氧化锌纳米线制备方法

2023-04-28

第一篇:氧化锌纳米线制备方法

铝土矿的选别与氧化铝的制备方法---阅微草堂

氧化铝的制备方法大致有:拜耳法(A/S>8-10)适合低硅比的三水铝石型、联合法(A/S=5-7)、烧结法(A/S=3.5-5)

(A/S=铝硅比) 铝土矿主要资源分布:山西、河南、贵州、广西,储量世界第八 我国铝土矿主要矿石类型:主要为高硫、高硅低铝硅比一水硬铝石型。 所以我国铝土矿选别工艺主要是有两大任务:脱硫和脱硅 脱硅选矿工艺

(一):铝土矿脱硅按浮选可分为正浮选和反浮选 正浮选:浮选铝矿物的有效捕收剂有脂肪酸和磺酸盐类;调整剂有六偏磷酸钠、丹宁酸、焦磷酸钠、碳酸钠等。

试验研究表明:当矿石磨至-200目占95%,碳酸钠和硫化钠做为调整剂,水玻璃、六偏磷酸钠按比例配制做为抑制剂,用氧化石蜡皂做为捕收剂,浮选脱硅效果较好。

反浮选:是把高岭石、伊利石、叶腊石等含硅矿物和石英浮选成泡沫产品,由于入选粒度细、矿浆粘度大,导致分散剂、捕收剂耗量大,而且选别回收率低、铝土矿矿物损失大。

脱硅选矿工艺

(二):化学法脱硅工艺有焙烧-氢氧化钠溶出脱硅法,氢氧化钠直接溶出-分选脱硅法,均采用氢氧化钠浓度低于20%的稀碱溶液处理,前者的缺点是焙烧作业能耗高,后者由于溶出矿浆浓度低,碱耗量较大。杨波[1]等人提出用高浓度碱常压高温浸取铝土矿脱硅技术,在氢氧化钠浓度50%,碱矿比2.5,浸出温度135℃ ,脱硅时间5~20min,获得铝土矿精矿A/S大于12。该法简化了整体氧化铝生产工艺,缩短了流程,有望使氧化铝生产成本大大降低。 脱硅选矿工艺

(三):絮凝脱硅适用于细粒嵌布、含泥较多的一水铝石型铝土矿,将矿石细磨至-5μm占30%~40%,然后添加调整剂苏打和苛性钠、分散剂六偏磷酸钠,再使用聚丙烯胺聚合物进行选择性絮凝,使悬浮物和沉淀物分离。

铝土矿脱硫的方法:有浮选法、碱性铝酸盐溶液浮选法、电位调控浮选法、碱石灰烧结法、添加脱硫剂的氧化铝湿法除硫、焙烧法等。吕国志等人[2]提出高硫铝土矿的焙烧预处理除硫方法,原矿含硫1.82%,在焙烧温度750℃ ,焙烧时间60min的条件下,矿石含硫降至0.70%以下,符合氧化铝工业生产要求;焙烧矿在溶出温度为220℃左右时溶出1h,氧化铝溶出率高于97%,说明铝土矿焙烧法处理高 硫型铝土矿是可行的。硫元素以SO2的形式生成,直接排放会造成环境污染,若增加必要的处理设备设施,会造成设备成本提高。主要的含硫矿物是黄铁矿、磁黄铁矿,黄铁矿是分布最广泛的硫化物,易 于用浮选法选别,但黄铁矿在氧存在的条件下其表面会部分发生氧化,其可浮性大大降低。通过对河南西部某高硫铝土矿浮选除硫试验,含硫矿物进入泡沫产品,铝土矿留在矿浆中,含硫矿物的浮选受到矿浆碱度、矿浆浓度、矿石粒度、捕收剂用量和种类的影响较大,试验结果表明,用丁基钠黄药-丁基铵黑药做为捕收剂,合计用量在200~400g/t,起泡剂用量在30~35g/t,氢氧化钠作为矿浆碱度调整剂,PH=9.5~10.5之间,矿浆浓度15%~20%,入选粒度-150目占85%的条件下,一次精选精矿硫品位<0.40%,铝土矿含硫量符合工业要求,氧化铝回收率达89.5%。

第二篇: 二氧化钛纳米材料的制备

陈维庆

(贵州大学矿物加工工程082班

学号:080801110323)

要:二氧化钛俗称钛白,是钛系列重要产品之一,也是一种重要的化工和环境材料。目前制备纳米二氧化钛的方法很多,本文综述了纳米二氧化钛的多种制备方法和生产原理,在总结归纳基础上对各种制备方法进行比较,概述相关的研究进展。

关键词:二氧化钛

纳米粒子

生产原理

Titanium dioxide nanomaterials preparation

Chenweiqing

(Guizhou University mineral processing project 082 classes) Abstract: Titanium dioxide, commonly known as titanium dioxide, titanium series is one of the major product, is also an important chemical and environmental materials. Preparation of nanometer titanium dioxide at present a number of ways, this overview of the variety of preparation methods of nano-titanium dioxide and production principle, on the basis of summarizing and to compare various methods of preparation, review of related research progress. Keyword: Titanium dioxide Nanometer granule Production principle 1 前

近20年来,纳米材料以其特殊的性能和广阔的发展前景引起各领域的广泛关注。是极具挑战性、富有活力的新科技,它对社会发展有着重要意义,对人类的进步有着深远影响。纳米材料可以理解为组成物质的颗粒达到纳米数量级也就纳米粒子。纳米粒子是处于微观粒子和宏观粒子之间(1~100 nm )的介观系统。目前,纳米科技产品的研发已经拓展到力学、化学、电子学、机械学、材料科学以及建筑、纺织、轻工等领域。

纳米材料及技术是科技领域最具活力、研究内涵十分丰富的科学分支。纳米材料包含纳米超微粒子(1~100 nm )以及由纳米超微粒子所制成的材料。纳米超微粒子以其显著的表明效应、量子尺寸效应、宏观量子隧道效应等一系列新颖的物理和化学特性,在众多领域特别是在光学材料、电磁材料、催化剂、传感器、医学及生物工程材料等众多领域具有极其重要的应用价值和广阔的发展前景。目前,为了提高涂料性能并赋予其特殊功能,将纳米材料用来改性涂料剂或作为助剂添加到涂料材料当中,是涂料产品研发领域的一个热点。改性涂料材料所使用的纳米材料一般为纳米半导体材料,如纳米SiO

2、TiO

2、ZnO、Fe2O

3、CaCO3等。

二氧化钛纳米材料(TiO2)是当前应用前景最为广阔的一种纳米材料,超微细二氧化钛具有屏蔽紫外线功能和产生颜色效应的一种透明物质。 2 液相法 2.1 溶胶-凝胶法

溶胶-凝胶法是一种较为重要的制备纳米材料的湿化学法,主要包括4个步骤:

第一步:溶胶。Ti(OR)4与水不互溶,但与醇、苯等有机溶剂无限混溶,所以先配制Ti(OR)4的醇溶液(多用无水乙醇)A,再配制水的乙醇溶液B,并向B中添加无机酸(HCl,HNO3等)或有机酸(HAc、H2C2O4或柠檬酸等)作水解抑制剂(负催化剂),也可加一定量NH3将A和B按一定方式混合、搅拌得透明溶液。

