六年级数学分数除法教案

2024-05-04

六年级数学分数除法教案(精选7篇)

篇1:六年级数学分数除法教案

教学内容:

苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

教学目标:

使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

教学重点:

列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

教学难点:

理解列方程解决简单分数实际问题的思路。

教学过程:

一、导入

1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

出示:小瓶的果汁是大瓶的。

这句话表示什么?你能说出等量关系式吗?

如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

2、揭示课题:简单的分数除法应用题

二、教学例5

1、出示例5,学生读题。

提问:你想怎么解决这个问题?

2、讨论交流:你是怎么想、怎么算的?

(1)用除法计算。

引导讨论:为什么可以用除法计算?依据是什么?

(2)用方程解答。

讨论:用方程解答是怎么想的,依据是什么?

让学生在教材中完成解方程的过程,并指名板演。

3、引导检验:900是不是原方程的解呢,怎么检验?

交流检验的方法。

4、教学“试一试”

(1)出示题目,让学生读题理解题目意思。

(2)讨论:这里中的两个分数分别表示什么意思?

这题中的数量关系式是什么?

(3)这题可以怎么解答,自己独立完成,并指名板演。

(4)交流:你是怎么解决这个问题的?

4、小结。

三、练习

1、做“练一练”。

各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

2、做练习十二第1题。

(1)读题,画出题目中的关键句。

(2)学生说题意

(3)引导学生说出并在书上写出数量关系式。

(4)独立解答,并指名板演。

(5)集体评议并校正。

3、做练一练第2题。

启发:你是怎样分析数量关系的?为什么要列方程解答?

3、小结解题策略。

四、作业:练习十二第1、3、4题。

板书设计:(略)

篇2:六年级数学分数除法教案

分数乘法、除法计算练习

教学目标:

1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。

2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。

3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。

教学重、难点:

掌握运用分数乘法解决简单实际问题的基本思路与方法。

教学对策:

设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。

教学准备:

自制投影片或小黑板

教学过程:

一、揭示课题

谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)

二、基本练习

1、计算练习。

5/129/103410/5122/3926/11

10/2112/257/83/5/7

8/15611/6222515/16812/13

11/1222/915/165/125/1410/21

学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。

组织学生小结分数乘法和分数除法的计算方法。

2、解方程。

12x=9/113/8x=9/106/5x=15

学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。

3、在○里填上、或=。

5/711/13○5/77/916○7/91/16

5/71○5/75/77/5○5/7

6/73/5○6/73/84/3○3/8

110/9○18/111○8/1

学生不计算,通过已学知识进行判断,然后交流判断理由。

教师及时组织学生小结:

一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。

一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。

4、根据已知条件找准单位1的量并说说数量关系式。

(1)白兔只数的5/12是黑兔的只数。

(2)已经修了公路全长的3/4。

(3)今年棉花产量比去年增加1/8。

(4)第三季度冰箱价格比第二季度便宜1/10。

(5)二班植树棵数相当于一班的9/8。

(6)还剩这堆煤的3/8。

学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。

5、解决实际问题。

(1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?

(2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?

(3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?

(4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?

(5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?

(6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?

(7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?

学生独立完成后进行交流,主要交流思考过程。

三、全课总结

评价一下自己的练习情况,分析一下还存在什么问题。

课后反思:

按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。

篇3:小学数学分数乘除法应用题之浅见

新课程理念提倡教师对学生“授之以渔,不能授之以鱼”。在小学数学第十一册分数乘除法应用题教学中,我认为教师应引导学生从例题及习题中归纳并掌握寻、定、画、结四个环节。

一、寻

寻,就是找寻到关键句中的分数,这是这四个环节的基础。在这一环节中,找出分数后,要让学生同学过的分数加减法应用题中的分数进行区别,否则两种题型容易混淆。

例如:1.一根绳长10米,剪去1/5米,还剩多少米?2.一根绳长10米,剪去1/5,还剩多少米?

通过比较,不难发现不同点:第一道题的分数带了数量单位,是加减法应用题;第二道题的分数没有带数量单位,是乘除法应用题。因此,在分数乘除法应用题教学中,要经常强调让学生找不带单位的分数。

二、定

定,就是确定单位“1”的量。单位“1”的量确定准确了,才能为下一环节作好铺垫。因此,我在教学中让学生从“寻”环节中找出分数后,常常反复问学生:“谁的几分之几?”单位“1”是谁?或设计一些判断单位“1”的量的一些题型来巩固这一环节,让学生在自觉与不自觉中掌握这一环节。

三、画

画,就是以“寻”环节中的分数,“定”环节中的单位“1”的量绘画出线段图。能否绘画出线段图是这四个环节的重点,也是难点。在教学中,刚接触时学生对画线段图模糊或不习惯。教师要耐心,激发他们的兴趣,多多鼓励。作业时强调必须先画线段图再解答,对画线段图困难的学生进行辅导等。久而久之,学生就会养成画线段图的好习惯。

四、结

篇4:六年级数学分数除法教案

1、倒数的认识

第一课时

教学内容:倒数的认识(教材第28、第29页的内容)教学目标:

1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

2、通过互助活动,培养学生与人合作、与人交流的习惯。

3、通过自行设计方案,培养学生自主探索和创新的意识。教学重难点:

重点:理解倒数的含义,掌握求倒数的方法。难点:掌握求倒数的方法。教学准备:口算卡片、课件 教学过程:

一、导入

1、课件出示。找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

2、按照上面的规律填数。

5()2()1()— — — 8()3()2()

3、揭示课题。今天,我们就来研究这样的数——倒数。

二、教学实施

1、师:关于倒数,你想知道什么?

