四足步行机器人外文翻译

2024-04-10

四足步行机器人外文翻译(精选7篇)

篇1:四足步行机器人外文翻译

新兴的运动模式四足机器人气动肌肉用的模型

保德山田,聪西川,伊士达和康夫国芳 研究生信息科学与技术学院,东京大学

大学院情报研究,东京大学

1、动机,问题的陈述,相关工作

动物的进化过程形成了形态和神经系统从彼此相互适应而达到一个在环境中有效的感觉整合。作为一个结果,各种复杂行为的标志,通过能耗效率以及从动态自组织产生互动的身体、神经系统和环境。这些技能是可能的,一方面,因为神经系统利用身体的物理属性,而另一方面通过感官刺激形成体动力学神经力学结构。这构成了一个体现智能[1] [2] [3]的基本属性。

近年来,许多研究已经发展到更好地了解潜在的机制动物的运动技能和如何将它们应用在机器人[4][5]。此外,特定的注意力被集中在中央的模式发生器在仿生机器人[6]中来复制动物运动。举例来说,像狗一样的铁拳系列[7]可以使用感官反馈实现稳定的运动,而类似昆虫的AMOS-WD06[8]可通过利用中央政府模型的混沌特性产生各种复杂的行为。然而,这些机器人不用容易开发的物理身体就能实现运动,是因为身体过于僵化或受线性电磁马达控制。相反,动物的骨骼肌肉系统是一个复杂和冗余的非线性结构形态构成粘弹性肌腱组织材料[9]的肌肉。一些研究都集中在中枢神经系统和他们的身体的研究[10][11] [12]。出于这个原因,我们建议在四足机器人中调查这个问题,以及神经系统随着体动力学系统如何互相感应,以产生各种适应性行为的议案。

2、技术方法

我们设计了一个简单的十分真实的四足机器人去捕捉动物骨骼系统的重要特征,以实现对神经系统的体现。古典驱动器已被麦吉类型气动人工肌肉替换,根据阻尼和弹性,重现一些生物肌肉的非线性特性 [12] [13] [14](图1)。在真正的肌肉中,传感反馈是通过感觉到的肌肉长度的肌梭和感知肌张力的高尔基腱器官完成的。我们通过使用压力传感器和电位器计算长度和人工肌肉的张力来复制此功能的。

基于生物学的考虑,我们用小原国芳与他的同事们开发的脊髓延髓的系统模型设计了神经系统[15] [16](图2)。一个的脊髓延髓模式的单一元素组成肌肉、一个α和γ运动神经元、传入感觉中间神经元和神经的振荡器模型。虽然每个元素不直接连接到总体,我们预计机器人的振荡器的非线性光学性质将建立弥散的互感器和动力连接器条件从而产生全身的不同运动(图3)。

图1.麦吉气动人造肌肉的类型。

图2.脊髓延髓模型。箭头和填充圈分别代表兴奋和抑制的连接。

图3.脊髓延髓中体现的模型。

3、结果

在我们的实验中,感觉身体之间的动力学与在同样的一个实验中用自我组织的各种行为模式时尚的脊髓延髓系统修改动态的腿配位顺序之间的相互作用。

例如,机器人需要几个步骤产生动态向前运动(图4左)。然后,通过执行向后运动的几个步骤(图4中),机器人切换到另一个模式。一段时间后,返回到其先前的运动状态和重新生成向前运动(图4右)。在实验中每个关节的角度来看,我们观察到一些相同步和相交错模式(图5)。

我们注意到,这种类型的运动在整个实验中并不经常发生,这表明了系统的动力学性质。例如,在一个实验中,我们观察到的运动仅仅只是向后的。然而,这种行为运动显示了各种模型例如左腿和右腿之间或者两腿交错间的自动相位同步模型。

图4.运动行为的快照

图5.时间序列的关节角度.4、实验

我们进行了一些实验来生成四足动物骨骼机器人的模型(图6和图7)的运动行为。在脊髓延髓的模型中,每个机器人的腿部肌肉是相互隔离的,并且没有直接联系。然而,我们预测,化身将在与环境的相互作用中为弥散互感器创造条件,目的是产生各种自适应行为模式。

人工肌肉从外部压缩机提供空气,我们使用比例压力控制阀控制肌肉内部的压力。机器人安装有中央处理器板运行实时操作系统向压力阀发送的命令和从压力传感器、电位器接收传感器值。一个CPU板和计算神经动力学与外部PC机进行通信。

图6.四足气动肌肉机器人

图7.肌肉的布局。红色部分代表气动人工肌肉,蓝色部分代表的是被动肌肉构

成弹簧。

5、实验的主要见解

在实验中,虽然我们对神经系统的模型使用相同的参数,但是我们还是观察到各种复杂的运动模式。这些运动模式是个别肌肉的动态连接器的结果–即,它们之间并没有直接的连接:通过物理身体和神经系统与环境的动力相互作用。这一动态同步的机制是复杂和与环境相适应的,它探讨了身体的自然运动模式。

在今后的实验中,我们将进一步研究行为的自我组织模式机制所需的身体的性能和有利于构成这一组织模式机制的神经系统。

参考文献

[ 1]R.A.布鲁克斯.“无表征智能,人工智能”.1991,d第3期,卷47,第139–159.[ 2]R.普法倚费尔,C.西契尔.了解情报.麻省理工学院出版社,1999.[ 3]R.普法倚费尔,J.C 本哥德.我们认为身体是如何形成的:一种新的智力观.麻省理工学院出版社,2006年.[ 4]H.木村,K.土屋,A.石黑,H.维特.动物和机器的自相适应运动.高等教育出版社,2005年.[ 5]J.埃尔斯,J.L.戴维斯,A.鲁道.仿生机器人的神经技术.麻省理工学院出版社,2002年.[ 6]A.J.依思皮特,动物和机器人的中枢模式发生器运动控制:审查,神经网络,2008,第4期,21卷,642页–653页.[ 7]H.木村,Y.福冈,A.H.科恩.“适应在地面上动态行走的四足机器人的生物学概念”.国际机器人研究学报,2007, 第5期,26卷,475页–490页.[ 8]S.斯特恩哥如布,M.泰姆,F.沃尔戈特,P.Manoonpong,“自组织适应一个简单的神经电路,使复杂的机器人的行为成为可能”.自然物理学,2009,卷6,页224 –230.[ 9]R.M.亚力山大,H.班纳特-克拉克.“肌肉和其它组织存储的弹性应变能”.自然科学,1977,第5590期,265卷,114页–117.[ 10]R.普法倚费尔,M.伦加雷拉,Y.小原国芳.自组织生物启发的机器人的化身 ”.科学,2007年11月,卷318,页1088-–1093.[ 11 ]A.彼蒂,Y.小原国芳.产生时空动态分布联合转矩模式同步模式发电机,前沿神经机器人,2009,3卷,2号,1页–14.[ 12 ]AR皮蒂,是有关新山志保,与国芳,“创造和调节节奏的控制身体的物理,“自主机器人,28卷,3号,317页–329,2010.[ 13]G柳巷芳草,J.czerniecki,和B纳福,“麦吉人工肌肉:气动执行器与生物力学的情报,在先进的智能机电一体化,1999.诉讼.1999届国际会议预报,1999,页221 –226.[ 14]R.A是有关新山志保,nagakubo,与国芳,“无忌:一个双足跳跃和着陆机器人与人工肌肉骨骼系统的过程中,“参考国际机器人与自动化(互联网内容分级协会2007),罗马,意大利,四月,2007,页2546-2551(–thc5.2).[ 15]Y国芳和铃木,“动态的出现和适应行为体现为通过耦合混沌领域,“程序.国际参考智能机器人与系统,2004,页2042 –2049.[ 16]Y国芳和美国sangawa,“早期运动的发展从偏序神经体动力学:实验与cortico-spinal-musculosleletal模型,“生物控制论,卷95,页589-–605,2006.