第二步:溶胶-凝胶转变制湿凝胶。

第三步:使湿凝胶转变为干凝胶。

工业出版社,2006,1:第四步:热处理。将干凝胶磨细,在氧化性气氛中在一定温度下热处理,便可得到<100 nm 的纳米TiO2

溶胶-凝胶法制备TiO2纳米材料可以很好地掺杂其它元素,粉末粒径小,分布均匀,是非常有价值的制备方法。但由于要以钛醇盐作为原料,又要加入大量的有机试剂,因此成本高,同时由于凝胶的生成,有机试剂不易逸出,干燥、烧结过程易产生碳污染,另外,对于困扰已久的团聚问题,局部表面化学反应、机械化学反应及用表面活性剂或聚合物包覆等都不能从根本上解决。 2.2 沉淀法

以廉价易得的TiCl4或Ti(SO4)2 等无机盐为原料,向反应体系加入沉淀剂后,形成不溶性的Ti(OH)4,然后将生成的沉淀过滤,洗去原溶液中的阴离子,高温煅烧即得到所要的纳米二氧化钛材料。 1 直接沉淀法

在含有一种或多种离子的可溶性盐溶液加入沉淀剂后于一定的条件下形成不溶性的氢氧化物;将沉淀洗涤、干燥,再经热分解得到氧化物粉体,其反应过程为(以TiOSO4为例):

TiOSO4 + 2NH3·H2O=TiO(OH)2 +(NH4)2SO4

TiO(OH)2 =TiO2(S) + H2O

该法操作简单,对设备、技术要求不太苛刻,产品成本较低,但沉淀洗涤困难。产品中易引入杂质。 2 均匀沉淀法

该法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。加入的沉淀剂不立刻与沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生成。以尿素做沉淀剂为例,其反应原理如下:

CO(NH2)2 +3H2O = CO2+2NH3·H2O

TiOSO4 + 2NH3·H2O=TiO(OH)2 +(NH4)2SO4

TiO(OH)2 =TiO2(S) + H2O

3 水热沉淀法

在内衬耐腐蚀材料(如聚四氟乙烯)的密闭高压釜中加入制备纳米二氧化钛的前驱物如TiCl

4、 Ti(SO4)2等,按一定的升温速率加热,升至一定温度后,恒温一段时间取出,冷

却后经过滤、洗涤、干燥,可得TiO2纳米材料粉体。水热法制备TiO2纳米材料粉体,第一步是制备钛的氢氧化物凝胶,反应体系有T、氨水或钛醇盐、水等;第二步是将凝胶转入高压釜内,升温(温度一般低于250℃)造成高温、高压的环境,使难溶或不溶得物质溶解并且重结晶,生成TiO2纳米材料粉体。此法能直接制得结晶良好且纯度高的粉体,不需要作高温灼烧处理,避免了粉体的硬团聚,而且通过改变工业条件,可实现对粉体粒径、晶型等特性的控制。然而水热法是高温、高压下反应,对设备要求高,操作复杂,能耗较大,因此成本也较高。 2.3 TiCl4直接水解法

将TiCl4直接注入水中,先稀释到一定浓度,在表面活性剂存在下,再通入NH3或NH3·H2O,则TiCl4发生水解沉淀析出TiO2·n H2O过滤、干燥、煅烧得TiO2亚微粉或超徽粉。反应式为: TiCl4 + 4 NH3 +(n+2)H2O = TiO2·n H2O+4NH4Cl 为了控制粒度和粒度分布及反团聚,也有的向TiCl4稀释液中加醋酸、柠檬酸、草酸或H2O2,使石TiO2+形成络合物,再加NH3中和水解,这样可控制水解速度。

该方法的优点是:工艺简单,反应条件温和且反应时间短,产品粒度均匀,分散性好,粒尺寸人为可控.可以制得锐敏型、金红石型及混合晶型,原料易得,生产成本较低,易于实现工业化。但是此方法需要经过反复洗涤来除去氯离子,所以存在工艺流程长、废液多、产物损失较大的缺点,而且完全洗净无机离子较困难。 2.4 钛醇盐水解法

在有分散剂存在并强烈搅拌下,对铁醇盐进行控制性水解,沉析出TiO2·n H2O沉淀,过滤、干燥、热处理,容易得到高纯、微细、单分散的类球形TiO2亚微粉或超微粉。该方法合成的纳米粉体颗粒均匀。纯度高,形状易控制,缺点是成本昂贵,作为原料的金属有机物制备困难,合成周期长。 2.5胶溶法

该法可制备各种组分的氧化物陶瓷粉体且制得的产品粒径小,粉体分散性好,粒度可控,但易发生粒子间团聚现象,成本也较高。这种工艺制备凝胶的方法与溶胶-凝胶法相似,但是利用胶溶原理,缩短了制备流程,省去耗能多的高温煅烧过程,从而避免了因烧结而引起的纳米粒子之间的硬团聚。 2.6 微乳液法

微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物,一般由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质溶液)组成。由于微乳液的结构从根本上限制了颗粒的成长,因此使得超细微粒的制备变得容易。通过超速离心,使纳米微粉与微乳液分离。再以有机溶剂除去附着在表面的油和表面活性剂,最后经干燥处理,即可得到纳米微粉的固体颗粒。该法所得产物粒径小且分布均匀。易于实现高纯化。该法有两个优点:(1)不需加热、设备简单、操作容易;(2)

可精确控制化学计量比,粒子可控。 3 气相法

3.1 低压气体蒸发法

此种制备方法是在低压的氢气、氮气等情性气体中加热普通的TiO2,然后骤冷生成纳米TiO2粉体。其加热源有电限加热法、等离子喷射法、高频感应法、电子束法和激光法,可制备100 nm以下的TiO2粒子。 3.2 活性氢-熔融金属反应法

含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电窝的N2 、Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器过滤式收集器使微粒与气体分离而获得TiO2纳米材料微粒。 3.3 流动页面上真空蒸发法

用电子束在真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2纳米材料超微粒子。 3.4钛醇盐气相水解法

该工艺反应式如下:

nTi(OR)4+2nH2O(g) = nTiO2(s)+4nROH 日本的曹达公司等利用氮气、氦气或空气做载气,把钛醇盐和水蒸汽分别导入反分器的反应区,进行瞬间和快速水解反应,通过改变反应区内各种蒸汽的停留时间、摩尔比、流速、浓度以及反应温度来调节纳米TiO2粒径和粒子形状,这种工艺可获得平均原始粒径为10~150nm,比表面积为50~300m2·g- l的非晶形TiO2纳米材料粒子。其工艺特点是操作温度较低,能耗小,对材质要求不是很高。并且可以连续化生产。 3.5 TiCl4高温气相水解法

该法是将TiCl4气体导人高温的氢氧火焰中进行气相水解,其化学反应式为;

TiCl4(g) +2 H2(g)+ O2(g)= TiO2(g)+ 4HCl(g) 该工艺制备的纳米粉体产品纯度高,粒径小。表面活性大,分散性好,团聚程度较小。其工艺特点是过程较短,自动化程度高。但因其过程温度较高.腐蚀严重、设备材质要求较严,对工艺参数控制要求准确,因此产品成本较高,一般厂家难以接受。 3.6 钛醇盐气相分解法