2、学习倒数的含义。

(1)学生观察教材第28页主题图。

(2)学生根据所举的例子进行思考,还可以与老师共同探讨。(3)学生反馈,老师板书。学生可能发现:

①每组中的两个数相乘的积是1。

②每组中两个数的分子和分母的位置互相颠倒。③每组中两个数有相互依存的关系。(4)举例验证。

(5)学生辩论:看谁说得对。

(6)归纳:乘积是1的两个数会为倒数。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

4、求倒数的方法。(1)出示例1.(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

5、反馈练习。

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。(2)完成教材第29页练习六的第1-5题。

三、课堂作业设计

1、找一找下列各数中哪两个数互为倒数。43 18 78 1 76 117 0 34 67 12 6

2、填空。

(1)43的倒数是(),()的倒数是76。

(2)10的倒数是(),()的倒数是1。

(3)12的倒数是(),()没有倒数。

板书设计:

倒数的认识

倒数的意义:乘积为1的两个数互为倒数。0没有倒数,1的倒数是1。

2、分数除法

第一课时

教学内容:分数除法的意义和分数除以整数(教材第30页的内容)教学目标:

1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

2、掌握分数除以整数的计算方法。

3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

4、使学生明确知识间是相互联系的。教学重难点:

重点:理解分数除法的意义,掌握分数除以整数的计算方法。难点:掌握分数除以整数的计算方法。教学准备:

课件、一张长方形的纸 教学过程:

一、导入

1、出示例1。

2、改编条件和问题,用除法计算。

二、教学实施

1、初步理解分数除法的意义。

5师问:如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样

8计算?

学生试着列出算式。

引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

2、归纳概括分数除法的意义。

3、分数除以整数。

(1)出示例1.引导学生分析并用图表示数量关系。师问:求每份是这张纸的几分之几,怎样列式?(2)列式计算。

4÷2的结果是多少?这个结果是怎样得到的? 5学生折一折,算一算。师问:从图上看,(3)理清思路。

411思路一:把平均分成2份,就是把4个平均分成2份,每份是2个,也就是5552。5441思路二:把平均分成2份,求每份是多少,就是求的是多少。

552(4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

5、巩固练习。完成教材第30页“做一做”。

三、课堂作业设计

1、填空。

(1)分数除法的意义与整数除法的意义(),都是已知()与(),求()的运算。

(2)分数除以整数(0除外),等于分数()这个整数的()。

88(3)÷5=×()=()

992、计算并验算。

651115 ÷3= ÷10= ÷11= ÷30= 11131228板书设计

分数除以整数

分数除以整数等于分数乘这个数的倒数。第二课时

教学内容:一个数除以分数(教材第31、32页的内容)教学目标:

1、结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

2、能够熟练、正确地进行计算。

3、渗透转化思想。教学重难点:

重点:理解一个数除以分数算理,掌握计算方法。难点:能够熟练、正确地进行分数除法的计算。教学准备: 课件 教学过程:

一、导入

1、口算。

5471÷3= ÷4= ÷5= ÷3 115962、说出下面各分数的分数单位,每个分数单位中有几个这样的分数单位,并说 出每个分数单位的倒数。

1791

158910

二、教学实施

揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。(板书课题:一个数除以分数)

1、出示例2。

①学生读题,明确题意。师问:这道题应该怎样解决呢?

②列式。师问:怎样求小明和小红的速度?引导学生利用“速度=路程÷时间”这个关系式列式。

2、整数除以分数的计算方法。

①学生尝试说出自己的算法,教师评价。②用线段图理解整数除以分数的计算方法。老师在黑板上画一条线段,然后提问:在图2上怎样表示“小时走了2千米”这个已知条件?

33、学生自学分数除以分数的计算方法。

55师问:求小红1小时行多少千米,列式是÷=,该怎样计算呢?

6124、归纳方法。

师问:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?(板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。)

5、练习。

(1)完成教材第32页“做一做”的第1、2、3题。(2)完成教材第34页;练习七的第1—8题。

三、课堂作业设计

1、在○里填上运算符号,在()里填上适当的数。

41554÷4= ○=()÷5= ○()=()55412123116÷= 6○()=()()÷()= ○=()

4342、口算。

4444÷4= 1÷= 1+= 1-= 7777111412×= ÷2= 2÷= ÷= 2212272板书设计

一个数除以分数

速度=路程÷时间

2551、小明的速度=2÷ 小红的速度=÷ 36121132、2××3=2×(×3)=2×=3(千米)

2223、分数除以分数

4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。第三课时

教学内容:分数四则混合运算(教材第33页的内容)教学目标:

1、结合具体情境,掌握分数四则混合运算的顺序,能正确地进行计算。

2、能运用所学知识解决简单的实际问题,提高综合解题的能力。

3、培养学生认真审题、准确计算的好习惯。教学重难点:

重点:掌握分数四则混合运算的顺序。难点:正确计算分数四则混合运算。教学准备: 课件 教学过程:

一、导入

1、笔算下面各题。

24÷4+16×5-37 46+50×[(900-90)÷9]

2、计算下面各题。

2÷320 34-38 23×2 11335÷15 8÷8

二、教学实施

1、出示例3。

(1)老师整理情境中的信息。(2)学生明确题意。(3)学生分析题目并解答

(4)老师提问:可以列综合算式吗?小组讨论并汇报,如何列综合算式。板书:12÷(112×3)12÷2÷3(5)分析运算顺序。

师问:这两道算式里分别含有几级运算?应该先算什么,再算什么?