篇2:四足步行机器人外文翻译

四足步行机器人结构设计文献综述

()

摘要:对国内、外四足步行机器人的研究发展现状进行了综述,对四足步行机器人亟需解决的问题进行了论述,并对未来可能的研究发展方向进行了展望。关键字:四足步行机器人;研究现状;展望

1、引言

四足步行机器人是机器人家族的一个重要分支,其不仅承载能力强,而且容易适应不平的地形。它既能使用静态稳定的步态缓慢平滑地行走,又能以动态稳定的步态跑动。与轮式、履带式移动机器人相比,在崎岖不平的路面,步行机器人具有独特优越性能,在这种背景下,步行机器人的研究蓬勃发展起来。而仿生四足步行机器人的出现更加显示出步行机器人的优势:

(1)四足步行机器人的运动轨迹是一系列离散的足印,运动时只需要离散的点接触地面,对环境的破环程度也较小,可以在可能到达的地面上选择最优的支撑点,对崎岖的地形的适应性强。

(2)四足步行机器人的腿部具有多个自由度,使运动的灵活性大大增强。它可以通过调节腿的长度保持身体水平,也可以通过调节腿的伸展程度调整重心位置,因此不易翻到,稳定性更高。

(3)四足步行机器人身体与地面是分离的,这种机械结构的优点在于:运动系统还具有主动隔振能力即允许机身运动轨迹和足运动轨迹解耦,机器人的身体可以平稳的运动而不必考虑地面的粗糙度和腿的放置位置。

(4)机器人在不平地面和松软路面上的运动速度较快,能耗较低。

2、国内外的发展现状

20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了20世纪80年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。

世界上第一台真正意义的四足步行机器人是有Frank和McGhee于1977年制作的。该机器具有良好的步态运动稳定性,但缺点是,该机器人的关节是由

四足步行机器人结构设计文献综述

逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定运动形式。

20世纪80,90年代最具代表性的四足步行机器人是日本Shigeo Hirose实验室研制的TITAN系列。1981~1984年Hirose教授研制成功脚步装有传感和信号处理系统的TITAN-III。它的脚底步由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应步行。TITAN-VI机器人采用新型的直动性腿机构,避免了上楼梯过程中两腿的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

2000-2003年,日本电气通信大学的木村浩等人研制成功了具有宠物狗外形的机器人Tekken-IV,如图1所示。它的每个关节安装了一个光电码盘,陀螺仪,倾角计和触觉传感器。系统控制是由基于CPG的控制器通过反射机制来完成的。Tekken-IV能够实线不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的优点。它的另一特点是利用了激光和CCD摄像机导航,可以辨别和避让前方存在的障碍,能够在封闭回廊中实现无碰撞快速行走。

目前最具代表性的四组步行机器人是美国Boston dynamics实验室研制的BigDog,如图2所示。它能以不同的步态在恶劣的地形上攀爬,可以负载高达52KG的重量,爬升可达35°的斜坡。其腿关节类似动物腿关节,安装有吸收震动部件和能量循环部件。同时,腿部连有很多传感器,其运动通过伺服电机控制。该机器人机动性和反应能力都很强,平衡能力极佳。但由于汽油发电机

四足步行机器人结构设计文献综述

需携带油箱,故工作时受环境影响大,可靠性差。另外,当机器人行走时引擎会发出怪异的噪音。

国内四足机器人研制工作从20世纪80年代起步,取得一定成果的有上海交通大学、清华大学、哈尔滨工业大学等。

上海交通大学机器人研究所于1991年开展了JTUWM系列四足步行机器人的研究。1996年该研究所研制成功了JTUWM-III,如图3所示。该机器人采用开式链腿机构,每个腿有3个自由度,具有结构简单,外形轻巧,体积小,质量轻等特点。它采用力和位置混合控制,脚底装有PVDF测力传感器,利用人工神经网络和模糊算法相结合,实线了对角动态行走。但行走速度极慢,极限步速仅为1.7KM/h,另外其负重能力有限,故在实际作业时实用性较差。

清华大学所研制的一款四足步行机器人,它采用开环关节连杆机构作为步进机构,通过模拟动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡行走,越障等功能。不足之处是腿运动时的协调控制比较复杂,而且承载能力较小。

四足步行机器人结构设计文献综述

3、国内外的关键技术分析

(1)机械本体研究

四足步行机器人是机电一体化系统,涉及到机构、步态、控制等,而机械机构是整个系统的基础。在机械本体的设计中腿部机构设计是关键。目前,研制的四足步行机器人的腿部机构形式主要有缩放型机构、四连杆机构、并联机构、平行杆机构、多关节串联机构和缓冲型虚拟弹簧腿机构。其中,并联机构可以实现多方位运动,且负载能力强,所以具有较好的应用前景,但控制系统较为复杂。另外,含有弹性元件的缓冲型虚拟弹簧腿机构,利用弹性元件把刚性连接变为柔性连接,减缓机器人在动态行走时的冲击以及由此产生的振动,因此该机构应用越来越广泛。

(2)步态研究

步行机器人几种典型步态有:爬行、对角小跑、溜蹄、跳跃、定点旋转、转向等。在文献[7]中,提出了爬步态的理论,并证明了该步态具有最大的静稳定性。对角小跑步态属于动态稳定步态,能够提高运动速度。跳跃式步态较其它步态在前进的效率上具有明显的优势,但是由于受到腿机构的摆动惯性力和关节处大冲击力的影响,因此需要较大的瞬时驱动力。另外,跳跃持续的时间是短暂的,为了保证机器人实时可控,必然需要在极短的时间内采集多种信号,这对目前的驱动元件和传感器都提出了极高的要求。目前所研究的各种步态中,跳跃步态的研究是最具挑战性的难点问题。

(3)控制技术研究

复杂四足步行机器人的控制系统是非线性的多输入和多输出不稳定系统,四足步行机器人结构设计文献综述

具有时变性和间歇动态性。目前四足机器人的步行运动大多数是基于步态的几何位置轨迹规划、关节位置控制的规划和控制策略。而对机器人进行单纯的几何位置规划与控制,则会由于惯性、脚力失衡等因素而导致机器人失稳。解决这个问题的关键就是突破单一的位置规划与控制策略,实施机器人力、位置混合控制。在步态生成和控制方面,有理论突破意义的是基于生物中枢模式发生器(CPG)原理的运动控制方法。

(4)驱动能源研究

在线提供能源受到空间的限制,而蓄电池组受体积和重量的限制,因此寻求提供持续可靠的离线自带电源就成了必须。随着新型电池的研发,新型太阳能电池、燃料电池、锂电池等成为较为理想的能量供给来源。另外,通过微波对微型机器人提供能量和控制信号也是一种较为可观的方法。

4、存在的问题

从20世纪60年代至今研究者们对四足步行机器人关键技术的分析做了大量的工作,在一些基础理论问题上取得了一定的突破,使四足步行机器人的技术水平不断得到提高。但在四足步行机器人发展过程中仍有一些亟需解决的问题:

(1)步行机器人的结构仿生设计问题;(2)在不平地面移动的速度、稳定性问题;(3)四足步行机器人的步态规划问题;(4)步行机器人仿生控制方面的问题;

(5)有些步行机器人的体积和质量都很大问题;(6)多数步行机器人研究平台的承载力不强问题;