1 电阻炉热裂解法

nTi(OC4H9)4(g) = nTiO2(s) +2nH2O(g) + 4nC4H8(g)

反应温度一般控制在500一800 ℃ ,所得TiO2粒径<100 nm,此法容易获得锐钛型或混晶型TiO2 。

2激光诱导热解法

用聚焦脉冲CO2激光辐照TiCl4 + O2体系,在聚焦辐照的高温条件下(焦点区最高温度

达1000 ℃以上),获得了非晶态TiO2,其微观结构是絮状,内部疏松,是微小颗粒无序堆积的”疏松体”,其比表面积大,吸附能力强,反常的是在乙醇中易分散,在水中却不易分散

3.7 TiCl4 气相氧化法

利用氮气携带带TiCl4蒸汽,预热到435℃后经套管喷嘴的内管进人高温管式反应器. O2预热到870℃后经套管喷嘴的外管也进入反应器,二者在900~1400℃下反应生成的TiO2微粒经粒子捕集系统,实现气固分离。该工艺目前还处于试验阶段,其优点是自动化程度高,可制备优质粉体。

TiCl4(g)+O2 (g) =TiO2 (g)十2Cl2 (g)

nTiO2 (g) = nTiO2 (s) 3.8 蒸发-凝聚法制纳米TiO2

将平均粒径为3 μm的工业TiO2轴向注人功率为60 kW的高频等离子炉的Ar-O2混合等离子矩中,在大约10000 K的高温下,粗粒子TiO2汽化蒸发,进人冷凝膨屈长罐中降压、急冷得10~50 nm 的TiO2纳米材料 。 4 其他方法

4.1 超重力法制备纳米TiO2

主要包括水合TiO2悬浊液的制备和TiO2晶体缎烧成型2个过程:(1)将一定量的TiCl4在冰水浴中缓慢溶解于去离子水中,防止温度过高自发水解,再将溶液倒入带刻度的容器中标定浓度,将配好的溶液倒人到储槽内,启动离心泵将其泵人旋转填充床中,待流速稳定后扩通入氨气开始反应,用调频变运胜导导调节旋转填充床转子的转速,当pH值达到设定值时停止通入氨气,中止反应,并从出出口得到产物浆料,此料液便是水合TiO2悬浮液。(2)对悬浮液进行真空抽滤、滤饼洗涤、100℃干燥、锻烧等后续工艺处理,得到纳米TiO2粉体。 4.2 超临界相法(SC法)

溶液中合成超细TiO2分别是在3个实验反应器中完成的,这些反应器填充了近临界密度的异丙醇和0.4mol·L-1的醇钛盐溶液。乙醇和异丙醇的临界温度Tc分别为241℃和238.4℃,与醇钛盐气相热解的温度Tc = 265℃相差不远,特别适合作临界相流体,临界相流体有近似液体的密度和高溶剂能,但低的粘度和高扩散率几乎与气体接近,这些性质有利于分子碰撞且能够增加反应动力,能产生高的成核率。此法溶液浓度很低.可以避免粒子间的进一步凝集,低压下超临界溶液作为气体被除去,得到了于燥的粉末,不再需要液固的分离步骤。

将异丙醇-异丙醇钛盐溶液在280℃加热2 h反应即可完全,这与醇钛盐气相热解温度相近,由超临界法所得固体为锐钦型结构。粒径为30~60 nm,热处理后不发生结块。而用气相热分解法制TiO2 ,最初所得晶粒很好(<20 nm ),但最终强烈结块。超临界法同溶胶-凝胶法比较,免除了沉淀与干燥步骤,在缎烧过程之前,不需要进一步热处理。SC法制的锐钛型TiO2较溶胶一凝胶法制的锐钦型稳定,例如,SC,900℃加热4 h,20%为金红型TiO2;

溶胶一凝胶法.600℃加热4 h.,20%为金红型TiO2。 4.3其它方法

惰性气体原位加压法(IGC)、喷涂-电感耦合等离子体法、高频等离子化学相沉积法(RF-PCVD)等等。 5 结束语

综上所述, TiO2纳米材料的制备方法很多,大约二十种左右,就目前而言,这些制备方法各有其优缺点。此外,根据TiO2纳米材料的用途的不同。其制备方法也有差异。随着现代高新科技的开发,TiO2纳米材料的制备方法将会越来越多,而且在制备工艺上一集能耗上将会越来越优越。在研究制备工艺的同时,改进现有的合成工艺.寻求粉体质量好、操作简便且易于工业化大规模生产、成本低廉的合成新工艺,应该是努力的目标。对纳米粉末微观结构的研究还有待于进一步深入,对TiO2纳米材料徽粉特有的化学、物理机械性能,应从理论、徽观结构人手,研究它们产生的机理。总之,随着纳米材料体系和各种超结构体系研究的开展和深人,TiO2超细粒子的制备技术将会得到日益改进。 参考文献

[1] 韩跃新,印万忠,王泽红,袁致涛·矿物材料·北京:科学出版社2006

[2] 王俊尉等·纳米二氧化钛制备方法研究·化工技术与开发·2006,10:(12~15) [3] Fujishi. Nature,1972,238,37 [4] 范崇政,肖建平,丁延伟. 纳米二氧化钛的制备与光催化反应进展 .科学通报,2001,4 [5] 邓捷,吴立峰.钛白粉应用手册. 北京:化学工业出版社,2005,1 [6] 张玉龙, 纳米复合材料手册. 北京:化学工业出版社 2005,7 [7] 翟庆洲,纳米技术. 北京:兵器工业出版社, 2005,5 [8] Chen Q,Qian Y,Zhang Y. Mater Sci. Technol,1996,12:211 [9] 姜洪泉,王鹏,线恒泽. 低量Yb3+掺杂的TiO2复合纳米粉体的制备及光催化活性. 化学学报,2006,64(2):146 [10] 郭俊怀,沈星灿,郑文君,陈芳. 载银纳米TiO2光催化降解水中有机污物. 应用化学,2003,20(5):420 [11] 陈晓青,杨娟玉,蒋新宇,宋江锋. 掺铁TiO2纳米微粒的制备及光催化性能. 应用化学,2003,20(1):73~75 [12]沈杰,沃松涛,崔晓莉,蔡臻伟,章壮健. 射频磁控溅射制备纳米TiO2薄膜的光电化学行为. 物理化学学报,2004,20(10):1191~1194 [13] 曹茂盛,关长斌,徐甲强. 纳米材料导论. 哈尔滨:哈尔滨工业大学出版社,2001,91 [14] 倪星元,沈军,张志华. 纳米材料的理化特性与应用. 北京:化学24

第三篇:毕业论文-溶胶凝胶法制备纳米二氧化钛

摘要

二氧化钛(Tio2),多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。TiO2可制作成光催化剂,净化空气,消除车辆排放物中25%到45%的氮氧化物,可用于治理PM2.5悬浮颗粒物过高的空气污染。

