个角都是直角”当作“公理”而不加以证明,并且把它当作演绎推理的依据,这样处理不是很妥当。其实,即使把“长方形四个角都是直角”当作“公理”,仅用小学数学中的一些知识,要用演绎法来证明“三角形的内角和是180°”也是做不到的。

二、 两个完全一样的直角三角形为什么可以拼成一个长方形

学生在开始“证明”时就提出:“可以用两个完全一样的直角三角形拼成一个长方形。”这正是“证明结论”的关键。然而,正是这句话出了问题。试想在还不知道直角三角形的内角和是180°时,怎么能知道这样两个直角三角形一定能拼成一个长方形呢?

为了方便,笔者借助图形来说明问题。

假设△ABC和△CDA是两个完全一样的直角三角形,其中∠B=∠D=90°,∠2=∠4,∠1=∠3,BC=DA,AB=CD,AC=CA,把这两个三角形如图所示拼起来,如果能拼成一个长方形,那么必须满足条件:∠1+∠2=90°,∠3+∠4=90°。由于∠2=∠4,∠1=∠3,所以就有∠1+∠4=90°,∠2+∠3=90°。由此可知,当你说“可以用两个完全一样的直角三角形拼成一个长方形”时,已经应用了直角三角形的内角和是180°”这个结论。这样一来,证明过程就形成了这样一个怪圈:先默认直角三角形的内角和是180°,否则它的两个锐角就不能拼成一个直角)→它的两个锐角可以拼成一个直角→两个完全一样的直角三角形可以拼成一个长方形→长方形内角和是360°→每个直角三角形的内角和是180°。显然,用这样的方法来证明“三角形的内角和是180°”是错误的。这种“证明”方法的实质是用直角三角形的两个锐角拼一拼,而且没有任何理由就认定了这两个锐角拼成了一个直角,这根本不是在用“演绎方法”证明“直角三角形的内角和是180°”。再以此结论为依据来证明“非直角三角形的内角和也是180°”就失去了意义。像这种错误的“证明”也并不鲜见,例如在《中小学数学》2009年第12期中刊登的《“三角形内角和”一课的教学现象分析与思考》一文中也是用这种方法证明的,在公开发表的这些文章影响下,估计这样的错误证法还会在课堂教学中出现,对此教师应该予以足够重视。

要证明“三角形的内角和是180°”是需要以平行线的性质为基础的,在初中数学教材中,应用平行线的性质很容易用演绎推理的方法证明这个结论(证明略)。华东师大的张奠宙教授曾在《小学教学》(数学版)2011年第3期中指出:“要证明三角形内角和的定理,平行公理无论如何是绕不过去的。”显然,学生在未掌握平行线性质的情况下,要用演绎推理的方法来证明“三角形内角和是180°”是不可能的,而事实上也是没有必要的。《数学课程标准(实验稿)》第24页对这一内容提出的教学目标是了解“三角形内角和是180°”,与四年级下册数学教材(人教版)配套的《教师教学用书》第135页上对这一内容提出的教学目标是知道“三角形的内角和是180°”。有些教师在实际教学中总是喜欢拔高教学目标,例如对于“三角形内角和”这一教学内容,不仅要学生“知道三角形内角和是180°”,而且还要求他们用演绎推理的方法来证明,这样做有时真的会“弄巧成拙”。

文中不妥之处敬请各位老师批评指正。

(浙江省杭州师范大学初等教育学院 310036)

篇5:期末复习:推理与证明,复数

期末复习:推理与证明,复数

一、推理

1.归纳推理是由,从的推理。

Ex1:将全体正整数排成一个三角形数阵:按照以上排列的规律,(二)间接证明:反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结

论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:

(1)反设;(2)归谬;(3)结论。

Ex: 用反证法证明数学命题: 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于1

4三、复数

24k4k+14k+24k+

31、虚数单位i,规定:i=;i=;i=;i=;i=(kN*)