5、展望

随着对四足步行机器人的研究的日益深入和发展,四足步行机器人在速度、稳定性、机动性和对地面的适应能力等方面的性能都将不断提高,自主化和智能化也将逐步的实现,从而使其能够在更多特殊环境和场合中使用,因此具有广阔的应用前景。

纵览当前四足机器人的发展,四足步行机器人有以下几个值得关注的趋势:

四足步行机器人结构设计文献综述

(1)实现腿机构的高能,高效性;(2)轮,足运动相结合;(3)步行机器人微型化;

(4)增强四足步行机器人的负载能力;(5)机器人仿生的进一步深化;

6、总结

尽管四足步行机器人技术有了很大的发展,足式机器人的研究平台有很多,但制约四足机器人技术进一步发展的基础理论问题并没有得到根本的解决,其中,许多样机还达不到生物简单运动的速度和稳定性。正如著名机器人学家Geles教授所言:“步行机器人的理论研究步伐要远远落后于其技术开发的步伐”。现有的四足机器人的基础技术研究尚不够成熟和完善,足式机器人的关键技术还有待于进一步大力开发。

7、参考文献

[1] McGhee.R.B.Robot locomotion[A].In R.Herman, S.Grillner,P.Stein,and

D.Stuart, editors, al control of lNeurocomotion[C].Plenum Press.1976:237-264.[2] Shigeo.Hirose, Tomoyuki.Masui, Hidekazu.Kikuchi.TITAN-III: A Quadruped

Walking Vehicle-Its Structure and Basic Characteristics.Robotic

Research(2nd Int.Symp.).The MIT Press, 1985:325-331.[3] 王洪波,徐桂玲,胡星,张典范,张雄.四足并联腿步行机器人动力学[J].燕山大学河北省并联机器人与机电系统实验室.秦皇岛.066004.[4] 雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望 [M ].北京航空航天大学 汽车工程系.北京.100083.[5] 查选芳,张融甫.多足步行机器人腿机构的运动学研究[J].东南大学学报.1995.25(2).[6] 郭成,谈士力,翁盛隆.微型爬壁机器人研究的关键技术[J].制造业自动化.2004.26(7).[7] 王吉岱,卢坤媛,徐淑芬,雷云云.四足步行机器人研究现状及展望[M ].山

四足步行机器人结构设计文献综述

篇3:四足步行机器人研究现状及展望

目前,常见的步行机器人以两足式、四足式、六足式应用较多。其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。本文介绍了国内外在机构设计、步态、控制等方面已经取得的进展,并分析了其中的关键技术。最后,归纳总结了未来四足步行机器人的几个发展趋势,以期对以后的研究工作具有指导作用。

1 国内外四足步行机器人的研究历史和现状

20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了20世纪80年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。

世界上第一台真正意义的四足步行机器人是由Frank和Mc Ghee于1977年制作的。该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式[1]。

20世纪80、90年代最具代表性的四足步行机器人是日本Shigeo Hirose实验室研制的TITAN系列。1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III[2]。它的脚底部由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应静态步行。TITAN-Ⅵ[3]机器人采用新型的直动型腿机构,避免了上楼梯过程中各腿间的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

2000-2003年,日本电气通信大学的木村浩等人研制成功了具有宠物狗外形的机器人Tekken-IV,如图1所示。它的每个关节安装了一个光电码盘、陀螺仪、倾角计和触觉传感器。系统控制是由基于CPG的控制器通过反射机制来完成的。Tekken-IV能够实现不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的优点。它的另一特点是利用了激光和CCD摄像机导航,可以辨别和避让前方存在的障碍,能够在封闭回廊中实现无碰撞快速行走。

目前最具代表的四足步行机器人是美国Boston dynamics实验室研制的Big Dog[4],如图2所示。它能以不同步态在恶劣的地形上攀爬,可以负载高达52KG的重量,爬升斜坡可达35°。其腿关节类似动物腿关节,安装有吸收震动部件和能量循环部件。同时,腿部连有很多传感器,其运动通过伺服电机来控制。该机器人机动性和反应能力都很强,平衡能力极佳。但由于汽油发电机需携带油箱,故工作时受环境影响大,可靠性差。另外,当机器人行走时引擎会发出怪异的噪音。

国内四足机器人研制工作从20世纪80年代起步,取得一定成果的研究机构有上海交通大学、清华大学、哈尔滨工业大学等。

上海交通大学机器人研究所于1991年开展了JTUWM系列四足步行机器人的研究。1996年该研究所研制成功了JTUWM—III,如图3所示。该机器人采用开式链腿机构,每条腿有3个自由度,具有结构简单、外形灵巧、体积小、重量轻等特点。它采用力和位置混合控制,脚底装有PVDF测力传感器,利用人工神经网络和模糊算法相结合,实现了对角线动态行走。但其步行速度较慢,极限步速仅为1.7km/h;另外,其负重能力有限,故在实际作业时实用性较差。

清华大学所研制的一款四足步行机器人,如图4所示。它采用开环关节连杆机构作为步行机构,通过模拟动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡行走、越障等功能。不足之处是腿运动时的协调控制比较复杂,而且承载能力较小。

综上所述,美国、日本的研究最具代表性,其技术水平已经较为先进,实用化程度也在逐步提高。国内四足步行机器的研究起步比较晚,在上个世纪90年代以后才逐步有了成果,但研究水平据世界先进水平还有差距。

2 国内外四足步行机器人的关键技术分析

从20世纪60年代至今研究者们对四足步行机器人关键技术的分析做了大量的工作,在一些基础理论问题上取得了一定的突破,使四足步行机器人的技术水平不断得到提高。

2.1 机械本体研究

四足步行机器人是机电一体化系统,涉及到机构、步态、控制等,而机械机构是整个系统的基础。在机械本体的设计中腿部机构设计是关键。目前,研制的四足步行机器人的腿部机构形式主要有缩放型机构[5]、四连杆机构、并联机构[6]、平行杆机构、多关节串联机构和缓冲型虚拟弹簧腿机构。其中,并联机构可以实现多方位运动,且负载能力强,所以具有较好的应用前景,但控制系统较为复杂。另外,含有弹性元件的缓冲型虚拟弹簧腿机构,利用弹性元件把刚性连接变为柔性连接,减缓机器人在动态行走时的冲击以及由此产生的振动,因此该机构应用越来越广泛。

2.2 步态研究

步行机器人几种典型步态有:爬行、对角小跑、溜蹄、跳跃、定点旋转、转向等。在文献[7]中,提出了爬步态的理论,并证明了该步态具有最大的静稳定性。对角小跑步态属于动态稳定步态,能够提高运动速度。跳跃式步态较其它步态在前进的效率上具有明显的优势,但是由于受到腿机构的摆动惯性力和关节处大冲击力的影响,因此需要较大的瞬时驱动力。另外,跳跃持续的时间是短暂的,为了保证机器人实时可控,必然需要在极短的时间内采集多种信号,这对目前的驱动元件和传感器都提出了极高的要求。目前所研究的各种步态中,跳跃步态的研究是最具挑战性的难点问题。

2.3 控制技术研究

复杂四足步行机器人的控制系统是非线性的多输入和多输出不稳定系统,具有时变性和间歇动态性。目前四足机器人的步行运动大多数是基于步态的几何位置轨迹规划、关节位置控制的规划和控制策略。而对机器人进行单纯的几何位置规划与控制,则会由于惯性、脚力失衡等因素而导致机器人失稳。解决这个问题的关键就是突破单一的位置规划与控制策略,实施机器人力、位置混合控制。在步态生成和控制方面,有理论突破意义的是基于生物中枢模式发生器(CPG)原理的运动控制方法。