自20世纪80年代以来,纳米TiO2由于强的吸收和散射紫外线性能,作为优良的紫外线屏蔽剂,用于防晒护肤品、纤维、涂料等领域。本文分别采用沉淀法和溶胶凝胶法制备二氧化钛纳米颗粒,并对其形貌进行检测和分析。 关键词:二氧化钛 沉淀法 溶胶凝胶法 纳米 形貌 Abstract titanium dioxide(TiO2),usually used for photocatalyst、cosmetic,can disinfection and sterilization by ultraviolet light,now it developed widely,maybe become a new industry in the future.Tio2 can be made into photocatalyst,make the air clean,eliminate 25% to 45% oxynitride from vehicle emissions. Can be used for the treatment of PM2.5 particles of highair pollution. Since the 1980s,nanoTiO2 because it strong performance of Absorption and scattering of radiation,as a good ultraviolet screening agent, Used to prevent bask in skin care products, fiber, coating, etc. Precipitation method and sol gel method are used to synthesis fabricate TiO2 nano materials in the article, and test and analyze the morphology of production. Key words:TiO2

Precipitation method sol gel method nanometer morphology

第一章 绪论 1.1 引言

纳米 TiO2在结构、光电和化学性质等方而有许多优异性能,能够把光能转化为电能和化学能,使在通常情况下难于实现或不能实现的反应(水的分解)能够在温和的条件下(不需要高温高压)顺利的进行。纳米 TiO2具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在能源、环保、建材 、医疗卫生等领域 有重要应用 前景 ,是 一种重要的功能材料。 1.2 二氧化钛的结构

TiO2在自然界中主要存在三种晶体结构:锐钛矿型(图1a)、金红石型(图1b)和板钛矿型,而金红石型和锐钛矿型都具有催化活性。锐钛矿型TiO2为四方晶系,其中每个八面体与周围8个八面体相连接(4个共边,4个共顶角),4个TiO2分子组成一个晶胞。金红石型TiO2也为四方晶系,晶格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO2分子组成一个晶胞,其八面体畸变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti–Ti键长较锐钛矿小,而Ti-O键长较锐钛矿型大。板钛矿型TiO2为斜方晶系,6个TiO2分子组成一个晶胞。

1.3二氧化钛的应用

1.3.1基于半导体性质和电学特性的应用领域

TiO2是一种多功能性的化工材料,基于其电磁和半导体性能,在电子工业中有

广泛应用,基于其介电性制造高档温度补偿陶瓷电容器、以及热敏、温敏、光敏、压敏、气敏、湿敏等敏感元件。

TiO2气敏元件可用来检测多种气体,包括H

2、Co等可燃性气体和O2。TiO2气敏元件可用作汽车尾气传感器,通过测定汽车尾气中O2含量,可以控制和减少汽车尾气中的CO和NOx的污染,同时提高汽车发动机效率。 1.3.2基于紫外屏蔽特性和可见光透明性的应用领域 1.3.2.1防日晒化妆品

纳米TiO2,无毒、无味,对皮肤无刺激,无致癌危险性,使用安全可靠;对UVA和UVB都有很好的屏蔽作用,且可透过可见光;稳定性好,吸收紫外线后不分解、不变色。因此被广泛用于防晒霜、粉底霜、口红、防晒摩丝等。 1.3.2.2食品包装材料

紫外线易使食品氧化变质,破坏食品中的维生素,降低营养价值。用含0.1~0.5%纳米TiO2的透明塑料薄膜包装食品,既具透明性,又防紫外线。不仅能从外面看清食品,而且能使食品长时间保存不变质。 1.3.2.3透明外用耐久性涂料和特种涂料

当纳米TiO2用于涂料并达到纳米级的分散时,可作为优良的罩光漆,由于其可见光透明性和紫外光屏蔽特性,因而可大大增加其保光、保色及抗老化(耐候性)性能。这种涂料可用于汽车、建筑、木器、家具、文物保护等领域。利用其吸收远红外和抗远红外探测的性能,制造特种涂料用于隐形飞机、隐形军舰等国防工业中。

1.3.3基于光催化性质的应用领域 1.3.3.1光催化合成

利用纳米TiO2优良的光催化活性,在化学工业中可光催化合成NH3,苯乙烯的环氧化等。这方面的工作还处于研究阶段,尚未工业应用。 1.3.3.2在能源领域的应用

利用纳米TiO2的光催化活性,可做成太阳能电池(光电池)将太阳能转变为电能。还可以光催化分解水制氢(氢是一种最清洁、无污染,又便于利用的新能源),将太阳能转变成化学能。目前的问题是光利用率和产率太低,需继续研究解决。

1.3.3.3在环保领域的应用

这是最有希望、最有前途的一个领域。纳米TiO2作为光催化剂,在环保领域中的应用是当前研究的一个重点和热门课题。利用它治理污染,具有能耗低,操作简便,反应条件温和,无二次污染等优点。纳米TiO2用于废气处理,可使工业废气脱硝、脱硫和使CO转化为无害的N

2、CO

2、H2O等,可制造环保用废气转换器。

1.3.4基于颜色效应的应用领域

将纳米TiO2与闪光铝粉和云母钛珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果。这是纳米TiO2最重要,最有前途的应用领域之一。 1.3.5基于表面超双亲性和表面超疏水性的应用

利用玻璃基体上的纳米TiO2涂膜在紫外光照射下具有表面水油超亲合性,可使表面附着的水滴迅速扩散展开成均匀的水膜,从而防雾、防露,维持高度的透明性,不会影响视线,制成建筑物窗玻璃、车辆挡风玻璃、后视镜、浴室镜子、眼镜镜片,测量仪器的玻璃罩等,能保证车辆交通安全和各种用途玻璃的能见度。

又在氟树脂中加入纳米TiO2后,其表面与水的接触角可达160度,显示出超疏水特性,就如同荷叶上的水珠一样,可使之具有防雪、防水滴、防污等特性,从而在某些领域中具有特殊用途。 1.4合成制备纳米二氧化钛的方法

近年来,伴随着全球环境污染日益严重,纳米半导体光催化剂材料一直是材料学和光催化学研究的热点。 目前 ,比较简单的半导体光催化剂有TiO

2、SnO

2、Fe2O

3、MoO

3、WO

3、PbS、ZnS、ZnO 和CdS 等 ,纳米TiO2因其具有性质稳定、抗光腐蚀性强、耐酸碱腐蚀性强、原料丰富等优点。

目前,制备纳米TiO2粉体的方法有很多,按照所需粉体的形状、结构、尺寸、晶型、用途选用不同的制备方法。根据粉体制备原理的不同,这些方法可分为物理法、化学法和综合法。无论采用何种方法,制备的纳米粉体都应满足以下条件: 表面光洁;粒子的形状及粒径、粒度分布可控;粒子不易团聚;易于收集;热稳 定性好;产率高。

1.4.1物理法

物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。物理法的优点是产品纯度高。 1.4.1.1气相蒸发沉积法

此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在( 2 ~ 10) × 102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 ×103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2 粉体。利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。 1.4.1.2蒸发-凝聚法

此法是将将平均粒径为3μm的工业TiO2轴向注入功率为60 kW的高频等离子炉Ar-O2混合等离子矩中,在大约10 000 K的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10~50 nm的纳米TiO2。 1.4.2化学法