2、复数的代数形式是,全体复数所成的集合叫做________集。用字母________来表示。

3.z=a+bi(a、bR),则复数z的实部是;复数z的虚部是。复数z是实数,复数z是虚数,复数z是纯虚数

4、z1=a+bi(a、bR),z2=c+di(c、dR),复数z1=z2;复数z1>z2

5、复数的几何表示:建立了直角坐标系来表示复数的平面叫做________,x轴叫做________轴,y轴叫做

_______轴.实轴上的点都表示______数;除原点外,虚轴上的点都表示__________数。

6、z=a+bi(a、bR),则|z|=|a+bi|=,|z|的几何意义是

7、z1=a+bi(a、bR),z2=c+di(c、dR),则z1+z2=,对应向量运算;

z1-z2=,对应向量运算

8、z1=a+bi(a、bR),z2=c+di(c、dR),则|z1-z2|=,|z1-z2|的几何意义是

9、z1,z2是两个已知复数,z是满足下列等式的复数,写出z所对应的图形分别是什么?

(1)|z-z1|=a(aR,a>0)

(2)|z-z1|=|z-z2|

(3)||z-z1|+|z-z2||=2a(aR,|z1-z2|<2a)

(4)||z-z1|-|z-z2||=2a(aR,|z1-z2|>2a)

10、复数乘除法:(1)43i54i(2)2i74i11、z=a+bi(a、bR),则复数z的共轭复数为z=,zz=

12、实系数一元二次方程ax+bx+c=0(a、b、cR,且a0)的根的情况

当>0时,方程有根,分别为

当=0时,方程有根,为

当<0时,方程有根,分别为

四、题型分类

(一)i的运算1、1iiii12321232010、1iiii20101232010i3、i2i3i20105、f(n)=iinn2010、1i111i2i3i2010nn(nN*)的值域是1i

6、1i1i1i=

7、n为奇数,=1i1i

(二)复数分类

21、z=(2+i)m-3(1+i)m-2(1-i)(mR),z是实数,m取值; z是虚数,m取值;z是纯虚数,m取值;

2、z1=a+bi(a、bR),z2=2+ci(cR),则z1> z2的充要条件是

(三)复数的坐标表示、与向量之间的关系1、3+4i的点关于原点对称的点对应的复数为

22、(m+m-2)+(6-m-m2)i对应复平面上的点一定不在第象限

3、平行四边形中,z1=1+2i,z2=-2+i,z3=-1-2i对应复平面上的点为三个顶点,第四个顶点对应的复数

为

4、复数3-4i和5-6i分别对应向量,求向量AB所对应的复数

(四)共轭运算

1、z1z223i,z1=1-5i,则z2=

2、(z+2)(z2)z,则z=

(五)模的运算及几何意义

2(12i)5(34i)

1、=

2、| z1+ z2|| z1|+| z2| 5(2i)

3、若集合M={z| |z+1|=1, zC},集合N={z| |z-2i|=|z|,zC},则MN=

4、复数z满足条件|z|=1,则|z+3-i|的取值范围是

5、复数z=cos+isin,(R),则|z+1-i|的取值范围是

6、复数z1 z2满足| z1|=3,| z2|=4,| z1+ z2|=5,则|z1 –z2|=

7、|z|+z=8-4i,则z=

8、(1+i)z115i, z2=a-2i , |z1z2||z1|, a的范围(六)函数

1、f(z)=1-z,则z1=2+3i, z2=5-i, 则f(z1z22、f(z)=z-1,则z1=2-3i,f(z1 –z2)=4+4i,求z2=, |z1+z2|=

(七)一元二次方程1、2+ai,b+i(a、bR)是实系数一元二次方程x2pxq0的两根,2、、是方程xxm0(mR)的两个根,且||=2,求m的值

3、复数、是方程xxm0(mR)的两个根,且||||=2,4、方程x+(k-2i)x+4+2i=0有一个根是2,复数另一个根为

五、反思小结

六、巩固练习

篇6:三角形的证明期末复习

21.在△ABC 中,AB  AC,A 0,将线段 BC 绕点 B 逆时针旋转 60得到线段 BD,再将线

段BD平移到EF,使点E在AB上,点F在AC上.(1)如图 1,直接写出 ABD和CFE 的度数;

(2)在图1中证明: E CF;(3)如图2,连接 CE,判断△CEF 的形状并加以证明.