2、巩固练习,完成教材第33页“做一做”。

3、变式练习。

51出示分数、小数混合运算:÷0.125-

4三、课堂作业设计

1、填空。

222()(1)20米是()米的,20米的是()米,20米的是56米的。

(2)()吨的3554比8吨还多1吨。

(3)1÷()=0.125=()÷64=5()()=24

2、计算下面各题。

20-14×1(5 -1)×(4 -1640×2584525×(1 +14)(14-110)×23

5())

3、解决问题

第一课时

教学内容:“已知一个数的几分之几是多少,求这个数”的实际应用问题(教材第37、38页的内容及练习八的1—3题)教学目标:

1、结合具体情境,理解“已知一个数的几分之几是多少,求这个数”的应用题的结构特征,能够用方程或算术方法解答这类简单的实际问题。

2、借助线段图培养学生分析、解决问题的能力。

3、进一步渗透转化的数学思想。教学重难点:

重点:通过分析比较,找出分数乘、除法应用题的区别和联系,掌握解决问题的规律。难点:运用分数除法解决实际问题。教学准备: 课件 教学过程:

一、导入

1、口头分析。

下面每组中的两个量,应把谁看做单位“1”?

1生物组的人数是美术组的。

34航模组的人数是生物组。

52汽车数量相当于自行车数量的。

32、复习分数乘法应用题。

一个儿童重35千克,他体内所含的水分约占体重的二、教学实施

1、出示例4.2、分析数量关系。

师问:例4与复习题有什么区别和联系?

引导学生从已知条件和问题、单位“1”、数量关系式等几方面进行比较。在学生回

4。他体内的水分是多少千克? 5报过程中,绘制下面的线段图。板书:

师问:在这个数量关系式中,小明的体重是未知的,可以用什么来表示? 让学生用含有未知数的等式来表示这个数量关系式,即:

4x×=小明体内水分的质量

53、列方程解应用题。

师问:你会用列方程的方法解答这道题吗?

学生汇报的同时,老师板书补充完整第一问的解题过程。

4、出示例5。

学生先读题,选择有用的信息。

8”这两个条件画出线段15图。(老师强调:这是两个量之间的比较,要画出两条线段。)根据“小明的体重是35千克,他的体重比爸爸的体重轻根据线段图,列出数量关系式。

8爸爸的体重×(1-)=小明的体重

15爸爸的体重-爸爸比小明重的部分=小明的体重

学生列方程解答。

解:设爸爸的体重是x千克。

88(1-)x=35 x-x=35 15156、练习,完成教材第39页练习八。

三、课堂作业设计

1、看图列算式(或方程)。

2、解方程。

8215 2x= x=30 x=

15546板书设计

解决“已知一个数的几分之几是多少,求这个数”的实际应用问题

4一个儿童的体重×=这个儿童体内水分的质量

58爸爸的体重×(1-)=小明的体重 爸爸的体重-爸爸比小明重的部分=小明的体重 第二课时

教学内容:稍复杂的“已知一个数的几分之几是多少,求这个数”的实际应用问题(教材第40—45页的内容)教学目标:

1、结合具体情境,进一步理解和掌握“已知一个数的几分之几是多少,求这个数”的应用题的结构特征,能正确解答这类应用题。

2、培养学生分析、解答应用题的能力。教学重难点:

重点:找准单位“1”及数量关系。

难点:正确解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。教学准备: 课件 教学过程:

一、导入

1、口头列式。

3重15千克,这袋面粉重多少千克? 41(2)一辆汽车每小时行60千米,是火车速度的,求火车的速度是多少?

412、分析条件。课件出示:美术小组的人数比航模小组的人数多 师问:这句话中哪个量是单位“1”?怎样理解这句话?(1)一袋面粉的二、教学实施

1、出示例6。老师整理情境中的信息:已知一场比赛的总得分是42,下半场得分只有上半场的一半,求上半场和下半场各的了多少分?

2、阅读与理解。

(1)一场比赛的总得分是多少?

(2)下半场得分只有上半场得分的一半,怎么理解这句话?(3)问题是求什么?

3、分析数量关系。

师问:单位”1”是已知的还是未知的?应该怎样解答?

1=比赛的总得分 2 下半场的得分×2+半场的得分=比赛的总得分 板书:上半场的得分+上半场的得分×

4、列式解答。

解:设上半场得x分。解:设下半场得x分。x+x=42 2x+x=42 21 28×=14(分)14×2=28(分)

25、出示例7。老师整理情境中的信息:一条隧道,如果一队单独修,12天能修完,如果二队单独修,18天才能修完,如果两队合修,多少天能修完?

6、分析方法。

师问:题中这条路多长没有给出,可以怎样来解答?

7、小组讨论分析结果,集体汇报。

8、巩固练习。完成教材第44页练习九。(学生画图后再解答,并说出等量关系式)

三、课堂作业设计

1、填空。

1()(1)同学们回收的废旧电池比易拉罐多,易拉罐的数量是废旧电池的。

4()1()(2)国产小轿车的现价比原价降低了,现价是原价的。

8()()()(3)40是60的,60比40多。

()()14(4)一本书的是40页,这本书的是()页。

452、判断。

1(1)10克盐溶入100克水中,盐占盐水的。()

1013(2)3米的和1米的同样长。()

4411(3)一种商品先提价,再降价,现价和原价相等。()

88板书设计

稍复杂的“已知一个数的几分之几是多少,求这个数”的实际应用问题

1上半场的得分+上半场的得分×=比赛的总得分

2下半场的得分×2+半场的得分=比赛的总得分

整理和复习

第一课时

教学内容:复习分数除法的意义和计算(教材第46、47页的内容)教学目标:

1、使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。

2、熟练掌握分数除法的计算法则,提高灵活解题的能力。

3、在整理知识体系的过程中,帮助学生掌握复习的方法。教学重难点:

重点:概念和计算法则的整理。难点:运用所学概念,灵活解决问题。教学准备:课件 教学过程:

一、整理本单元的知识

1、课前布置作业,学生自己整理本单元的知识点。

2、展示学生的知识结构图。

二、复习分数除法的意义和计算法则

1、回忆。分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法。

2、整理学生的汇报。

3、完成教材第46页的第1题。请学生先复述分数除法的意义,然后计算。

三、课堂作业设计

1、在○里填上“>”“<”或“=”。

9×18○9 9÷4343○9 ×○1 9÷244231213○9 9×3○9 3×5○3÷5

2、计算。

12-13×14+16 12×13-14+111116(2+3)×4-6

12÷[13×(114-6)]

第二课时

教学内容:复习分数除法应用题(教材第46、47页的内容)教学目标:

1、通过复习比较,进一步弄清分数乘、除法应用题在数量关系和解题思路等方面的联系和区别。

2、进一步掌握用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,提高学生解答分数应用题的能力。

3、培养学生独立思考、认真审题的好习惯。教学重难点:

建立三类分数应用题之间的联系,能够比较准确地分析、解决较复杂的实际问题。教学准备:课件 教学过程:

一、导入。今天,我们一起上一节分数应用题的复习课,想一想我们学过的分数应用题包括哪几种类型。

二、教学实施

1、出示教材第46页的第2题。

(1)第①题是比较简单的“已知一个数的几分之几是多少,求这个数”的应用题。

引导学生说出鸭的只数是单位“1”且未知,求鸭的只数,就是求单位“1”是多少,用除法计算。

老师可以请学生边说,边画出线段图。

(2)第②题是稍复杂的“已知一个数的几分之几是多少,求这个数”的实际应用问题。

3师问:怎样理解“鹅的只数比鸭少”?(请几名学生回答)

5学生画图并口头分析,请一名学生板演: 师问:根据线段图,你能用简单的话概括这道题已知什么,求什么吗?(3)提问:比较以上两道题,有什么相同点和不同点?(4)按比分配的应用题。请学生完成第③题。

师问:还记得按比分配解决问题的一般方法吗?

课件出示: 求平均分得的总份数 ↓

求每部分占总份数的几分之几

用分数乘法求出每部分是多少

(5)提问并解答。你能用上面的数据编出其他的分数乘、除法应用题吗?

2、反馈练习。

完成教材第47页的练习十。

三、课堂作业设计

11、一头蓝鲸骨骼重20吨,约占体重的,它的体重约是多少吨?

712、一种手机降价出售,正好比降价前便宜了200元,降价前卖多少元?

523、小明看一本640页的书,第一天看了全书的。两天共看了多少页?

5把需要补充的条件和相应的算式用线连起来。第二天看了128页 640×+128

521 第二天比第一天少看了128页 640××(1+)

篇5:六年级数学教案—复习分数除法

本课题教时数:1本教时为第1教时备课日期10月22日

教学目标

1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。

2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

教学重难点

能比较熟练地求比值和把一个比化成简单的整数比。

能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。

教学准备

教学过程设计

教学内容

师生活动

备注

一、揭示课题

二、整理知识

三、组织练习

四、课堂小结

本单元我们学习了什么?你学习了哪些内容?

这节课我们先复习分数除法的有关概念和计算。

通过复习,大家要进一步掌握分数除法的意义、比的意义和

基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。

1、复习分数除法的意义

问:分数除法表示的意义是什么?

你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?

指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。

2、复习分数除法计算法则

提问:我们在分数除法里,学过哪几种情况的计算?

分数除法计算的方法是怎样的?

3、笔算练习

做复习第2题

指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。

4、复习比的意义

问:什么叫比?比的各部分名称是什么?请你举个例子来说明。

比与除法、分数有什么联系?请你根据4:5来说明。

5、做复习第3题

6、复习比的基本性质

提问:化简比和求比值各是依据什么来做的?

1、做复习第5题

2、做复习第6题

3、做复习第7题

指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。

4、做复习第8题

指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。

这节课复习了什么内容?你进一步明确了哪些知识?

课后感受

篇6:人教版六年级数学教案:分数除法

教学目标:

1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型

2、在解方程中,巩固分数除法的计算方法。

重难点:

1、能自觉用解方程解决简单的有关分数的实际问题。

2、正确进行分数除法计算。

学情分析:

分数除法运用问题历来是教学中的难点,尤其是在解决分数乘除法混合问题时,学生难以判断是用乘法还是用除法解答。为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题。因此教学时,我让已经养成预习习惯和预习方法的学生利用这幅主题图做充分预习,然后把所有信息设计成开放式,让学生根据信息大胆找到关系,提出问题,并出示探究指导鼓励学生独立解决问题,这样让学生思之有法,学之有据,并能养成良好的学习习惯,反馈时,学生会出现多种解决问题的策略,要适时引导,鼓励学生用方程解决此类问题。如果有学生选择用除法计算,要引领学生做好分析,可借助线段图的功能沥青思路。

课前预习作业:

1、读一读、想一想:P29

2、写一写、填一填:

操场上有()人参加活动; 跳绳的有()人;

踢毽子的有()人;打篮球的有()人;跑步的有(踢足球的有()人。

3、说一说、做一做:

感到认识模糊的与父母和同学说一说,试做名校。

4、质疑:

教学流程:)人;

一、创景激情:

同学们,你们喜欢课外活动么?你们都喜欢什么样的课外活动?你们的课外活动真是丰富多彩,在课外活动中也能发生数学故事那,今天就让我们这节课进行一次快乐的数学活动好么?(1分钟)

预习检测:5分钟

1、判断谁是整体1,说出个数量关系。

(1)书的价钱是钢笔价钱的2/5。

(2)一种书包打九折出售。

(3)参加跳绳的是操场上参加活动总人数的2/9。

2、解方程:

8x=4/75/8x=1/4

3、前面的填一填。

二、自主探究:

1、同学们观察很仔细,预习很认真,这些数量之间有什么关系么?

