函数单调性与导数解读

2024-05-01

函数单调性与导数解读(精选12篇)

篇1:函数单调性与导数解读

课后反思

1.本节课的亮点:

教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也渗透了归纳推理的数学思想方法,培养了学生的探索精神,积累了探究经验。

2.不足之处:

教学引入时间较长,致使整堂课时间安排显得前松后紧; 在引导学生探讨如何把导数与函数的单调性联系起来时,列举的函数有点多;学生对与数形结合的理解还不是很熟练,今后应多加强训练。

3.改进的思路:

①选取函数时应简单,易懂

②在引导学生提问时,问题要简明扼要 ③多进行公开课,锻炼自己的胆量和语言表达能力。

篇2:函数单调性与导数解读

恩平一中谭青华

本节课郑凯老师运用多种教学手段,创设了丰富、生动的教学情境,设计了新颖、活泼的学生活动。成功的地激发了学生的学习兴趣。下面我谈谈我的几点看法:

一、教学目标

本节课的教学目标简明扼要、具体,便于实施,便于检测,注重数学思想、能力的培养、兼顾情感态度与价值观的教育。广度和深度都符合数学课程标准和教材的要求,符合学生的实际情况。教师准备的也比较充分,清楚的知道学生应该理解什么、掌握什么、学会什么。本堂课很好的完成了预定的教学目标。

二、教学内容

执教者因材施教,充分考虑到该班学生的实际情况,把本节课分为两个课时进行。教学内容紧紧围绕教学目标展开。准确的确定了本节课的教学重、难点:探究函数的单调性与导数的关系,并在处理时,分为三个层次进行,层层递进,化难为易。学生易于理解、掌握。很好的处理了新旧知识的结合点,抓住知识的生长点,讲授具有启发性,层次详略得当。对于课后作业的布置分必做题、选做题、思考题。很好的照顾到了不同知识水平的学生,鼓励学生不断努力、挑战自我,体现了分层教学思想。

三、教学方法

教师本堂课主要采用启发式、探究式的教学方法,并对学生进行学法的指导。使学生积极思维、主动学习、自主学习,从而达到会学的目的。让学生参与尝试、猜想、试验、探索与发展的过程,培养学生良好的思维习惯与思维品质。充分发挥教师的主导作用,学生的体作用。最大限度地提高了课堂效率。主要体现在以下几个方面:

1、情境引入:引发学生对函数的单调性与导数关系的思考。

2、探究关系:引导学生从图像、切线、定义三个不同的角度去探究。

3、规律总结、课堂总结:都先是学生思考回答,老师再补充完善,体现教师主导、学生的主体作用。

四、教学基本功

教师的教态自然、评议清晰富有启发性,在语言表达方面还可以简练些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。板书设计合理;组织教学,驾驭课堂的能力较强。

五、教学效果

本堂课在规定的时间内完成了教学任务,知识的传授、能力的培养、思想与道德教育等方面都实现了教学目标的要求;从学生的情况来看学生注意力集中、积极参与本堂课的学习,课堂气氛非常活跃。教学效果良好。

篇3:导数与函数的单调性

一、导数与函数的单调性的关系

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性.下面以增函数为例作简单的分析,前提条件都是函数y=f (x)在某个区间内可导.

(一)f′(x)>0与f (x)为增函数的关系.

f′(x)>0能推出f (x)为增函数,反之则不一定.如函数f (x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,∴f′(x)>0是f (x)为增函数的充分不必要条件.

(二)f′(x)≠0时,f′(x)>0与f (x)为增函数的关系.

若将f′(x)=0的根作为分界点,因为规定f′(x)≠0,即抠去了分界点,此时f (x)为增函数,就一定有f′(x)>0.∴当f′(x)≠0时,f′(x)>0是f (x)为增函数的充分必要条件.

(三)f′(x)≥0与f (x)为增函数的关系.

f (x)为增函数,一定可以推出f′(x)≥0,反之则不一定,因为f′(x)≥0,即为f′(x)>0或f′(x)=0.当函数在某个区间内恒有f′(x)=0,则f (x)为常数,函数不具有单调性.∴f′(x)≥0是f (x)为增函数的必要不充分条件.

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性.因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题.但在实际应用中还会遇到端点的讨论问题,要谨慎处理.

对于f′(x)<0与函数单调递减关系,仿照上面的三点即可得到答案.

二、单调区间的求解过程

已知函数y=f (x),其单调区间的求解过程如下:

(1)分析函数y=f (x)的定义域;

(2)求函数y=f (x)的导数y′=f′(x);

(3)解不等式f′(x)>0,解集在定义域内的部分为增区间;

(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.