B

1B

C

图2

2.将△ABC绕点A顺时针旋转得到△ADE,DE的延长线与BC相交于点F,连接AF.

(1)如图1,若BAC==60,DF2BF,请直接写出AF与BF的数量关系;

(2)如图2,若BAC<=60,DF3BF,猜想线段AF与BF的数量关系,并证明你的猜想;解:

3.已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;

(2)如图2,E是直线BC上的一点,直线AE、CD相交于点P,且∠APD=45°,求证BD=CE.

图1 图

4.在△ABC中,∠ACB=90°,AC>BC,D是AC边上的动点,E是BC边上的动点,AD=BC,CD=BE.

(1)如图1,若点E与点C重合,连结BD,请写出∠BDE的度数;(2)若点E与点B、C不重合,连结AE、BD交于点F,请在图2中补全图形,并求出∠BFE的度数.

5.如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;

(2)求证:CF=AB+AF.

篇7:三角形的证明期末复习

1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。

2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够完全重合。

3、对称轴都是直线

4、联系:

如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称

如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。

二、轴对称的性质

如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线

三、轴对称的判定

如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。

(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)

四、线段垂直平分线

1、性质:线段垂直平分线上的点到线段两端点的距离相等(证线段相等的依据)

2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)

3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。

4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等

五、坐标系中的对称

点p(a,b)关于x轴对称点的坐标为(a,-b)

点p(a,b)关于y轴对称点的坐标为(-a,b)

六、等腰三角形

(一)等腰三角形性质

性质1、等腰三角形两底角相等(等边对等角)

在一个三角形证明角相等的重要依据。

性质2、等腰三角形顶角平分线垂直平分底边

也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。

(二)等腰三角形判定:

1、定理:等角对等边

2、推论1、三个角都相等的三角形是等边三角形

3、推论2、有一个角是60度的等腰三角形是等边三角形

4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。

七、角的平分线

1、性质:角平分线上的点到角两边的距离相等

2、判定:角的内部到角两边距离相等的点在角的平分线上。

3、三角形三个内角平分线交于一点(内心),该点到三角形三边的距离相等。

篇8:三角形的证明期末复习

曾老师设计的教案中,第一部分是让学生运用猜想、图形剪拼、测量、归纳等方法发现这样一个结论:“三角形的内角和是180°”,第二部分教学内容就是运用演绎方法证明结论(教学过程如下)。

“(二)运用演绎方法证明结论

师:三角形的内角和确实是180°,如何用我们学过的数学知识来证明这个结论呢?

生:对于直角三角形,可以用两个完全一样的直角三角形拼成一个长方形(图略)。长方形四个角是直角,其内角和为90°×4=360°,这样每个直角三角形的内角和为180°。对于锐角和钝角三角形,我还没想出来。

生:对于非直角三角形,可以在内部作一条高,将其分成两个直角三角形(图略)。这样两个直角三角形的内角和为360°,减去高与底边所成的两个直角的度数,就得到所求的非直角三角形的内角和为180°。……

师:嗯,非常好!这样,我们就成功地证明了‘三角形的内角和为180°’这个非常重要的数学结论。”

事实上,这个被教师称为“成功的证明”并不是用演绎推理方法进行的“证明”,其“证明”过程中存在着两个值得商榷的问题。

一、“长方形的内角和是360°”是怎么得到的

证明过程中用到了“长方形的内角和是360°”这个结论,这个结论是怎么得到的?