可能会出现:打篮球的人数是踢足球的4/9等等(随即板书)

2、根据这些数学信息,你还能提出哪些数学问题?

可能会出现:踢足球的有多少人?等等。(随即板书)

3、同学们你们想解决哪个问题?

选定探究问题,出示探究指导:

独立思考我能行:(3分钟)

要解决这个问题,要用到我们提供的哪些条件?

找到整体1,等量关系是什么?

自己尝试解决问题。

合作交流我最棒:

做完后与同座交流列式的根据是什么?(2分钟)

4、汇报交流

方程:求一个数的几分之几是多少用乘法。(提倡)

除法:可借助线段图理解。

5、探究其余问题。

6、总结方法:

分数应用不算难,掌握方法是关键;

是、占、比、与、相当于,后面数量看作1;

知一求几用乘法,知几求一用方程。

三、运用提高:

生活处处用分数:

1、某月双休日共有9天,是这个月总天数的3/10,这个月有多少天?

2、丑小鸭超市让利大酬宾,商品一律八折,一件衬衣现价40元,这件衬衣原价多少元?

四、小结升华:

通过这节课的活动,你有哪些收获?还有什么问题?

篇7:六年级数学分数除法教案

单元教材分析:

本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

单元教学目标:

1、理解并掌握分数除法的计算方法,回进行分数除法计算。

2、回解答已知一个数的几分之几是多少求这个数的实际问题。

3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化

简比和求比值

4、能运用比的知识解决有关的实际问题。

学情分析:

本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意

义理解分数除法的意义。

单元课时安排:

1、分数除法..............5课时

2、解决问题..............3 课时

3、比和比的应用.......4 课时

4、整理和复习..........2 课时

一 分数除法

第一课时 分数除法的意义和整数除以分数

教学目标:

知识目标:通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数

除以整数的计算法则。能力目标:动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

情感目标:培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教学过程:

一、复习

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题(题略)

二、新授

1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。

1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)

(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

2、巩固分数除法意义的练习:P28“做一做”

3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的4/5平均分成2份,并通过操作得

出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的4/5平均分成2份,每份是这张纸的2/5。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

A、4/5÷2=(4÷2)/5 =2/5,每份就是2个1/5。B、4/5÷2=4/5 ×1/2 =2/5,每份就是单位1 的2/5。(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对

比,让学生发现第二种方法适用的范围更广。

4、引导学生观察 4/5÷2和4/5 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等

于乘上这个整数的倒数。

三、练习

8/15÷4 9/10÷3 5/7÷2 7/12÷7 5/21÷10 6/35÷6

四、总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

第二课时 一个数除以分数

教学目标:

知识目标:在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

能力目标:培养学生的语言表达能力和抽象概括能力。

情感目标:培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教学过程:

一、复习

1、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)

2、直接写出得数(题略)

二、新授

1、默读例3,理解题意,列出算式:2÷ 2/3 5/6÷5/12

2、探索整数除以分数的计算方法

(1)2÷2/3 如何计算?引导学生结合线段图进行理解。(2)先画一条线段表示1小时走的路程,怎么样表示2/3小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是2/3小时走的路程)

(3)引导学生讨论交流:已知2/3小时走了2 km,要求1小时走了多少千米?可以先算什么,再算

什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求2/3小时走了多少千米,也就是求2个1/2,算式:2×1/2

再求3个1/3 小时走了多少千米,算式:2×1/2 ×3(1)综合整个计算过程:2÷2/3 =2×1/2 ×3=2×3/2

2、小结出计算法则:从上面这个推算过程,我们发现——整数除以,分数等于用整数乘这个分数的倒数。

3、计算5/6 ÷5/12,探索分数除以分数的计算方法

(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

5/6÷5/12 = 5/6× 12/5=2(km)(2)学生用自己的方法来验证结果是否正确。

4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、练习

1、P31“做一做”的第1、2题。

2、练习八第2、4题。

教学反思:

第三课时 分数除法的练习

练习内容

分数除法计算(课本第33页第6~9题)

练习目标

1、使学生熟练掌握分数除法的计算方法,能正确的进行计算,并能解决有关的简单问题。

2、能根据除数的特征,判断除法算式中商与被除数的大小关系。

教学过程

一、基础练习

1、填一填,说一说。

()/()÷()/()=()/()

5/8×1/3=5/24

()/()÷()/()=()/()

过程要求:(1)根据题意填写算式;(2)说一说分数除法与乘法的关系。

2、计算。

2/7÷2/3 1/3÷5/4 5/8÷4 20÷2/3 过程要求:(1)学生独立计算;(2)说一说是怎么算的;(3)用一句话归纳分数除法计算法则。

二、专项练习完成课文练习八第6题。

1、不用计算,判断各式的商与被除数的大小关系。

2、与同伴交流思维过程和结果。

3、汇报交流情况。

学生有可能将除法算式转化为乘法算式,然后根据算式的含义进行判断。

如:6/7÷3=6/7×1/3 6/7的1/3,表示把6/7平均分成3份,只取其中1份,结果一定小于6/7。

教师按照学生汇报的结果,进行归类。

商大于被除数的: 商小于被除数的:

4、引导发现规律。比较两边的算式,有什么发现? 学生通过观察、思考,并和同伴交流后,得出自己的发现规律。

除以小于1(0除外)的数时,商大于被除数;

除以大于1的数时,商小于被除数。

三、巩固练习完成练习八第7~9题。

1、第7题 学生根据题意列出算式,并计算。

2、第8题 认真审题,说一说题中的数量关系,列式计算。

3、第9题 认真审题,说一说题中的数量关系,并和第8题比较。

“半秒”怎么表示?“1分钟”怎么表示?

四、作业 选用课时作业

第四课时 分数混合运算

教学目标:

知识目标:通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地

进行计算。

能力目标:通过练习,培养学生的计算能力及初步的逻辑思维能力。通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便

运算。

情感目标:通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。

教学过程:

一、复习

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法

又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算

中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×

5(2)1.8+1.5÷4―3×0.4(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)

二、新授

1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:

A、可以从条件出发思考,根据彩带长8m,每朵花用2/3m 彩带,可以先算出一共做了多少

朵花。

B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。

2、巩固练习:P34“做一做”

(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。

(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。

三、练习

1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。

2、练习九第2-4题

(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼

板到地面的高度实际上只有5层楼的高度。

(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷ 1/4× 3/4;B、可以先求装完的3/4 有多少千克,综合算式是240×3/4 ÷1/4。

四、布置作业

练习九第5-9题。教学反思:

第五课时 分数混合运算的练习

练习内容

分数除法计算及四则混合运算(课本第36页第5~10题)

练习目标

1、使学生较熟练的掌握分数除法的计算方法,熟练掌握分数四则混合运算顺序,并能正确地进行计

算。

2、能综合运用所学知识解决有关实际问题。

3、对不懂的地方有提出疑问的意识,发现错误能及时改正。

教学过程

一、基础练习

1、口算。

4/7÷2 9/10÷1/5 15÷1/3 3/4×2/9 1/2-1/4 1/2÷1/4 1/2×1/4 1/4÷1/2 过程要求:(1)用口算卡依次出示各算式;(2)学生完整表达算式,计算过程及结果;(3)说一

说分数四则运算的计算方法。

2、计算下列各题。

4/13÷2+1 5/63/7÷3/5 0.6÷3/4×5/12 过程要求:(1)学生独立计算;(2)汇报计算方法。

3、简便计算。3/8+1/3÷5/9+2/5 过程要求:(1)学生独立计算,然后与同伴交流;(2)怎么计算简便?学生汇报,集体评价。

二、巩固练习

完成课文练习九第5~10题。

1、第5题(1)学生独立计算;(2)汇报计算方法。如:2/9÷0.375÷6/7 式中含有小数,要怎么办?

=2/9÷3/8÷6/7 连除的式子,要怎么算?

=2/9×8/3×7/6 能约分的要先约分。=56/81

2、第6题(1)学生独立解方程,然后与同伴交流;(2)选讲其中两题。

3、第7、8、9题。(1)认真读题,理解题意;(2)说一说解题思路;(3)列式计算,集体订正。

4、第10题

(1)按题目要求计算出每一步结果。(2)说一说你发现了什么。(3)想一想:这是为什么?

三、作业

选用课时作业。

二 解决问题

第六课时 已知一个数的几分之几是多少求这个数的应用题

教学目标:

知识目标:使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练

地列方程解答这类应用题。

能力目标:进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应

用题的能力。

情感目标:培养学生良好的学习习惯。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学、难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、复习

1、出示复习题:

根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重× 4/5 =体内水分的重量

4、指名口头列式计算。

二、新授

1、教学例1的第一个问题:小明的体重是多少千克?

(1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。

小明的体重× 4/5 =体内水分的重量

(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是

已知条件和问题变了)

(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×4/5 =体内水分的重量,反过来,体内水分的重量÷4/5 =小明的体重)

2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

(1)启发学生找到分率句,确定单位“1”。

(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)

爸爸: 小明:

爸爸的体重×7/15 =小明的体重

①方程解:解:设爸爸的体重是χ千克。②算术解: 35÷7/15 =75(千克)

7/15χ=35 χ=35÷7/15

χ=75

3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)

三、练习

1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导

学生发现250ml的鲜牛奶是多余条件)

2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关

系式进行计算)

四、总结 这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

教学反思:

第七课时 练习课

练习内容

两步计算解决问题(课本第40页练习十第5~9题)

练习目标

1、使学生能用除法计算熟练解决“已知一个数的几分之几是多少,求这个数”的问题。

2、能综合运用所学知识解决有关的实际问题。

教学过程

一、基础练习完成课本练习十第5题。

过程要求:(1)学生独立计算,教师巡视,发现问题及时纠正;

(2)选取几道计算题,让学生上台演板。

(3)集体评价。

(4)小结分数四则混合运算的计算方法。

二、专项练习

1、只列式不计算。

(1)男生30人,是女生人数的2倍,女生有多少人?(2)男生30人,是女生人数的1.5倍,女生有多少人?