化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。 1.4.2.1液相化学反应法

该方法是生产各种氧化物微粒的主要方法,是指在均相溶液中,通过各种方式溶质和溶剂分离,溶质形成形状、大小一定的颗粒,得到所需粉末的前驱体,加热分解后得到纳米颗粒的方法。液相化学法制备纳米TiO2又分为溶胶-凝胶法、水解法、沉淀法、微乳液法等。

溶胶-凝胶法( Sol - gel 法) 是以钛醇盐为原料,在无水乙醇溶剂中与水发生反应,经过水解与缩聚过程而逐渐凝胶化,再经干燥、烧结处理即可得到纳米TiO2粒子。此法制得的产品纯度高、颗粒细、尺寸均匀、干燥后颗粒自身的烧结温度低,但凝胶颗粒之间烧结性差,产物干燥时收缩大。

水解法是以TiCl4( 化学纯) 作为前驱体,在冰水浴下强力搅拌,将一定量的TiCl4滴入蒸馏水中,将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶 5

液中搅拌,混合过程中温度控制在15 ℃,此时,TiCl4的浓度为1.1 mol /L,Ti4 + /H+ = 15,Ti4 + /SO2 -4 = 1 /2。将混合物升温至95 ℃并保温1 h 后,加入浓氨水,pH 值为6 左右,冷却至室温,陈化12 h 过滤,用蒸馏水洗去Cl-后,用酒精洗涤3次,过滤,室温条件下将沉淀真空干燥,或将真空干燥后的粉体于不同温度下煅烧,得到不同形貌的TiO2粉体。利用该方法制备的TiO2粉体,粒径仅为7 nm,且晶粒大小均匀。在制备过程中探讨了煅烧温度对粉体的影响,水解反应机理、水解温度对结晶态的影响,硫酸根离子对粉体性能的影响等问题。

沉淀法是向金属盐溶液中加入某种沉淀剂,通过化学反应使沉淀剂在整个溶液中缓慢地析出,从而使金属离子共沉淀下来,再经过过滤、洗涤、干燥、焙烧而得到粒度小分布窄、团聚少的纳米材料。赵旭等采用均相沉淀法,以尿素为沉淀剂,控制反应液钛离子浓度、稀硫酸及表面活性剂十二烷基苯磺酸钠的用量,制备的粒子为20 ~ 30 μm 球型TiO2粒子,该粒子晶体粒径在纳米范围内5 ~ 208 nm。

微乳液法是近年来发展起来的一种制备纳米微粒的有效方法。微乳液是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相制备纳米材料的方法。乳液法可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内形成一个球形颗粒,避免了颗粒之间进一步团聚。 1.4.2.2 气相化学反应法

气相热解法。该方法是在真空或惰性气氛下用各种高温源将反应区加热到所需温度,然后导入气体反应物或将反应物溶液以喷雾法导入,溶液在高温条件下挥发后发生热分解反应,生成氧化物。1992 年日本Tohokuoniuemi - tu 采用高频感应喷雾热解法以钛氯化物( 如TiCl4) 为原料制备得到四方晶系纳米TiO2 粉末。

气相水解法。日本曹达公司和出光产公司制备纳米氧化钛采用的技术方法主要是以氮气、氦气或空气等作载体的条件下,把钛醇盐蒸汽和水蒸气分别导入反应器的反应区,在有效反应区内进行瞬间混合,同时快速完成水解反应,以反应温度来调节并控制纳米TiO2的粒径和粒子形状。此制备工艺可获得平均 6

粒径为10 ~ 150 nm,比表面积为50 ~ 300 m2 /g 的非晶型纳米TiO2。该工艺的特点是操作温度较低,能耗小,对材质纯度要求不是很高,并在工业化生产方面容易实现续化生产。其主要化学反应为:

nTi( OR)4( g) + 4nH2O( g) →nTi( OH)4( S) + 4nROH( g)

nTi( OH)4( S) →nTiO2·H2O( s) + nH2O( g)

nTiO2·H2O( s) →nTiO2( s) + nH2O( g) 1.4.3综合法 1.4.3.1 激光CVD 法

该方法集合了物理法和化学法的优点,在80 年代由美国的Haggery 提出,目前,J David Casey 用激光CVD 法已合成出了具有颗粒粒径小、不团聚、粒1.4.3.2 等离子CVD 法

该方法是利用等离子体产生的超高温激发气体发生反应,同时利用等离子体高温区与周围环境巨大的温度梯度,通过急冷作用得到纳米颗粒。该方法有两个特点:

( 1) 产生等离子时没有引入杂质,因此生成的纳米粒子纯度较高; ( 2) 等离子体所处空间大,气体流速慢,致使反应物在等离子空间停留时间长,物质可以充分加热和反应。 1.5本课题研究的目的和意义

如上所述,纳米二氧化钛以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。以其独特的表面效应、小尺寸效 应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。纳米二氧化钛是20世纪80年代末发展起来的一种新型无机化工材料,它具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能,纳米TiO2是当前应用前景最为广泛的一种纳米材料, 具有很强的吸收紫外线能力, 奇特的颜色效应, 较好的热稳定性, 化学稳定性和优良的光学、电学及力学等方面的特性。其中锐钛矿型具有较高的催化效率, 金红石型结构稳定且具有较强的覆盖力、着色力和紫外线吸收能力。因而倍受国内外研究学者的关注。

纳米TiO2具有许多优异的性能,不仅具有优异的颜料特性——高遮盖率、高消 7

色力、高光泽度、高白度和强的耐候性外,还具有特殊的力学、光、电、磁功能;更具有高透明性、紫外线吸收能力以及光催化活性、随角异色效应。特别是随着环境污染的日益严重,纳米TiO2高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一。而其独特的颜色效应、光催化作用及紫外线屏蔽等功能,在汽车工业、防晒化妆品、废水处理、杀菌、环保等方面一经面世就备受青睐。

今年来随着各种技术的发展,纳米TiO2已应用在多种领域中,但由于其在环境治理中有其独特的优点,所以其在环保领域会更有大发展。

众所周知,二氧化钛的组成结构、尺寸大小和形貌特征等因素对其性质影响较大,实现二氧化钛的应用不仅需要充分发挥其本征性质,还可以通过尺寸和形貌控制对其性质进行调控。本文主要是研究使用不同制备方法,在不同条件下制备不同形貌的纳米二氧化钛。 第二章 原材料及表征 2.1试剂及仪器 2.1.1主要试剂

本实验中,所使用的主要试剂如表2.1所示

所有试剂均未经进一步的处理,实验所用水为蒸馏。 2.1.2主要实验仪器

表2.2所示是本实验中所用主要仪器设备及测试所用的大型仪器。 2.2样品的表征

扫描电子显微镜的基本结构如图2.1所示,扫描电子显微镜以炽热灯丝所发射的电子为光源,灯丝发射的电子束在通过栅极之后,聚焦成电子束。在加速电压作用下,通过三个电磁透镜组成的电子光学系统,之后汇聚成直径约几十个埃的电子束照射到被观测样品表面。电子束与样品作用,产生不同的电子其其他射线,如二次电子、背散射电子、透射电子、吸收电子及X射线等。这些信号在经收集器吸收后,传输到放大器,经放大器放大,送至显像管,显示出样品的形貌。在扫描电子显微镜表征样品表面形貌时,用来成像的信号主要是二次电子,所谓二次电子,就是指电子束光源与样品作用,样品中的价电子受激发而脱离出来的电子。本实验中,采用中国科仪公司的KYKY-2800B型的扫描 8

电子显微镜对对样品的表面形貌进行表征,扫描电子显微镜的加速电压为20KV。

第三章 沉淀法制备纳米二氧化钛 3.1制备过程

第四篇:材料合成与制备方法

第一章

1、1 溶胶凝胶

1、什么是溶胶——凝胶?