一般地,“四边形的内角和是360°”是通过将四边形用对角线分成两个三角形,再由“三角形内角和是180°”推导出来的。因为长方形是四边形,所以内角和是360°(当然也可直接将长方形分成两个三角形进行推导)。人教版教材在“三角形内角和”的教学中还安排了这样一个练习:“根据三角形内角和是180°,你能求出下面的四边形和正六边形的内角和吗?”由此可知,小学中求多边形内角和确实以“三角形内角和是1800”为依据。这样一来,证明过程就会有“循环证明”之嫌。好在长方形是特殊的四边形,教师可以不用“三角形内角和是180°”为依据,而是可以根据它的定义“有一个角是直角的平行四边形是矩形(长方形)”及平行线的某些性质(例如同旁内角互补)推导出长方形四个角都是直角,从而得到了“长方形内角和是360°”的结论,但是“平行线的性质”是初中数学的教学内容,并不是四年级小学生所掌握的知识,论证过程中不好应用。曾老师也许考虑到了这一点,因此提出了另一种说法,认为长方形四个角都是直角是“默认为正确的而不加以证明,相当于平面几何中的公理”。为了证明需要,就把“长方形四个角都是直角”当作“公理”而不加以证明,并且把它当作演绎推理的依据,这样处理不是很妥当。其实,即使把“长方形四个角都是直角”当作“公理”,仅用小学数学中的一些知识,要用演绎法来证明“三角形的内角和是180°”也是做不到的。

二、两个完全一样的直角三角形为什么可以拼成一个长方形

学生在开始“证明”时就提出:“可以用两个完全一样的直角三角形拼成一个长方形。”这正是“证明结论”的关键。然而,正是这句话出了问题。试想在还不知道直角三角形的内角和是180°时,怎么能知道这样两个直角三角形一定能拼成一个长方形呢?

为了方便,笔者借助图形来说明问题。

假设△ABC和△CDA是两个完全一样的直角三角形,其中∠B=∠D=90°,∠2=∠4,∠1=∠3,BC=DA,AB=CD,A C=CA,把这两个三角形如图所示拼起来,如果能拼成一个长方形,那么必须满足条件:∠1+∠2=90°,∠3+∠4=90°。由于∠2=∠4,∠1=∠3,所以就有∠1+∠4=90°,∠2+∠3=90°。由此可知,当你说“可以用两个完全一样的直角三角形拼成一个长方形”时,已经应用了直角三角形的内角和是180°”这个结论。这样一来,证明过程就形成了这样一个怪圈:先默认直角三角形的内角和是180°,否则它的两个锐角就不能拼成一个直角)→它的两个锐角可以拼成一个直角→两个完全一样的直角三角形可以拼成一个长方形→长方形内角和是360°→每个直角三角形的内角和是180°。显然,用这样的方法来证明“三角形的内角和是180°”是错误的。这种“证明”方法的实质是用直角三角形的两个锐角拼一拼,而且没有任何理由就认定了这两个锐角拼成了一个直角,这根本不是在用“演绎方法”证明“直角三角形的内角和是180°”。再以此结论为依据来证明“非直角三角形的内角和也是180°”就失去了意义。像这种错误的“证明”也并不鲜见,例如在《中小学数学》2009年第12期中刊登的《“三角形内角和”一课的教学现象分析与思考》一文中也是用这种方法证明的,在公开发表的这些文章影响下,估计这样的错误证法还会在课堂教学中出现,对此教师应该予以足够重视。

要证明“三角形的内角和是180°”是需要以平行线的性质为基础的,在初中数学教材中,应用平行线的性质很容易用演绎推理的方法证明这个结论(证明略)。华东师大的张奠宙教授曾在《小学教学》(数学版)2011年第3期中指出:“要证明三角形内角和的定理,平行公理无论如何是绕不过去的。”显然,学生在未掌握平行线性质的情况下,要用演绎推理的方法来证明“三角形内角和是180°”是不可能的,而事实上也是没有必要的。《数学课程标准(实验稿)》第24页对这一内容提出的教学目标是了解“三角形内角和是180°”,与四年级下册数学教材(人教版)配套的《教师教学用书》第135页上对这一内容提出的教学目标是知道“三角形的内角和是180°”。有些教师在实际教学中总是喜欢拔高教学目标,例如对于“三角形内角和”这一教学内容,不仅要学生“知道三角形内角和是180°”,而且还要求他们用演绎推理的方法来证明,这样做有时真的会“弄巧成拙”。