(3)男生30人,是女生人数的1/2,女生有多少人?(4)男生30人,是女生人数的2/3,女生有多少人? 过程要求:依次出示题目,学生根据题意列出除法算式;

说一说有什么体会。

通过交流,使学生明白这类问题的特征和解答方法。

教师结合板书帮助分析。

一个数×几/几=具体量 → 单位“1”的量×几/几=具体量

→ 单位“1”的量=具体量÷几/几

2、即时练习。

学校田径队有女队员20人,是男队员人数的4/5,男队员有多少人?

过程要求:(1)学生尝试用除法解答。(2)引导提问:4/5把什么看作单位“1”?

如何求单位“1”的量?

具体量是多少,占单位“1”的几分之几?

怎样列式计算?

三、巩固练习

完成课本练习十第6~9题。

1、第6题: 3/5把什么看作单位“1”?

求每月开支多少元,就是求什么?

列式计算。

2、第7题: 4/5把什么看作单位“1”?

单位“1”的量已知吗?用什么方法解答?

求出的单位“1”是什么时候的产量?求全年产量应该怎么办?

3、第8题: 说一说题中的数量关系?

你用什么方法解答,怎样解答比较简单?

4、第9题: 认真审题,弄清题意;这里的1/

6、1/

3、1/2都是以什么数看作单位“1”?

说一说你的解答思路。再计算,把结果填在表上。

四、作业 选用课时作业。

第八课时 稍复杂的分数除法应用题

教学目标:

知识目标:通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些

简单的实际问题。

能力目标:通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

情感目标:培养学生良好的学习习惯。

教学重点:

弄清单位“1”的量,会分析题中的数量关系。

教学难点:分析题中的数量关系。

教学过程:

一、复习

小红家买来一袋大米,重40千克,吃了5/8,还剩多少千克?

1、指定一学生口述题目的条件和问题,其他学生画出线段图。

2、学生独立解答。

3、集体订正。提问学生说一说两种方法解题的过程。

4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授

1、教学补充例题:小红家买来一袋大米,吃了5/8,还剩15千克。买来大米多少千克?

(1)吃了5/8是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

(4)指名列出方程。解:设买来大米X千克。

x-5/8x=15

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多1/4是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数

占航模组的

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。

χ+1/4χ=25(1+1/4)χ=25

χ=25÷5/4 χ=20

三、小结

1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

教学反思:

三 比和比的应用

第九课时 比的意义

教学目标:

知识目标:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。能力目标:引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能

力。

情感目标:培养学生良好的学习习惯。教学重点:比与除法、分数的关系

教学难点:理解比的意义

教学过程:

一、复习。

1.某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几

倍?

2.分数与除法有什么关系?

二、新授。1. 教学比的意义。(1)教学同类量的比。

A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽

是长的几分之几?)

B、这两个关系都是用什么方法来求的?(除法)

C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比

是15比10,或宽和长的比是10比15。

D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

(2)教学不同类量的比。

A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:

42252÷90)

B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与

90小时是两个不同类的量。

(3)归纳比的意义。

A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

B、练习:判断,下面数量间的关系是表示两个数的比吗?

①甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。

② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。

③ 足球比赛,甲队和乙队的比分是3比2。

2.教学比的写法、比的各部分名称。

比的写法。

15比10 记作15∶10 10比15 记作10∶15

42252比90记作42252∶ 90

比的各部分名称。

A、学生自学课本,小组讨论概括知识点。

B、小组汇报并举例:

“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以

后项所得的商,叫做比值。例如: ∶ 2=3÷2=3/2

3.教学比与除法、分数的关系。

(1)比与除法的关系

A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什

么?(商)。

B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)

C、比值通常用分数表示,也可以用小数或整数表示。

(2)比与分数的关系。

A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

a)两个数的比也可以写成分数的形式。例如15∶10,可写成,读作15比10。

结合上面的讲解,板书下表:

除法 被除数 ÷(除号)除数 商

分数 分子 -(分数线)分母 分数值

比 前项 ∶(比号)后项 比值

三、巩固练习。1.完成课本“做一做”。2.练习十一第1、2题。

四、布置作业。1.课本练习十一的第3题。

2.补充:求出比值。

0.375∶0.875 0.25∶ 0.75 2.6∶3.9

教学小记:

学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

第十课时 比的基本性质

教学目的:

知识目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

能力目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活

性。

情感目标:通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点:理解比的基本性质,掌握化简比的方法

教学难点:化简比与求比值0的不同

教学过程:

一、复习。

1、什么叫做比?比的各部分名称是什么?

2、比与除法和分数有什么关系?

比 前项 :(比号)后项 比值 除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值

3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16

4、分数的基本性质是什么?举例: = =

二、新授

1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)

2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。

6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4

1、小组派代表说明验证过程,其他同学补充说明。

2、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫

做比的基本性质。

3、教学例1

(1)出示例题:把下面各比化成最简单的整数比

15∶10 0.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)

(3)指名学生说出自己化简的方法,全班评判。

三、练习

1、P46“做一做”

2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)

四、总结

今天我们学习了什么知识?比的基本性质可以应用在哪些方面?