答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

2、 基本原理(了解)

3、设备:磁力搅拌器、电力搅拌器

4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等

5、工艺过程:自己看

6、工艺参数:自己看

2、1水热与溶剂热合成

1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。

2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。

3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧

化过程或水中氧的污染;

b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大; c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶;

d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料

4、生产设备:

高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成,

5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件 ——冷却、开釜——液、固分离——物相分析

6、水热与溶剂热合成存在的问题:

1、无法观察晶体生长和材料合成的过程,不直观。

2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。

3、安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。

7、水热生长体系中的晶粒形成可分为三种类型:

a、“均匀溶液饱和析出”机制

b、“溶解-结晶”机制

c、“原位结晶”机制

8、水热与溶剂热合成方法的适用范围:低温生长单体、制备薄膜、制备超细(纳米)粉末

1、3化学气相沉积

1、化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。

2、气相中析出的固体的形态主要有:在固体表面上生成薄膜、晶须和晶粒、在气体中生成粒子

3、常用三种CVD技术优缺点:

APCVD (常压化学气相沉积)

优点:反应器结构简单、沉积速率快、低温沉积

缺点:阶梯覆盖能差、粒子污染

LPCVD (低压化学气相沉积)

优点:高纯度、阶梯覆盖能力极佳、产量高、适合于大规模生产

缺点:高温沉积、低沉积速率

PECVD(等离子体增强化学气相沉积)

优点:低温制程、高沉积速率、阶梯覆盖性好

缺点:化学污染、粒子污染

4、切削工具的应用(自己看)、模具(自己看)

5、气相化学沉积的生产装置:气相反应室、加热系统、气体控制系统、排气系统

1、4 自蔓延高温合成(SHS)又称燃烧合成(CS)

1、自蔓延高温合成是:利用反应物之间高的化学反应热的自加热和自传导做用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。

2、SHS技术同其它常规工艺方法相比,具有的优点:

答:(1)节省时间,能源利用充分;

(2)设备、工艺简单;

(3)产品纯度高(因为SHS能产生高温,某些不纯物质蒸发掉了),反应转化率接近100%;

(4)不仅能生产粉末,如果同时施加压力,还可以得到高密度的燃烧产品;

(5)产量高(因为反应速度快)

3、目前SHS研究中仍存在着一些问题:难以获得致密度非常高的产品、理论研究明显滞后于技术开发、这项技术并不能适用于所有体系、由于体系的多样化,迫切需要对各种体系进行试验和总结、国际间交流和合作还不广泛

1、5等离子体烧结技术

1、SPS:放电等离子烧结技术

PAS(Plasma Activated Sinteriny):等离子活化烧结

PAS(Plasma Assister Sinteriny):等离子体辅助烧结

2、等离子体烧结技术的适用范围:SPS技术具有升温速度快、烧结温度低、烧结时间短、节能环保等特点,SPS已广泛应用于纳米材

料、梯度功能材料、金属材料、电磁材料、复合材料、陶瓷材料等的制备。

3、等离子体是宇宙中物质的一种形态,是除固、液、气三态外物质的第四种形态。等离子体是指电力程度较高、电离电荷相反、数量相等的气体,通常是有电子、离子、原子或自由基等粒子组成的集合体。

4、等离子体烧结技术的工艺流程:选择适当模具——选择适当模具——填充模具——施加压力——放入等离子体烧结——静压成型——电脑调节烧结参数等离子体快速烧结——试样成品——性能检测与研究

第二章

2、1特种陶瓷制备原理

1、特种陶瓷产品的发展趋势、研究与开发的重点(自己看)

2、2特种陶瓷粉体的制备

1、粉体颗粒:指在物质的结构不发生改变的情况下,分散或细化得到的固态基本颗粒。

2、一次颗粒:指没有堆积、絮联等结构的最小单元的颗粒。

3、二次颗粒:指存在有在一定程度上团聚了的颗粒。

4、团聚:一次颗粒之间由于各种力的作用而聚集在一起成为二次颗粒的现象。

5、粒度分布:分为频率分布和累积分布,常见的表达形式有粒度分布曲线、平均粒径、标准偏差、分布宽度等。

6、频率分布:表示与各个粒径相对应的粒子占全部颗粒的百分含量。

7、累积分布:表示小于(或大于)某一粒径的粒子占全部颗粒的百分含量,累积分布是频率分布的积分形式。

8、粒度分布曲线: 包括累积分布曲线和频率分布曲线。

9、比表面:单位体积粉料所具有的表面积

10、空隙量的表示方法有:

表观密度:即单位体积粉体层的质量。

气孔率:即粉体层中空隙部分所占的容积率。

11、粉体的制备方法一般来说有两种:粉碎法 、合成法

12、固液气相反应的特点(了解)

13、机器粉碎设备:

1、 机械冲击式粉碎(破碎):鄂式破碎机、圆锥破碎机、锤式破碎机、反击式破碎机、轮碾机

2、 球磨粉碎

14、影响粉碎效率因素:

答:

1、球磨机的转速;

2、研磨体的比重、大小及形状;

3、球磨方式(球磨方式有湿法和干法两种);

4、装料方式;

5、球磨机直径;

6、球磨机内衬的材质。

2、3

1、粉料的造粒为什么?

答:对于特陶的粉料,一般希望越细越好,但对于成型,尤其是干压成型,粉料的假颗粒度越细,流动性反而不好,不能充满模子,成形后气孔较多,致密度不高。所以成型前要进行造粒。

2、造粒:在很细的粉料中加入一定的塑化剂(如水),制成粒度较粗,具有一定颗粒级配、流动性好的粒子(约20目~80目)。

3、造粒的方法:一般造粒法、加压造粒法、喷雾造粒法、冻结干燥法

4、陶瓷成型的方法:注浆成型、热压铸成型、可塑法成型、干压成型、等静压成型、带式成型法

5、高温排蜡为什么?

答:因为如果烧成前不先经过排蜡处理,则烧成时石蜡在高温下熔化流失、挥发、燃烧,坯体将失去粘结而解体,不能保持其形状。

6、排蜡温度通常为900~1100 ℃。若温度太低,粉料之间无一定的烧结出现,不具有一定的机械强度,坯体松散,无法进行后续的工序;若温度偏高,直至完全烧结,则会出现严重的粘结,难以清理坯体的表面。排蜡后的坯体要清理表面的吸附剂,然后再进行烧结。

7、干压与等静压成型的特点(了解)

2、4 特种陶瓷的烧结

1、烧结:是指多孔状陶瓷坯体在高温条件下,表面积减小、孔隙率降低、机械性能提高的致密化过程。

2、陶瓷的烧结,可以分为固相烧结和液相烧结。

高纯物质在烧结温度下通常无液相出现,属固相烧结,如高纯氧化物等结构陶瓷,而有些在烧结时常有液相出现,属液相烧结,如滑石瓷。

3、实现低温烧结的方法:采用先进的烧结技术、补加添加剂、粉料细化

4、哪些情况采用气氛烧结?