2.4 驱动能源研究

在线提供能源受到空间的限制,而蓄电池组受体积和重量的限制,因此寻求提供持续可靠的离线自带电源就成了必须。随着新型电池的研发,新型太阳能电池、燃料电池、锂电池等成为较为理想的能量供给来源。另外,通过微波对微型机器人提供能量和控制信号也是一种较为可观的方法。

3 四足步行机器人的研究趋势

随着足式机器人的研究日益深入和发展,四足步行机器人在速度、稳定性、灵活性和对地面的适应性等方面的性能将不断提高,自主化和智能化将逐步实现。综合分析,在未来的研制中四足步行机器人有以下几个发展趋势。

3.1 实现腿机构的高能、高效性

动物的肌腱肌肉均是高效储能和节能的元件,能够解决高速稳定行走和能量利用率的问题。而四足步行机器人的腿机构和关节均为刚性连接,不但不能储能,且因触地的冲击,要消耗掉许多能量。因而高功率密度且具有缓冲储能措施的腿机构是未来的研究热点问题。

3.2 轮、足运动相结合

足式移动方式与轮式技术的结合,既可通过轮式调节控制移动的效率,也可利用腿机构实现越障、避障等高效运动。目前国内外开展了轮、足相结合机器人的相关研究,在以后的研究工作中轮、足相结合的研究力度会进一步加大。

3.3 步行机器人微型化

微型步行机器人有着广阔的应用前景,它可以广泛应用于各类科学探索、工业作业中,例如可在狭小的空间如管道内行走、作业和维修等。

3.4 增强四足步行机器人的负载能力

目前四足步行机的研究主要集中在小型轻便、易于控制等方面,距离低能耗、高负载的要求还有一定的差距,在进行野外实际作业时实用性较差。基于此,开展负载能力强、步行机构能耗低的四足机器人的研究也是未来研究的一个重要的方向。

3.5 机器人仿生的进一步深化

仿生四足机器人不能仅仅限制在模仿机构上,还应该模仿生物的一些功能,如蝙蝠的听觉、狗的嗅觉、蜻蜓的视觉等。

4 总结

尽管四足步行机器人技术有了很大的发展,足式机器人的研究平台有很多,但制约四足机器人技术进一步发展的基础理论问题并没有得到根本的解决,其中,许多样机还达不到生物简单运动的速度和稳定性。正如著名机器人学家geles教授所言:“步行机器人的理论研究步伐要远远落后于其技术开发的步伐”。现有的四足机器人的基础技术研究尚不够成熟和完善,足式机器人的关键技术还有待于进一步大力开发。

摘要:文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人研究的关键技术,并展望了四足机器人的发展趋势。

关键词:四足步行机器人,研究现状,关键技术,发展趋势

参考文献

[1]McGhee.R.B.Robot locomotion[A].In R.Herman,S.Grillner,P.Stein,and D.Stuart,editors,Neural control of locomotion[C].Plenum Press.1976:237-264.

[2]Shigeo.Hirose,Tomoyuki.Masui,Hidekazu.Kikuchi.TITAN-III:A Quadruped Walking Vehicle-Its Structure andBasic Characteristics.Robotic Research(2nd Int.Symp.).TheMIT Press,1985:325-331.

[3]Quadruped Walking Machin“eTITAN-VI”[EB/OL].

[4]The Most Advanced Quadruped Robot on Earth[EB/OL].

[5]查选芳,张融甫.多足步行机器人腿机构的运动学研究[J].东南大学学报,1995,25(2).

[6]郭成,谈士力,翁盛隆.微型爬壁机器人研究的关键技术[J].制造业自动化,2004,26(7).

篇4:管道机器人外文翻译

摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。

1.简介

管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。

近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。

2.机器人特征 A机器人硬件设备及系统

如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。

机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。

例1.装备有机械离合装置的管道检测机器人系统

机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且可以返回到原点。

例2管道机器人检测系统整体结构:a,3D模型,b,机器人实体

为了确保驱动与制动两种模式的实现,可通过为机器人三个驱动轮分别安装电机,并且主轴也有一个电机,如例2所示,这样我们就可以控制机器人的前进与后退以及在弯头的转向运动。从一种模式到另一种模式的转换可以通过驱动主轴电机实现。B 机器人主体

如例3所示,机身包含两个螺母、两个滑块、两个弹簧和一个主轴电机。螺母的作用是往主轴的两面传递力,滑块与离合器部分相连接并且沿着螺母的凹槽滑移。弹簧起到缓冲的作用,与链轮的直径变化相适应。这种设计允许了机器人身体的可折叠性。主轴包括齿轮、左旋螺杆、右旋螺杆。电机通过齿轮传递力至主轴,并且运动模式可以通过控制主轴电机来切换。主轴螺旋运动取决于螺杆的平移运动,这也将同时导致螺母的位移以及滑块的运动。

例3 主体结构

C部分

主轴螺杆左末端与减速器结构连接。链轮部分包括平行连杆机构、驱动电机与驱动轮、惰轮。如同例4所示,每一条链轮都与减速器结构相连接。

例4:链轮及减速器机构

电机通过斜齿轮减速器驱动。减速器机构包括离合轮,以及离合轮与主轴相连接部分。如同例4所示,离合轮是惰轮,链轮与主轴通过4连杆与5连杆机构连接。平行四边形机构保证链轮的水平状态。

链轮的运动与离合轮相关联,离合轮通过四连杆机构连接主轴与链轮。

D 机器人设备运行与制动模式

当机器人插入到管道中,机器人通过控制主轴电机改变机构直径以适应管道。例5标示机器人驱动模式下进入管道的状态,两个螺母靠近中间。当机器人通过不规则表面,外力将作用在链轮上,从而导致与链轮相连接的滑块作出例6所示动作。主轴两面的压缩弹簧起到减震的作用。当机器人通过不规则表面,弹簧力将使滑块恢复到例5所示状态。

例5 运行模式

例6展示了制动模式,通过驱动主轴电机,主轴将重置成两个螺母远离中心的模式。这将导致链轮中的驱动轮远离管道内壁,且链轮中的惰轮与内壁接触。于是,可以通过拉机器人尾部的电缆来实现后退。例7与例8详细解释了此动作。

例6 制动模式

链轮中的驱动轮如图例7所示那样在减速轮外,机器人将会进入运行模式。机器人可通过电机驱动轮子与管道内表面接触,来实现前进。与此相反的是,当驱动轮改变到减速轮内的时候,即减速轮与管道内表面相接触的时候,机器人转变为制动模式。在这种模式下运行,减速轮与管道内表面相接触,同时,两惰轮连成一条线运行,这将保证机器人的制动模式的成功。除此之外,当机器人突然断电时,机器人将会因电机转轴减弱的转矩导致支持轮子的外部力减弱,从而实现机器人自动转变到制动模式。从上述所看,机器人可轻松实现制动。

例7 装有减速装置的管道检测机器人系统

A,运行模式B,制动模式

4运动机构

在这一部分,为了根据主轴电机驱动所引起的d变化表示减速轮的动作,将会推导出离合轮、驱动轮和惰轮的位置。例8展示了链轮与减速结构。每一链轮均包含两个4连杆机构、一个5连杆机构,4连杆机构包含四个转动关节,5连杆机构包含四个转动关节和一个移动关节。当外力作用在轮子上面时,链轮的高度d随之改变。

c

例8 工作模式原理图 A,驱动模式 B,制动模式

例9中的注释,余弦可表达为

机器人设备:

电机嵌入车轮机构的马达箱体中,最大扭矩为17.5mNm, 电机选MAXRON RE 6 型号,减速器选择GP 6A 型号。表1详细介绍了电机和减速器规格。

MAXRON RE 6 规格说明书 直径

6mm 额定电压

6v 额定转速 5320 rpm 最大连续扭矩 0.321mNm 最大持续性电流:0.118A

减速器说明书 减速比:221:1 减速器最大连续扭矩:30mNm

表2为机器人规格说明书,机器人模块长80mm至100mm之间,机器人机身直径变换在90mm至110mm之间。机器人包括摄像机、照明设备在内的总长是122mm,机器人中189g.在测试环节中使用的管道直径为100mm.表2 机器人规格说明书

规格

重量

电机直径

机器人模块长度

机器人总长

直径变化范围

直线速度

串行通信

篇5:四足步行机器人外文翻译

一个复杂纸盒的包装机器人

Venketesh N.Dubey 英国设计学院,工程和计算机,伯恩茅斯大学,普尔

Jian S.Dai 伦敦大学国王学院,英国伦敦大学,伦敦

摘要

目的—为了展示设计一种可以折叠复杂几何形状的纸盒的多功能包装机的可行性。设计/方法/方式—这项研究对各种几何形状的纸盒进行研究,将纸盒分为适当的类型以及机器可以实现的操作;把能加工这些纸盒,并进行机械建模和仿真,且最终可以设计和开发的包装机概念化。

研究结果—这种多功能包装机已经被证明是可能的。只需将这种多功能包装机小型化,并对它投资以促进其发展,这种机器可以成为现实。

研究限制因素/问题—本研究的目的是证明这种包装机的原理,但实际应用需要考虑结合传感器给出了一个紧凑的、便携式系统。

创意/价值—这项设计是独一无二的,并已被证明可以折叠各种复杂形状的纸盒。关键字:机器人技术 包装 自动化 文章类型:研究论文简介

产品包装是关键的工业领域之一,以自动化为首要权益。任何产品流通到消费者手中需要某种形式的包装,无论是食品、礼品或医疗用品。因此,对高速的产品包装有持续的需求。对于周期性消费品和精美礼品,这项需求更是大大增加。它们要求包装设计新颖且有吸引力,以吸引潜在客户。通常这类产品用外观精美、形状复杂的纸盒递送。如果采用手工方法进行包装,不仅令工人感到乏味且操作复杂,也费时和单调。

对于简单的纸盒包装,通过使用沿传送带布置的专用机器,已经获得了实现。这些机器只能处理固定类型的纸盒,任何形状和结构的变化很难纳入到系统之中。在大多数情况下,它们需要进行超过40种变化以适应同种类型但大小不同的纸盒,这就意味着每一个特定类型的纸盒需要一条包装生产线。从一种类型到另一种类型的纸盒折叠组装生产线的转换将会使资本支出增加。因为这些限制因素和转换生产线的相关成本,包装的灵活性将会失去。

因此,作为一种补充,手工生产线被引进以适应不同类型的纸盒的生产,从而解决转换生产线的问题。它们承担了大约10%的工作订单,并被用作生产促销产品的组装生产线。但是,问题仍然存在,手工生产线上的管理员和操作工需要一个长时间的学习过程,而且与机器生产线不同,劳动伤害主要是源于扭手动作。此外,手工生产线通常被认为是一个季节性的生产力,仍然需要专门的机器长年运行,以节约成本和时间。设计师追求奇幻和独特的纸盒包装以响应竞争激烈的市场,使包装工作更加困难。纸盒的风格和类型的频繁变化和小批量生产对纸盒装配和包装生产线提出了挑战,为此需要设计一种灵活的机器。

因此,这项责任放在了包装行业的身上,在可编程和可重构系统的帮助下充分加快转换过程以处理不同类型的纸盒。这种灵活的和高度可重构的系统的开发需要进行系统的分析和综合每个部件,即纸盒和纸盒的折叠模式、包装纸盒的机器、完整的组装操作。一种这样的方法(Lu和Akella,2000年)已经公布了,该方法使用固定装置来折叠纸盒。虽然这种方法能完成纸盒所有折叠操作,但实施的工作只是处理一个简单的矩形箱,其固定的自动装置被安装在指定的位置。但是,对于复杂几何体纸盒,需要对纸盒和折叠机构进行综合考虑,从而实现包装生产线的柔性自动化。

在复杂纸盒的折叠操作及工序分析方面,作者开展了大量的研究,并诉诸于图形理论、螺旋理论、矩阵理论且以一种空间结构表示纸盒;及其研究纸盒移动性和分析其结构外形(Dai and Rees Jones,1997a,b,c,1999;Dubey et al.1999a,b,c;Dubey and Dai,2001)。本文介绍从事设计能处理复杂几何形状纸盒的可重构纸盒折叠机的研究。设计和原理的需要

该项目被列在许多化妆品和香水供应商的愿望列表上,如伊丽莎白雅顿和卡尔文·克莱恩,并被Unilever Research UK积极地考虑了数年。他们愿意支持任何一种能够使用一些替代手段从而实现整个花式纸盒包装过程自动化的研究思想。结果,这个

23一台电动机驱动做垂直运动以及转动,从而使纸盒达到包装操作所需的任何位置。手指的关节直接通过关节马达驱动,整个系统需要控制14个轴。这些考量是基于高度的可重构性与控制最小数量的轴。

指尖的设计进行了专门地考虑,因为它们必须执行上一节所讨论的各种操作功能。受手工包装过程的启发,指尖设计采用带有V型槽的尖头。根据手工包装的需要,使其手指能在纸盒上施加“戳”和“挤”的力。该尖头用于戳操作,在V型槽的挤压下,纸板打开以进行塞操作。除了提供戳力和挤力,二自由度手指的Y形部分还能给扁平纸板提供暂时的推力。在有限自由度的情况下,这样的设计可以提供许多灵活的操作功能以处理不同构造不同类型的纸盒。

该模型提供了机器运行所需的全部运动信息(Dubey and Crowder,2003年)。包装机的参数模型已经被开发出来(Workspace4,1998年),几何外形和尺寸设计的改变可以非常容易地纳入到模型中,包括结构的验证。这也使机器部件的运动参数能在加工之前就得以确定。包装纸盒时,在纸盒上定位各种接触点,通过记录的各种接触点的位移,就可以实现手指的纸箱之间的运动的连通性。纸箱上的接触点可以由折叠次序的几何表示鉴别(Dubey and Dai,2001)。这些接触点用于测量每个手指关节的偏移量。将这些位移数据进行插值运算,生成最优手指路径,尽量减少不必要的手指运动,从而减少包装的周期时间。从模型中获得的插补数据可以下载,用以驱动手指。当前的研究工作是基于纸盒的几何特征及其折叠次序的研究,使整个包装过程可以实现自动化(迪比等,2000),而不是借助于纸盒的仿真。

图5显示了当纸盒折叠时,手指跟踪纸盒上的接触点。模拟模型为包装机器的设计以及控制提供了许多有价值的信息。例如,在维度和结构决定之前,模拟模型可用来检查机器的几何以及结构。通过改变模型的基本尺寸参数,任何新的机械零件几何信息都可直接获得。在纸盒的折叠过程中所得的运动数据和轨迹可用于手指系统控制。目前,模拟运动参数不可从直接整合到控制器中,因此这些数据都必须以数据文件的形式输入到控制器中。不过,这种方法可全面地校核折叠次序,然后下载这些数据并输入到控制器中。

插图2 另一种纸盒的包装机 讨论和结论

本文提出了一份灵活的、可重构的装配和包装系统。本研究的目的是设计一个可以处理不同几何形状的纸盒可重构的装配和包装系统。最初的想法是要开发一个可以展示对不同风格和复杂形状的纸盒的适应能力的系统。结果表明,该包装机可以折叠两个完全不同形状的纸盒。在任何情况下,折叠周期约为45s。虽然这不是一个优化的折叠时间,但是采用在线数据传输有望减少周期时间至30秒或更少。虽然一个非常灵活的纸盒包装机在用于车间生产之前仍有许多问题需要解决。不过,本研究的目的是验证面向包装行业的快速转换技术。