篇9:证明三角形角平分线定理的六法

定理:在ΔABC中,∠A的平分线AD交BC边于点D,则: 。

证明:

一、构造平行线法

如图,过点C作CE∥AD交BA的延长线于点E,

∴ ∵ AD平分∠A ∴ ∠BAD=∠CAD

∵AD∥CE ∴ ∠E=∠BAD ∠ACE=∠CAD ∴ ∠E=∠ACE

∴AC=AE ∴

二、构造相似三角形法

如图,过点B作BE⊥AD,交AD的延长线于点E,

过点C作CF⊥AD于F,则BE∥CF,∴ΔBDE∽ΔCDF

∴ ∵ ∠BAD=∠CAD,∠AEB=∠AFC=90°

∴ΔAEB∽ΔAFC ∴ ∴

三、面积法

如图,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,

∵ ∠BAD=∠CAD ∴ DE=DF ∴

∴ 又∵ΔABD和ΔACD同高

∴ ∴

四、构造圆法

如图,作ΔABC的外接圆,延长AD交圆于点E,

连接BE、CE,∵ ∠BAD=∠CAD ∴ BE=CE

∴∠EBD=∠BAE ∠AEB=∠BED ∴ ΔAEB∽ΔBED

∴ 同理ΔAEC∽ΔCED ∴

∴ ∴

五、应用正弦定理

如图,∵ ∠BAD=∠CAD ∴ sin ∠BAD=sin∠CAD

∵∠BDA+∠CDA=180° ∴ sin∠BDA=sin(180°-∠CDA)=sin∠CDA

在ΔABD中, (1);在ΔACD中, (2)

(1)÷(2) ∴

六、解析法

如图,以点A为坐标原点,AD为x轴建立平面直角坐标系,设AB=m,AC=n,∠BAD=∠CAD=

则点B的坐标为(mcos ,msin ),点C的坐标为(ncos ,-nsin )

设直线BC为: y=kx+b 则

解之得: b= -

∴ 直线BC为: y= x-- ∴ 点D的坐标为( ,0)

篇10:三角形的证明单元测试

三角形的证明单元测试(北师版)3.1
1.如图,在△ABC 中,已知∠BAC=90°,AB=AD=AC,AD 与 BC 相交于点 E,∠CAD=30°,则∠BCD 的度数为()

1

2

3

5))))

2.如图,在△ABC 中,AD⊥BC,CE⊥AB,垂足分别是 D,E,AD,CE 交于点 H,已知 EH=EB=3,AE=4,则 CH 的长是(3.(本小题 10 分)如图,在△ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线,若 CD=2,那么 BD 等于(4.(本小题 10 分)在△ABC 中,AB=AC=5,BC=6,点 D 是 BC 上的一点,那么点 D 到 AB 与 AC 的距离之和为(5.如图,在等边三角形 ABC 中,点 D,E 分别在边 BC,AC 上,且 BD=CE,AD 与 BE 相交于点 P,则∠APE 的度数为(6.(本小题 10 分)如图,△ABC 和△CDE 均为等边三角形,∠EBD=62°,则∠AEB 的度数为()

6

7

10

7.(本小题 10 分)如图,A,C,B 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE,BD 分别与 CD,CE 交于 点 M,N,有如下结论: ①△ACE≌△DCB; ②CM=CN; ③AC=DN.其中,正确结论的个数是(8.(本小题 10 分)下列命题中,其逆命题不成立的是(
 

)

)