答:

1、制备透光性陶瓷的气氛烧结

2、防止氧化的气氛烧结

3、引入气氛片的烧结

5、微波烧结是利用微波具有的特殊波段与材料的基本细微结构耦合而产生热量,材料在电磁场中的介质损耗使材料整体加热至烧结温度而实现致密化的方法。

6、微波烧结优点 :

答:①整体加热②能实现空间选择性烧结。 ③升温速度快,烧结时间短,且降低烧结温度。④易控制性和无污染

第三章

3、1

1、氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料。常见的有三种,即α-Al2O

3、β-Al2O3和γ-Al2O3。已有α、 β、 γ 、δ 、ε 、δ、ε、ζ、κ、λ、ρ及无定型氧化铝等12种

2、Al2O3预烧的目的:①使γ-Al2O3 全部转变为α-Al2O3,减少烧成收缩。②排除Al2O3原料中的Na2O ,提高原料的纯度。

3、 Al2O3预烧质量的检查: 染色法、光学显微镜法、密度法

4、Al2O3陶瓷的生产工艺:原料的燃烧——磨细——配方——加粘结剂——成型——素烧——修坯——烧结——表面处理

5、影响Al2O3陶瓷烧结的因素:(需要展开所以最好自己看)

答:成形方法的影响、烧结制度的影响、 烧结气氛的影响、 添加剂的影响、烧结方法的影响

3、2 ZrO2陶瓷

1、ZrO2的性质:斜锆石(ZrO2)和锆英石(ZrO2•SiO2)。

2、 ZrO2的结晶形态:单斜晶系(m- ZrO2)、四方晶系(t- ZrO2)、立方晶系(c- ZrO2)。

3、稳定剂:Y2O

3、MgO、CaO、CeO等, 可使ZrO2变成无异常膨胀、收缩的稳定ZrO2

4、ZrO2 增韧陶瓷:ZrO2 颗粒弥散在其它陶瓷基体中,当基体对ZrO2颗粒有足够的正应力,而ZrO2的颗粒度又足够小,则其相变温度可降至室温以下,这样在室温时ZrO2 仍可以保持四方相。当材料受到外应力时,基体对ZrO2 的压抑作用得到松弛,ZrO2 颗粒即发生四方相到单斜相的转变,并在基体中引起微裂纹,从而吸收了主裂纹扩展的能量,达到增加断裂韧性的效果,这就是ZrO2 的相变增韧。 (自己在适当的总结一下)

5、ZrO2 增韧陶瓷研究发展趋势:高温增韧、中低温时效性、抗热震性、抗热震性、纳米颗粒增韧

3、3MgO、BeO陶瓷

BeO作业题分数不多

3、4碳化物陶瓷

1、典型碳化物陶瓷材料有碳化硅(SiC)、碳化硼(B4C)、碳化钛(TiC)、碳化锆(ZrC)、碳化钒(VC)、碳化钽(TaC)、碳化钨(WC)和碳化钼(Mo2C)等。

2、非氧化物陶瓷:是包括金属的碳化物、氮化物、硫化物、硅化物和硼化物等陶瓷的总称。

3、非氧化物陶瓷在以下三方面不同于氧化物陶瓷: 1)非氧化物在自然界很少存在,需要人工来合成原料。

2)在原料的合成和陶瓷烧结时,易生成氧化物,因此必须在保护性气体(如N

2、Ar等)中进行;

3)氧化物原子间的化学键主要是离子键,而非氧化物一般是键性很强的共价键,因此,非氧化物陶瓷一般比氧化物难熔和难烧结。

4、碳化物在非常高的温度下均会发生氧化,但许多碳化物的抗氧化能力都比W、Mo等高熔点金属好,这是因为在许多情况下碳化物氧化后所形成的氧化膜具有提高抗氧化性能的作用。

5、B4C的硬度仅次于金刚石和立方氮化硼,但碳化物的脆性一般较大。

6、SiC陶瓷基本特性:硬度高、,强度好,热导率高,抗氧化性好。SiC有多种晶型,低温型为立方相b-SiC,2100℃向高温型a-SiC转变。

7、SiC的合成方法主要有化合法、碳热还原法、气相沉积法、有机硅先驱体裂解法、自蔓延(SHS)法、溶胶-凝胶法等。

8、碳化硅陶瓷制造工艺:热压烧结、常压烧结、反应烧结、浸渍法、浸渍法

3.5

氮化物陶瓷

1、氮化物陶瓷主要有氮化硅(Si3N4)、氮化铝(AlN)、氮化硼(BN)、氮化钛(TiN)和赛隆陶瓷。

2、氮化硅陶瓷基本特性: A-Si3N4:低温型,是针状结晶体。 β-Si3N4:高温型,是颗粒状结晶体。

3、BN有两种晶型:立方BN和六方BN,在高温高压下六方BN可转变为立方BN。立方氮化硼(CBN)硬度仅次于金刚石。六方氮化硼(HBN)又称之为白石墨。

4、氮化铝陶瓷基本特性:最大的特点是导热率高,热膨胀系数小,强度高,电绝缘性能好

5、赛隆陶瓷:是Si3N4与尖晶石AlN.Al2O3的固溶体

第四章

4、1磁性陶瓷

1、按铁氧体的晶体结构分:尖晶石型(MFe2O4);石榴石型(R3Fe5O12);磁铅石型(MFe12O19)(M为铁族元素,R为稀土元素)。

4、2电介质陶瓷

1、性质分别称为压电陶瓷、热释电陶瓷和铁电陶瓷。

2、 一般特性:电绝缘与极化、介电损耗

4.3 压电陶瓷

1、极化:是指电介质陶瓷中的分子正负电荷移动,造成正负电荷中心不重合,在电介质陶瓷内部形成偶极矩。

2、压电效应:在没有对称中心的晶体上施加一个机械力(压力、张力或切向力)时,则发生与应力成比例的介质极化,在晶体表面的两电极上会出现等量的正、负电荷,电荷多少与力的大小成正比,当机械力撤去后,电荷会消失,这种现象称为正压电效应。当在晶体上施加一个外电场引起极化时,晶体会发生形变,且形变大小与电场成正比,若撤除电场,则晶体又恢复原状,这一现象称为逆压电效应。正、逆效应统称为压电效应。

3、压电陶瓷:经过人工极化处理具有压电效应的陶瓷制品。

4、 压电陶瓷的性能参数:(自己看好多)