未来需要改进的部分包括优化手指导轨,使用力反馈触觉传感器,以避免纸板上的压力过大,且将在真空装置中进行折叠操作。还建议将仿真模型与实际机器相结合,使其能下载在线数据。X-Y工作台可用电机驱动和控制,实现自动重构。这些先进的技术,将使整个包装过程自动化, 从纸盒的二维图开始,然后确定其运动学特性并生成运动序列到完成产品包装。此外,如果能小型化,还计划将灵活的、可重构的机械手安装在一个机器人手臂上以得到更高灵活性。该系统不仅能进行纸盒折叠,也可以在折叠的同时将产品放入纸盒中。这将减少包装时间,也能够迎接对不断变化的高端私人产品包装需求的高度适应性的挑战。参考文献

Dai, J.S.(1996a), “Survey and business case study of the exterous reconfigurable assembly

metamorphic mechanism”, paper presented at Tenth World Congress on the Theory of Machine and Mechanisms(IFToMM), pp.98-103.Lu, L.and Akella, S.(2000), “Folding cartons with fixtures: a motion planning approach”, IEEE Transactions on Robotics and Automation, Vol.16 No.4, pp.346-56.Workspace4w(1998), User’s Guide, Robot Simulations Ltd, Newcastle upon Tyne.附件2:外文原文

(复印件)

篇6:四足步行机器人外文翻译

Zhang Qin, Fan Chang-xiang and Yao Tao School of Mechanical and Automotive Engineering

South China University of Technology Guang zhou, Guangdong Province, China

zhangqin@scut.edu.cn

Yoshitsugu Kamiya Department of Mechanical Systems Engineering

Kanazawa University Kanazawa, Japan

kamiya@t.kanazawa-u.ac.jp

【摘要】上楼梯是双足机器人的一种基本动作。一个有效的算法对双足步行的稳定性是至关重要的。在本文中,我们以双足机器人爬楼梯为例,提出一个基于重复变换法(RDK)的算法来规划上楼梯动作和前向运动。在本文提出的算法中,为了满足上楼梯的稳定性,机器人通过上身来调整质心的位置,并且由重复变换法(RDK)进行计算和修正。重复变换法的作用是有保证性的,其可行性和有效性已经通过双足机器人上楼梯仿真实验的验证;而本文提出的算法也适用于双足机器人下楼梯。

【索引词】双足机器人;上楼梯;重复变换法;重心运动;

1.介绍

双足机器人和人类一样拥有多自由度的特点,每一个关节可以通过巧妙的组合从而可以完成各种动作。而且双足机器人对环境具有良好的适应性,并能进入相对狭窄空间替代人类执行各种操作,所以它们具有广阔的应用前景。上下楼梯只是双足机器人具有的基本功能。而建立机器人的运动学模型,分析其上下楼梯的过程,并研究其步态规划方法,是实现双足机器人稳定的步态非常重要的保证。

一些目前的研究成果已经计算出双足机器人的上下楼梯的步态规划。如Yusuke Sugahara以及其他人提出通过调整腰部关节的角度和预先设置的零点力矩(ZMP)轨迹来设计机器人的步态规划方法爬楼梯。而Jeon以及其他人通过四项多项式计算关节的运动轨迹,并优化的机器人上下楼所需的最小能耗,实现机器人上楼梯的步态规划。Eun-Su等人则通过优化多项式参数与动态加密算法和自适应遗传算法,并且结合低阶多项式来计算各关节的运动轨迹,最后研究轴承扭矩和能源消耗和ZMP,直至机器人能稳定上下楼梯从而规划机器人的上楼梯轨迹。Song Xian-xi等学者利用踝关节的运动轨迹,并调整踝关节的旋转角与利用模糊控制算法使ZMP的位置接近支撑区域的中心,实现机器人稳定上楼梯的步态规划。除此之外,其他一些国际和国内学者也做了相关研究关于双足机器人的上下楼梯或上下斜坡的步态规划。上面的算法主要是基于关节轨迹的预先计算,然后通过模糊控制算法或遗传算法优化步态等,这些算法相当复杂,因为计算量是非常巨大的,而且处理时间非常长。

本文在分析双足机器人动作的基础上,提出一个基于重复变换法(RDK)的新算法来规划攀爬动作和前向运动。算法的核心主要是通过腰部关节的运动来调整重心位置,以满足重心位置变化的需求,规划机器人能稳定地上楼梯且不让机器人摔倒的步态。

2.仿真模型的建立

双足机器人的仿真模型如图1所示。

图1 双足机器人的仿真模型

图1中的模型有 6个自由度。分别是每条腿有3个自由度,右腿包括踝关节JR1,膝关节JR2,髋关节JR3。而左腿包括踝关节JL1,膝关节JL2和髋关节JL3。腰关节是两个自由度的球形关节。J7能够使腰部关节向前和向后旋转,而J8能够使腰部关节左右摆动。根据资料分析,一个普通人的的质量75%都是集中于腰部的,所以我们可以忽略身体下部的质量,而在建立模型时可以令机器人的腰部位置设为重心点c建立坐标系,并简化机器人的上半身。假设每个关节的顺时针旋转为负方向,而逆时针旋转方向为正方向。接着我们可以忽略动力学的影响,只考虑机器人上楼梯的静态步行的过程。

通过静力学的公式,我们可以得到重心的投影坐标是:

在公式中,θ7是腰部关节向前和向后旋转的角度,而θ8是腰部关节左右旋转的角度。鉴于FL和FR在地面上的支撑力分别作用于机器人的左、右脚,所以我们得出:

在公式中g是重力加速度,M的质量重心,Lw是左脚和右脚之间的横向距离。在机器人上楼梯的过程中,首先应该保证机器人不会摔倒,所以当它双脚支撑全身时,ZMP应该时刻保持在两脚之间的区域,也就是说F = min(FR,FL)> 0。机器人一只脚支撑时,ZMP应该保持在支撑区域,也就是说,FL > 0或FR > 0。当机器人一只脚支撑整体时,支撑脚的中心是最稳定的支点,坐标设为B(x0,y0),为了表达机器人的稳定度,机器人ZMP和B点之间的距离关系,公式是:

3.上楼梯的步态分析

机器人上楼梯的动作可以分解为以下步骤:首先机器人从两脚的中间移动ZMP到支撑脚(右脚);然后当重心完全转移到右脚时,弯曲左腿并向前移动;第三重心逐渐从右脚移动向左脚,最后重心完全转移到左脚时,机器人弯曲左腿和伸直腰部上楼梯。然后机器人的右脚重复上述流程从而完成整个操作。在上述过程中,机器人的重心点C在地面上的投影如(1)所示,和运动的重心是图2所示:

图2 机器人的重心轨迹,在图中重心的初始位置是,重心移动是

A基于重复变换法(RDK)算法的重心移动

调整机器人的重心位置使其上部的身体满足ZMP的约束要求,而身体上半身的重心基于重复变换法算法实现。机器人上楼梯的过程中,可以通过旋转腰部关节的自由度θ7θ8来计算机器人的9个姿态。由于腰部关节有限制的旋转范围,根据(1)机器人的重心位置C投影在地上计算相应的每个姿势和根据(2)分别计算左脚和右脚的支撑力FL和FR。重复这种方式,直到机器人完成其重心的运动。详细算法描述如下:(1)设置机器人的腰部关节旋转范围(θimin,θimax)和初始角度θi(i = 1、2、3、7、8)。