A.同旁内角互补,两直线平行 C.如果两个实数相等,那么它们的平方相等

B.线段垂直平分线上的点到这个线段两个端点的距离相等 D.角平分线上的点到角两边的距离相等)

9.(本小题 10 分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时,应假设(

A.有一个锐角小于 45° B.每一个锐角都小于 45° C.有一个锐角大于 45° D.每一个锐角都大于 45° 10.(本小题 10 分)如图,在△ABC 中,BC 的垂直平分线 DF 交△ABC 的外角平分线 AD 于点 D,DE⊥AB 于点 E,且 .则()A.BC=AC+AE B.BE=AC+AE C.BC=AC+AD D.BE=AC+AD


篇11:相似三角形判定定理的证明

1.如图,在等边三角形ABC中, D,E,F分别是三边上的.点,AE=BF=CD,那么△ABC 与△DEF相似吗?请证明你的结论。

2.已知:如图, ADDEAE??.求证:AB=AE。

ACABBC

3.已知:如图,在△ABC中,D是AC边上的一点,∠CBD的平分线交AC于点E, 且AE=AB。

2求证:AE=AD・AC.

4.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s,动点Q从点B开始沿BC边运动,速度为4cm/s.如果P,Q两动点同时运动,那么何时△QBP与△ABC相似?

二、补充题目:部分题目来源于《点拨》

1.如图,BD,CE是△ABC的高,BD与CE交于点O,则图中相似三角形有( ) A.4对 B.5对 C.6对 D.7对

(第1题)

(第2题)

2.如图,在△ABC中,AD⊥BC,垂足为D,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列比例式中,错误的是( )

A.AD2=BD・DC B.CD2=CF・CA

C.DE2=AE・BE D.AD2=AF・AC

5.如图,在△ABC中,BE和CD分别是边AC,AB上的高,求证:△ADE∽△ACB.

(第5题)

答案

教材

1.解:相似.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.又∵AE=BF=CD,∴AB-AE=BC-BF=AC-CD,即BE=FC=AD.∴△AED≌△BFE≌△CDF.∴DE=EF=FD.∴△DEF是等边三角形.∴△ABC∽△DEF.

ADDEAE2.证明:在△ADE和△CAB中,∵=,∴△ADE∽△CAB(三边成比例的两个三角形ACABCB相似).∴∠AED=∠B.∴AB=AE.

3.证明:∵AE=AB,∴∠AEB=∠ABE,即∠EBC+∠C=∠ABD+∠DBE.又∵BE平分∠CBD,

ABAD2∴∠DBE=∠EBC.∴∠ABD=∠C.又∵∠A=∠A,∴△ABD∽△ACB.∴=.∴AB=ACAB

AD・AC.∵AE=AB,

2∴AE=AD・AC.

4.解:设ts时△QBP与△ABC相似.此时AP=2t cm,BQ=4t cm,则PB=(8-2t)cm.①当

PBBQ8-2t4t△PBQ∽△ABC时,==,解得t=2,∴当运动2 s时,△QBP与△ABC相ABBC816

似;

PBBQ8-2t4t②当△QBP∽△ABC时,=,解得t=0.8,∴当运动0.8 s时,△QBP与BCAB168△ABC相似.

点拨

1.C 点拨:△ABD∽△ACE,△BOE∽△COD,△BOE∽△BAD,△COD∽△CAE,△BOE∽△CAE,△COD∽△BAD.

DAAF22.A 点拨:∵∠ADC=∠DFA=90°,∠DAF=∠DAC,∴△DAF∽△CAD.∴==CAAD

AF・CA.排除D选项.同理CD=CF・CA,DE=AE・BE,排除B,C选项,无法得到AD=BD・DC.故选A.

5.证明:∵BE,CD分别为边AC,AB上的高,∴∠AEB=∠ADC=90°.又∠A=∠A,

AEAB∴△AEB∽△ADC,∴.又∠A=∠A,∴△ADE∽△ACB. ADAC

上一篇:我爱我的学校演讲下一篇:拾忆我们的过去散文