5、典型的压敏陶瓷;碳酸钡、钛酸铅、钛锆酸铅 4.4

敏感陶瓷

1、热敏陶瓷分为负温度系数NTC、正温度系数PTC热敏陶瓷、临界温度热敏电阻C.T.R及线性阻温特性热敏陶瓷

2、典型的气敏陶瓷:SnO2系气敏陶瓷、ZnO系气敏陶瓷、Fe2O3系气敏陶瓷

4.4

超导陶瓷

1、

超导体,是指当某种物质冷却到低温时电阻突然变为零,同时物质内部失去磁通成为完全抗磁性的物质。

2、判断材料是否具有超导性,有两个基本的特征:超导电性、完全

抗磁性

3、从材料来分,可分为三大类,即元素超导体、合金或化合物超导体、氧化物超导体(即陶瓷超导体)。

从低温处理方法来分,可分为液氦温区超导体(4.2K以下),液氢温区超导体(20K以下),液氮温区超导体(77K以下)和常温超导体。

4、表征超导材料的基本参量有:临界温度TC 、临界磁场HC 、临界电流IC和磁化强度M。

5、

测量临界温度有不同的方法,主要有:1)电阻测量法。2)磁测量法。

4.5

抗菌材料

1、 目前所应用的无机抗菌材料主要有:

1)载银、铜、锌等抗菌离子的离子型抗菌材料。

2)利用二氧化钛光催化活性的无机抗菌材料。

2、

银离子的抗菌机理只是停留在假说阶段,目前有接触反应说和催化反应说。

3、 光催化抗菌材料的抗菌机理:

当含有紫外线的光照射到抗菌剂时,产生电子(e-)和空穴(h+),产生的电子和空气中的组分反应,生成过氧化氢(还原反应): e- + O2+ H2→H2O2 空穴和抗菌剂表面的微量水分反应生成氢氧根(氧化反应):h+ + H2O→OH- + H+

过氧化氢和氢氧团具有杀菌作用,可将有机物分解成二氧化碳和水,因此可将细菌慢慢分解,并具有防污、除臭功能。

4、银系抗菌材料的抗菌性能评价:

答; ①抗菌能力:主要通过最低抗菌质量浓度(MIC)、最小杀菌质量浓度(MBC)和杀菌率三个指标来评价。

②安全性:③细菌的耐药性: ④耐光性⑤耐热性⑥缓释性能

4、6的课件打不开题目没搞:

1、生物陶瓷应具备的性能

2、生物陶瓷的优点

3、生物陶瓷的种类

4、生物惰性陶瓷的种类

5、活性陶瓷的种类

第五篇:块状纳米材料的制备方法总结

块体纳米材料是晶粒尺寸小于100 NM 的多晶体, 其晶粒细小, 晶界原子所占的体积比很大, 具有巨大的颗粒界面, 原子的扩散系数很大等独特的结构特征, 其表现出一系列奇异的力学及理化性能。

1、 惰性气体凝聚原位加压成型法

其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成型系统组成1 这种制备方法是在低压的氩、氦等惰性气体中加热金属, 使其蒸发后形成超微粒( < 1 000 NM) 或纳米微粒[ 1] 1 由惰性气体蒸发制备的纳米金属或合金微粒, 在真空中由四氟乙烯刮刀从冷阱上刮下, 经低压压实装置轻度压实后,再在高压下原位加压, 压制成块状试样1 实验装置如图1所示。其优点是: 纳米颗粒具有清洁的表面,很少团聚成粗团聚体, 块体纯度高, 相对密度高, 适用范围广[ 2 ] ,但工艺设备复杂, 生产率低, 特别是制备的纳米材料中存在大量孔隙, 致密度仅为75% ~90%。

2、 高能机械研磨法(MA) 利用粉末粒子与高能球之间相互碰撞、挤压, 反复熔结、断裂、再熔结使晶粒不断细化,直至达到纳米尺寸1 纳米粉通过热挤压、热等静压等技术加压后, 制得块状纳米材料。该法成本低、产量大、工艺简单, 在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力, 可以制备纯金属纳米块体材料、不互溶体系纳米合金、纳米金属间化合物及纳米尺度的金属- 陶瓷粉复合材料等1 但其研磨过程中易产生杂质、污染、氧化, 很难得到洁净的纳米晶体界面。

3、大塑性变形方法(SPD) 由于大塑性变形具有将粗晶金属的晶粒细化到纳米量级的巨大潜力, 已引起人们的极大关注。块纳米金属和合金最快捷的生产方法之一便是大塑性变形加工。高能球磨是在机械力的作用下, 粉末颗粒被反复地破碎、焊合, 将粗大晶粒细化到微米或纳米量级的一种有效手段。但是与高能球磨和非晶晶化法制备纳米材料的不同之处在于, 大塑性变形是通过剧烈的塑性变形, 使粗大晶粒破碎、细化, 从而直接获得块体纳米材料。近年来出现了一些大塑性变形方法, 如等径角挤压(Equal channel angular pressing, ECAP)、高压扭转(High pressure and torsion, HPT)、叠轧合技术(Accumulative roll bonding, ARB)、反复折皱一压直法(Repetitive corrugation and straightening.RCS)等。在发展多种塑性变形方法的基础上, 已成功地制备了晶粒尺寸为20~200nm 的纯Fe、Fe-1.2C 钢、Fe- C-Mn- Si—V 低合金钢、A1- Li—Zr、Mg—Mn- Ce 等合金的块体纳米晶材料。

4、非晶晶化法

该法通过控制非晶态固体的晶化过程, 可以使晶化的产物为纳米尺寸的晶粒。该法主要包括两部分: 获得非晶态固体和将非晶固体晶化。非晶态固体可通过熔体激冷、高速直流溅射、固态反应法等技术制备, 最常用的是单辊或双辊旋淬法。但以上方法只能获得非晶粉末、丝及条带等低维材料, 因而还需采用热压、高压烧结方法合成块状样品。非晶态合金的制备技术经过几十年的发展已非常成熟, 可以成功地制备出块状非晶态合金。由于非晶态合金在热力学上是不稳定的, 在受热或辐射等条件下会出现晶化现象, 即非晶态向晶态转变。晶化通常采用等温退火方法, 近年来还发展了分级退火、激波诱导等方法。此法在纳米软磁材料的制备方面应用最为广泛。目前利用该法已制备出Ni、Fe、Co、Pt 基等多种合金系列的纳米晶体, 也可制备出金属间化合物和单质半导体纳米晶材料, 并已发展到实用阶段。

5、粉末冶金法

粉末冶金法是把纳米粉压实成实体, 然后放到热压炉中烧结。与常规粉体相比, 由于纳米粉具有高的表面激活能, 因而其烧结温度低得多, 且粒子长大速度也快1 由于纳米粉尺寸小, 表面能高, 压制成块体后, 其高的表面能成为原子运动的驱动力, 有利于界面中的空洞收缩, 从而在较低的烧结温度下能达到致密化的目的。

6、电解沉积法

电解沉积法是指在溶液中带正电的金属离子,吸附到带负电的纳米颗粒表面, 然后在电动力的作用下移至阴极, 金属离子还原成原子, 并与所俘获的纳米颗粒一起占据阴极金属或合金表面的位置, 而形成涂层, 逐渐形成薄膜纳米材料1 利用此技术, 控制适当的工艺参数可以获得纳米材料[ 3 ]。 日本东北大学材料研究所采用Sic-l CH-H 系统, 在硅/ 碳比为0~ 2. 8 和沉积温度为1 400~ 2 000 K 的条件下,制备出Sic-C 纳米复合材料, 其最佳沉积温度为1 600 K1 该法特点是工艺设备简单, 生产效率高,但沉积厚度薄。

上一篇:优化营商环境实施方案下一篇:员工迎新会上领导致辞