(2)给定腰部关节两个旋转方向的旋转角度(-θi,0,+θi)(i = 7、8),并计算32个步态和相应的正运动学方程。

(3)在计算出的32个动作中,限定机器人不会摔倒的条件下,然后挑出符合要求的动作,并增加支撑力。如果上面的要求并不存在,也就是说支撑脚的反作用力或FR小于0,那么这意味着目标任务不能完成。

(4)通过(3)得出在每个符合要求的姿势中,设ZMP到最稳定的支点距离l,并选择最低值lmin是机器人的步态。然后再回到(2)。

不断重复上述过程并更改腰部关节的步态。根据优化条件规划ZMP运动轨迹,使机器人本身不摔倒且满足需求,使其最稳定地上楼梯。

B上楼梯的步态规划算法

由于机器人的重心在两脚中间,根据该算法机器人的总重心转移到支撑脚(右脚),并抬高另一只脚(左脚)时,机器人的重心保持在前向(右脚),我们可以得到旋转角θL1和θL2,根据机器人每个关节之间的几何关系确定腿的姿势。然后根据该算法对重心的运动,ZMP通过机器人调整腰部关节θ7和θ8转移到左脚。接下来,逐渐伸直腰部和支撑脚(左脚)来抬起身体。抬起身体的同时,ZMP应该保持固定(左脚下)。详细的方法是通过正向运动学确定重心的位置C在支撑脚(左脚),然后基于重复变换法优化腰部关节的旋转角和总重心的位置,实现保持ZMP保持不变。机器人重复上述过程,直到腰部和支撑脚再伸直,抬起身体能够完整爬楼梯。具体方法描述如下:(1)根据上述步骤和机器人之间的几何关系,确定各关节的旋转角θL1和θL2。(2)根据算法对重心的运动在一个部分中,移动机器人的ZMP到左脚。

(3)为了伸直腿和抬起身体,给左膝关节的θL1和踝关节θL2相应的微小增量+θLi(i = 1、2),然后确定重心的位置C在左脚的正向运动学方程。

(4)基于重复变换法优化腰部关节的转动角度θ7和θ8,总重心的位置和保持ZMP不变。回到3),重复上述过程,直到机器人抬起身体,再次申直腰部和支撑脚,并顺利地上楼梯。

4.仿真例子

根据上面的仿真模型和算法,我们模拟机器人上楼梯的动作。让高度Sh = 150mm和宽度Sw = 275mm,机器人的质量M = 60 kg,脚的宽度W = 70mm。机器人各关节的参数和初始角的设置如表1和表2所示。

表1 机器人的结构参数

图3双足机器人的步态图

机器人上楼梯的整个过程如图所示。图4表示ZMP的变化轨迹,虚线的部分是两个脚之间的区域,灰色线是正确的位置。图6表示支持脚的力随着时间的变化。图7表示各关节的角度随着时间的变化。

机器人的ZMP位置从两脚之间移动到右脚,令FR变得越来越大。虽然FL= 0,但是ZMP的位置完全在右脚。保持ZMP不变,机器人可以弯曲左脚并前向运动。可以通过几何关系计算出左下肢关节角度即θL1和θL2。在这个阶段,机器人的步态变化如(a)和(b)所示的图,图4所示为ZMP轨迹变化。图6所示脚的支持力随时间变化的图。图7表示腰部关节的角度随时间的转换和基于重复变换法的重心的运动。机器人反复调整θ7和θ8移动身体,使ZMP逐渐转移到左脚。在运动的过程中,身体上部的运动如图(c),图(d)和图(e)所示。相关参数变化作为EF的一部分如图4,图6和图7。

由支撑脚(左脚)的正向运动学,我们可以逐步确定重心位置和腰部关节参数,基于重复变换法确定腰部关节的构成(θ7和θ8),同时保持机器人的ZMP。重复上面的过程,直到腰部和支撑脚协调和抬起身体完成上楼梯的动作。机器人的姿态在这个过程中显示为图(e)-(h),腰部关节角和左脚的变化如图7所示。在这个过程中腰和左脚变得笔直,机器人的ZMP本质上是保持在点F如图4所示,然后右脚弯曲向前移动一步。机器人以这种循环方式完成上楼梯的动作。

图4双足机器人的ZMP轨迹

图7双足机器人的关节轨迹

讨论:本文仍然适用于参数变化时,也就是说增加脚步的高度或跨度,机器人可以调整其ZMP在支撑脚上的位置。但当姿态的参数超过机器人重心的移动范围,机器人将无法满足ZMP的要求上楼梯。如果我们不考虑机器人的各关节的扭矩范围和所有机器人的参

数,设置与上一节相同的高度和宽度,分别改变Sh = 350mm和Sw = 650mm。机器人上楼梯的动作显示在图8。从图中,我们可以看到,无论怎样的上半身动作,也就是说无论θ7和θ8如何调整,ZMP不能移动到机器人的支撑脚来完成其上楼梯。

图8 双足机器人的姿态图

事实上在关节可承受扭力矩围内,机器人的各关节都可以承受上楼梯所需的力。当我们考虑各关节的扭矩范围时,我们只需要改变算法(4)的一部分,根据反复调整ZMP的重复变换法在第三节的其中一个部分,可以改变扭矩Ti(i = 1、2、3、7、8)各关节的姿势(在第3部分)并确定关节之间的最小转矩值所做出相应的机器人姿势,然后回到(2)。

5.结论

本文以6自由度机器人为例提出了一个重复变换法来规划上楼梯的步态,并得出以下结论:机器人可以通过其腰部关节调整重心的位置,以满足ZMP稳定的要求,基于重复变换算法(RDK)规划上楼梯动作和利用机器人的正运动学可以先后规划机器人的稳定步态。算法也适用于机器人的下楼梯的动作。

本文只是初步研究双足步行机器人上楼梯的静态步态。在未来的工作中,我们将进一步分析动态步态规划来补充本文的算法。

【参考文献】

[1] Zhang Qin,Wu Zhi-bin,Kamiya Yoshitsugu.Lift-up gene-ration for robot using repeatedly direct kinematics [J].Robot,2011,33(3): 340-346.[2] Liu Li,Wang Jin-song,Chen Ken,et al.The research on the biped humanoid robot THBIP-I[J].Robot,2002,24(3): 262-267 [3] Yusuke Sugahara,Akihiro Ohta,Hun-ok Lim,et al.Walking up and down stairs carrying a human by a biped locomotor with parallel mechanism[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,Canada: IEEE,2005: 1489–1494.[4] Kweon Soo Jeon,Ohung Kwon,Jong Hyeon Park.Optimal trajectory generation for a biped robot walking a staircase based on genetic algorithms[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,Japan: IEEE,2004: 2837-2842.[5] Jong-Wook Kim.On the global convergence of univariate dynamic encoding algorithm for searches(uDEAS)[C]//SICE-ICASE International Joint Conference,Busan,Korea: IEEE,2006: 5776–5781 [6] Taegyu Kim,Jong-Wook Kim.Planning walking patterns of a biped robot with uDEAS optimization[C]//International Conference on Control,Automation and Systems 2007,Seoul,Korea: IEEE,2007,2693–2698(2007).[7] Eun-Su Kim,Jo-Hwan Kim,Jong-Wook Kim.Generation of optimal trajectories for ascending and descending a stair of a humanoid based on uDEAS[C]//IEEE International Conference Fuzzy System,Korea: IEEE,2009: 660-665.[8] Eun-Su Kim,Jo-Hwan Kim,Jong-Wook Kim.Three dimensional modeling of a humanoid in three planes and a motion scheme of biped turning in standing[C]//IET Control Theory and Applications,2009: 1155-1166.[9] Song Xian-xi,Zhou Feng,Liang Qing,et al.Gait Planning and control of a biped robot climbing upstairs [J].Computer Simulation,2011,28(4): 176-180 [10] Chen Hua-zhi,Xie Cun-xi,Zeng De-huai.Simulation of a neural network-based path planning algorithm for mobile robot [J].Journal of South China University of Technology,2003,31(6): 56-60.[11] Ke Xian-xin,Gong Zhen-bang,Wu Jia-qi.Restrictions on a realizable gait of a biped robot climbing up stairs [J].Journal of Applied Sciences,2003,21(1): 63-67 [12] Xu Kai,Chen Ken,Lu Li,et al.Fast walking gait planning algorithm for humanoid robots based on optimization of the main support leg [J].Robot,2005,27(3): 203-210.[13] Bi Sheng,Min Hua-qing,Cheng Qiang,et al.Gait planning of humanoid robots walking on slope [J].Journal of South China University of Technology,2010,38(11): 148-154 [14] Bi Sheng,Min Hua-qing,Cheng Qiang,et al.Multi-objective optimization for a humanoid robot climbing stairs based on genetic algorithms[C]// 2009 IEEE International conference on Information and automation.Zhu Hai: IEEE,2009: 66-71.[15] G.Figliolini,M.Ceccarelli.Climbing stairs with EP-WAR2 biped robot[C]// Proceedings of the 2001 IEEE International Conference on Robots and Automation,Seoul,Korea: IEEE,2001: 4116-4121 [16] Tomoyuki Suzuki,Kouhei Ohnishi.Trajectory planning of biped robot with two kinds of inverted pendulums[C]//12th International Power Electronics and Motion Control Conference.portoroz.IEEE,2006: 396-401