教学反思:

第十一课时 比的应用

教学目标:

知识目标:结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。能力目标:培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。情感目标:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

教学重点:

进一步掌握按比例分配应用题的结构特点和解题思路。

教学难点:

正确分析解答比例分配应用题。

教学过程:

一、复习。

1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常

叫按比例分配。

2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充

问题并解答)

二、新授。

1、教学例2。(1)出示例2:

(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;

浓缩液和水的体积按1∶4进行分配。)

(3)问:“浓缩液和水的体积1∶4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)

(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)

① 稀释液平均分成的份数:1+4=5 ② 浓缩液的体积:500× 1/5 =100(ml)③ 水的体积: 500× 4/5 =400(ml)

答:稀释液100ml,水400ml。

(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)

2、补充练习

(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47∶45∶48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人)② 一班应栽的棵数: 280× = 94(人)③ 二班应栽的棵数: 280× = 90(人)④ 三班应栽的棵数: 280× = 96(人)答:一班栽树94棵,二班栽树90棵,三班栽树96棵。

(5)学生进行检验。

(6)学生试做“做一做”中的第2题。

三、巩固练习。练习十二的第1、3题。

四、布置作业。

练习十二第2、4、5、6、7题。

教学反思:

第十二课时 比的应用练习

练习内容

比的应用的综合练习(课本第51页的第5~7题,第48页的第7题)。

练习目标 使学生进一步理解掌握按一定的比进行分配的问题结构特征及数量关系,解决有关的问题。

教学过程

一、基础练习

1、填一填。

(1)某班男生人数与女生人数的比是4∶3,男生人数占全班人数的()/(),女生人数占全班

人数的()/()。

(2)修筑一段公路,已修的部分占全长的3/5,未修的部分占全长的()/(),未修的部分与已

修部分的最简单整数比是()/()。

2、一本书,已看的部分与未看的部分的比是3∶2。

(1)根据题意,你能得到哪些数量关系?

学生思考后回答,教师记录。

已看的部分占未看的3/2;未看的部分占已看的2/3;已看的部分占全书的3/5;未看的部分占全书的2/5。(2)解决问题。

如果已看了60页,未看的有多少页? 60×2/3 如果未看的是40页,全书有多少页? 40÷2/5

你还能提出哪些问题?怎样解答? 让学生与同伴互相提问,解答,然后汇报。

二、深化练习

1、例题:一个长方形的周长是84dm,长与宽的比是4∶3,这个长方形的长和宽各是多少dm?

(1)认真审题,弄清题意。(2)说一说你的解答思路。

长与宽的和:842=42

4+3=7 长:42×4/7=24dm 宽:42×3/7=18dm

2、完成课本第5、6题。第5题:(1)认真审题,弄清题意,(2)说一说解答思路:先求出长、宽、高的和,再分别求出长、宽、高各是多少。

(3)怎样求长、宽、高的和?(4)为什么要120÷4?

(5)学生列式解答,指名演板。

第6题:

(1)认真审题,说一说题目的意思,(2)要怎么解决?(3)学生列式计算。

3、思考题。第51页第7题。

(1)认真审题,弄清题意,说一说题中的数量关系的特征。

(2)要怎样解决?(3)列式计算(4)还有其它方法吗? 第48页第7题。

说一说根据两数的比是2∶3,能得到哪些数量关系?

三、作业 选用课时作业。

四 整理和复习

第十三课时 整理复习(1)

复习目标:

使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。

复习重点:分数除法的计算方法,化简比。

复习难点:正确计算分数除法。

复习过程:

一、复习分数除法的意义和计算法则

1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?

(1)分数除以整数,例如5/7 ÷5;

(2)一个数除以分数,它又包括整数除以分数,例如20÷4/5 ;和分数除以分数,例如 2/3 ÷ 6/7。

(3)做第52页“整理和复习”的第2题。

2、分数除法的意义

(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)

(2)让学生说说是怎样题改写成两道分数除法算式的。

(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)

3、分数除法的计算法则

(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?

(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。

(3)完成P52“整理和复习”第2题。

(4)P53练习十三第2题。

二、复习比的意义和基本性质

1、比的意义

(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)

(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。

3∶2 =1.5 ┇ ┇ ┇

前 比 后

项 号 项 值

(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式,但仍读作3比2。特别强调比的后项不能为0)

(4)比和除法、分数的联系

除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值 比 前项 ∶(比号)后项 比值

2、比的基本性质(1)复习概念及化简方法 ①比的基本性质是什么?

②应用比的基本性质,怎样对整数比进行化简?

③不是整数的比应该怎样化简?

(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)

三、课堂练习

1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)

2、做练习十四的第2题.

3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)

4、做练习十四的第7题.

第十四课时 整理复习(2)

教学目的:

使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.

教学重点:正确解答分数乘除法应用题 教学难点:分数乘除法应用题的联系与区别

教学过程:

一、推理训练

1、男生占全班人数的3/5,女生占全班人数的()。

2、一堆煤,用去了4/7,还剩下()。

3、今年比去年增产 1/8,今年相当于去年的()。

二、对比训练:

1、一步分数应用题

① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几? ② 张大爷养了200只鹅,鹅的只数是鸭的只数的2/5,养了多少只鹅? ③ 张大爷养了200只鹅,鸭的只数是鹅的只数的5/2,养了多少只鸭?

(1)比较相同点和不同点

引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么

方法解答。

(2)比较完后,学生将三道题的解答过程写在练习本上。

2、出示题组:

① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千

米?

② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?

(1)学生自己画线段图,分析,解答。

(2)对比:两题有什么异同?你是怎样分析的,如何区别的?

3、出示题组:

① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆? ② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆? ③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆 ④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?

(1)学生独立画线段图,分析,解答。

(2)对比:

1、2两题有什么异同?

3、4两题呢?你是怎样分析的,如何区别的?

(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?

引导学生归纳出:

㈠ 分析“分率句”,判断单位“1”是哪个数量? ㈡ 画出线段图,找出“量”和“率”的对应关系。

㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。

三、课堂练习:

1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未

知?)

2、练习十三第4、5题,独立完成,集体订正。

上一篇:静静的世界下一篇:明信片祝福语寄语