三、函数单调区间的合并

函数单调区间的合并主要依据是函数f (x)在(a, b)单调递增,在(b, c)(其中a

四、应用举例

例:求下列函数单调区间

注意:此题的单调递增区间不能表示为

(2) ∵∴当x≠0时都有y′>0,

令y′>0,解得x<-k或x>k;

篇4:第2讲 函数单调性与最值

函数单调性是函数的一个重要性质,在研究函数时是一个重要手段,函数最值在处理函数综合问题用途很多. 高考中经常以一道小题直接考查,就是5分,当然,还会在综合题中用到相关知识,那样,分值就更大.

命题特点

结合这几年高考题,函数单调性主要有如下一些命题特点:(1)考查求函数单调性和最值的基本方法. (2)利用函数的单调性求单调区间. (3)利用函数的单调性求最值和参数的取值范围. (4)函数的单调性和其它知识结合综合考查求函数最值、比较大小、解不等式等相关问题. (5)结合具体函数单调性求最值.多以选择填空题形式出现,也有与最值,参数范围等结合在解答题中出现.下面以例题来体现高考特点.

1. 单调性的判断是基础

例1 下列函数中,在[0,+∞]上为增函数的是 ( )

A. [y=lnx+2] B. [y=-x+1]

C. [y=12x] D. [y=x+1x]

解析 直接利用基本初等函数和复合函数单调性来判断.

答案 A

例2 求函数[y=log12(x2-3x+2)]的单调区间.

解析 令[u=x2-3x+2],则原函数可以看作[y=log12u]与[u=x2-3x+2]的复合函数.

令[u=x2-3x+2>0],则[x<1]或[x>2].

∴函数[y=log12(x2-3x+2)]的定义域为(-∞,1)∪(2,+∞).

又[u=x2-3x+2]的对称轴[x=32],且开口向上.

∴[u=x2-3x+2]在(-∞,1)上是单调减函数,

在(2,+∞)上是单调增函数.

而[y=logu]在(0,+∞)上是单调减函数,

∴[y=log12(x2-3x+2)]的单调减区间为(2,+∞),

单调增区间为(-∞,1).

点拨 复合函数单调性必须注意两点:(1)定义域优先;(2)分清内外层函数的结构及各自的单调性. 要熟悉基本初等函数性质,复合函数单调性遵循“同增异减”原则,还要注意优先考虑定义域.

2. 利用单调性求参数范围

例3 若函数[fx=x2+ax+1x]在[12,+∞]上是增函数,则[a]的取值范围是( )

A. [[-1,0]] B. [[-1,+∞)]

C. [[0,3]] D. [[3,+∞)]

解析 通过求导转化为导数非负恒成立,再分离变量求解.

答案 D

例4 已知函数[f(x)=logax (x≥1),-ax2+(2a+1)x-3(x<1),][(a>0]且[a≠1)],如果对任意[x1≠x2],都有[(x1-x2)[f(x1)][-f(x2)]>0]成立, 则[a]的取值范围是 .

解析 分段函数的单调性要注意每段单调和端点处比较,即[loga1>-a+(2a+1)-3].

答案 [1

点拨 分段函数是高考重点,另外本题还给出了单调函数的其它表示形式[(x1-x2)[f(x1)-f(x2)]>0].导数与单调性结合是高考热点,尤其是和求参数范围结合的题目更是高考“宠儿”,分离参数这一常见方法更应重视.

3. 与不等式结合是常见题型

例5 已知偶函数[f(x)]在区间[[0,+∞)]上单调递增,则满足[f(2x-1)

解析 (1)当[x>1]时.由[f(x)]在[[0,+∞)]上增函数及[f(2x-1)

解得,[x<23],所以[12

(2)当[x<12]时.由偶函数[f(x)]在[[0,+∞)]上是增函数知,[f(x)]在[(-∞,0)]上是减函数,

所以[f(2x-1)-13].

解得[x>13],故[13

综上,[x]的范围是[(13,12)∪(12,23)]

答案 [(13,12)∪(12,23)]

点拨 本题将原不等式等价为[|2x-1|<13],更为方便.函数型不等式通常就是利用单调性去掉函数符号,转化为一般不等式求解.

4. 函数单调性与最值

例6 已知函数[f(x)=x2+2x+ax],[x∈][1,+∞).

(1)当[a=12]时,求[f(x)]的最小值;

(2)若对任意[x∈[1,+∞),f(x)>0]恒成立,求实数[a]的取值范围.

解析 (1)当[a=12]时,[f(x)=x+12x+2].

设[x1>x2≥1],则[f(x1)-f(x2)=(x1-x2)+12x1+12x2]

=[(x1-x2) ·2x1x2-12x1x2].

∵[x1>x2≥1],

∴[f(x1)>f(x2)],

∴[f(x)]在[1,+∞)上为增函数.

∴[f(x)≥f(1)=72],即[f(x)]的最小值为[72].

(2) ∵[f(x)>0]在[x∈[1,+∞)]上恒成立,

即[x2+2x+a>0]在[1,+∞)上恒成立,

∴[a>[-(x2+2x)]max].