致谢

篇7:四足步行机器人外文翻译

足式步行是自然界许多哺乳类动物所拥有的一种步行方式,该类步行方式具有较高的灵活性,能够通过凹凸不平的地表环境。步行机器人的步态研究就是依据自然界足式步行生物的步行姿态而展开的。

步行机器人的移动是通过其腿部机构按照一定的规律来实现周期性的运动,从而实现其步行过程的。为保证机器人能够顺利通过外界的地表环境,实现特定的工作目的,需要规划步行机器人合理的步行姿态,即机器人的步态。关于机器人步态的相关研究是实现步行机器人能否稳定步行的基础,任何步行机器人无论是双足或是多足机器人,要实现其步行过程都离不开步态规划这一关键环节的。显然开展此类问题的研究对于四足步行机器人乃至其他多足机器人来说,都具有非常重要的理论和实际意义。

1 技术分析

机器人的步态是指机器人在步行运动过程中,机器人的各部分在时序和空间上的一种协调关系。多足机器人要体现良好的地面适应能力和行走灵活性,需要规划合理、有效的行为步态。众所周知,四足动物的步态有各种各样的形态,四足机器人的步态也存在着各式各样的差异。当不考虑机器人各条腿同时抬起(lifting)或同时着地(placing)的情况时,根据它们的不同动作顺序,n条腿所产生的步态的全部组合为N(n),此时N(n)=(2n-1)!,四足情况下其步态就有N(4)=5040种,可见其种类之多。但是并不是任意一种步态都能够保证机器人能够实现稳定步行的。因而需要对机器人的各条腿的动作顺序进行相应的动作规划,即需要进行步态规划。

四足步行机器人在行走时首先要保证静态稳定,因此,其运动的任一时刻都应有3条腿与地面接触从而来支撑机体,同时,机体的重心必须落在3条腿支撑点所构成的三角形区域内,这样机体才能避免发生倾斜。在这个前提下4条腿按照一定的顺序抬起和落下,进而实现行走过程。在行走过程中,机体相对地面始终作向前的运动,重心始终朝着前进的方向移动。4条腿轮流抬跨,相对机体也作向前运动,不断改变腿部落地的位置,构成新的稳定三角形,来保证静态稳定。机体的运动和腿相对机体的运动必须在任何时刻保证一致,才能使机体的中心始终落在3足支撑点所构成的支撑三角形内。这是步行机器人实现其稳定步行的基本的条件,也是多足步行机器人步态理论的基础。

机器人的步态规划是机器人技术中的一个重要组成部分,是实现机器人稳定持续步行的基础,机器人能否实现持续的步行运动取决于其步态规划的合理性与否。通过规划出机器人在某种特殊地表形态下的步态,可以实现四足步行机器人诸如:慢走、转弯、攀爬楼梯、跳跃、奔跑等功能。

分析步行机器人的步行过程中腿的运动,不难发现,其腿部机构的有两个方面的主要任务,一方面支撑着主要由躯体所组成的本体,一方面使本体同时向步行方向移动。在完成了支撑本体,并向步行方向移动的任务之后,为了再一次使它能完成相同的任务,必须把腿暂时抬起浮在空中,并向步行方向摆动。因此,如果把本体看成是固定不动的话,机器人的脚部轨迹如图1(a)所示,它由支撑本体的支撑相(support phase)和其脚部向步行方向跨出的摆动相(swingingphase)所组成,当考虑机器人本体的移动时,实际的轨迹曲线如图1(b)所示。

机器人第i条腿的周期时间为其摆动相的时间与支撑相的时间之和。机器人第i条腿的占空系数βi被定义为:

βi的值一般在0和1之间。对于多足步行机器人,若其足数是偶数且βi<0.5时,一般是动步态,存在着机器人腾空的时刻。国内外四足机器人有关步态的研究都是围绕着机器人的规则步态而展开的。所谓规则步态是指机器人所有腿的占空系数β都相等的步态。在这种步态中nβ(n为腿数)表示平均同时支撑的腿数。在自然界中几乎所有的动物都采用规则步态,这是因为在规则步态中,动物有着较高的纵向稳定裕量,从而可以确保步行过程的平稳性。

2 研究方法

对于本文所研究的四足步行机器人其规则步态的占空系数的选择,见表1:

通过该课题的研究,我们将规划出四足模块化步行机器人的一种稳定爬行步态。考虑该四足模块化机器人的自身机械结构,初步确定占空系数β值的范围为,即实现机器人的一种稳定爬行步态。

根据自主研制的四足机器人为研究对象进行研究,如图2所示。

3运动参数计算

步行机器人的速度是:50mm/s,步距为160mm,首先建立世界坐标系,如图3为机器人简图,在控制程序中,需要指定步态设计的数据包括:机身几何中心位置、机身姿态角、四个足的足端位置。如下表2所示为步态设计数据。

4 步态设计图

步态图是描述步行机器人在一周期循环的过程中,各腿相继抬跨的顺序和各腿足尖相对机体的位移图。只有完成步行机器人的步态图才能实施腿机构、驱动系统和控制方案的设计,可见步态图是步行机器人最先要进行研究的工作,十分重要。如图4所示。

5 结论

本文分析了四足步行机器人在低速爬行时,能稳定行走的条件。结合实验室自主研制的四足机器人进行实验研究,求解了稳定行走的步态参数。作出了一个周期内低速爬行四足步行机器人能稳定行走时足尖相对机体的位移图,并通过实验验证的步态参数正确、直观,明了。经过实验,四足机器人能够达到很好的稳定性。因此,四足机器人的稳定性研究对其应用到具体的领域具有十分重要的意义。

参考文献

[1]马培荪,等.四足步行机器人模糊神经网络控制[J].机器人. 1997,19(1):56-60.

[2]马培荪,等.全方位四足步行机器人的运动学研究[J].上海交通大学学报,1994,28(2):39-47.

[3]黄亚楼,等.机器人力控制[J].机器人.1991,13(5):55-61.

上一篇:1-6劳动关系管理下一篇:联络工委工作报告