∵[t(x)=-(x2+2x)]在[1,+∞)上为减函数,

∴[t(x)max=t(1)=-]3, ∴[a>-]3.

nlc202309032056

∴[f(x1-x2)<0],即[f(x1)

∴[f(x)]在[R]上为减函数.

点拨 求函数最值通常利用函数单调性求,在处理时必须先判断函数单调性,再确定最值点.函数最值和值域是高中考查重点,利用单调性求最值是重要方法,遇到这类问题,可以先判断一下函数单调性,再直接求其最值.

备考指南

(1)函数单调性的定义与判断是解决单调性的基础,要求熟练掌握基本初等函数的单调性、复合函数单调性判别方法.

(2)重点理解单调性的意义,注意单调函数的等价性,即函数[f(x)]单调增有[f(x1)>f(x2)?x1>x2],[f(x)]单调减就有[f(x1)>f(x2)?x1

(3)会利用转化与化归思想解决恒成立问题,注意分离变量等常见处理方法.

限时训练

1. 已知函数[f(x)=loga|x|]在(0,+∞)上单调递增, 则 ( )

A. [f(3)

C. [f(-2)

2. 下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是 ( )

A. [y=x2] B. [y=|x|+1]

C. [y=-lg|x|] D. [y=2|x|]

3. 函数[f(x)=ln(4+3x-x2)]的单调递减区间是 ( )

A. (-∞, [32]] B. [[32],+∞)

C. (-1,[32]] D. [[32],4)

4. 设函数[fx=1,x>0,0,x=0,-1,x<0,][g(x)=x2?f(x-1)],则函数[g(x)]的递减区间是 ( )

A. (-∞,0] B. [0,1)

C. [1,+∞) D. [-1,0]

5. 若函数[f(x)=loga(x+1)(a>0,a≠1)]的定义域和值域都是[0,1],则[a]等于 ( )

A. [13] B. [2]

C. [22] D. 2

6. 定义在[R]上的函数[f(x)]在区间(-∞,2)上是增函数,且[f(x+2)]的图象关于[x=0]对称,则 ( )

A. [f(-1)f(3)]

C. [f(-1)=f(3)] D. [f(0)=f(3)]

7. 设函数[y=f(x)]在(-∞,+∞)上有定义,对于给定的正数[K],定义函数[fK(x)=f(x),f(x)≤K,K,f(x)>K,]取函数[f(x)=2-|x|],当[K=12]时,函数[fK(x)]的单调递增区间为 ( )

A. (-∞,0) B. (0,+∞)

C. (-∞,-1) D. (1,+∞)

8. 已知函数[f(x)]的导函数为[f(x)=4+3cosx,][x∈(-1,1)],且[f(0)=0],如果[f(1-a)+f(1-a2)<0],则实数[a]的取值范围是 ( )

A. (1,[2]) B. (0,1)

C. (-∞,1)∪(2,+∞) D. (-∞,-2)∪(1,+∞)

9. 已知函数[f(x)=log2x-2log2(x+c)],[c>0]. 若对任意的[x∈(0,+∞)],都有[f(x)],则[c]的取值范围是 ( )

A. [(0,14]] B. [[14,+∞)]

C. [(0,18]] D. [[18,+∞)]

10. 已知函数[fx=x2-2a+2x+a2,gx=-x2][+2a-2x-a2+8.]设[H1x=maxfx, gx, H2x=][minfx,gx,maxp,q]表示[p,q]中的较大值,[minp,q]表示[p,q]中的较小值,记[H1x]得最小值为[A,][H2x]得最小值为[B],则 ( )

A. [a2-2a-16] B. [a2+2a-16]

C. [-16] D. [16]

11. 函数[f(x)=2xx+1]在[1,2]上的最大值和最小值分别是 .

12. 设函数[y=x2-2x,x∈[-2,a]],若函数的最小值为[g(a)],则[g(a)]= .

13. 已知[t]为常数,函数[y=|x2-2x-t|]在区间[0,3]上的最大值为2,则[t=] .

14. 已知函数[f(x)=e-x-2,x≤0,2ax-1,x>0,][a]是常数且[a>0]. 对于下列命题:①函数[f(x)]的最小值是-1;②函数[f(x)]在[R]上是单调函数;③若[f(x)>0]在[12,+∞]上恒成立,则[a]的取值范围是[a>]1;④对任意的[x1<0,x2<0]且[x1≠x2],恒有[f(x1+x22)

15. 已知[f(x)=xx-a(x≠a)].

(1)若[a=-2],试证[f(x)]在(-∞,-2)上单调递增;

(2)若[a>0]且[f(x)]在(1,+∞)上单调递减,求[a]的取值范围.

16. 已知函数[f(x)]在(-1,1)上有定义,[f12]=-1,当且仅当[0

(1)[f(x)]为奇函数;

(2)[f(x)]在(-1,1)上单调递减.

17. 函数[f(x)=x2+x-14].

(1)若定义域为[0,3],求[f(x)]的值域;

(2)若[f(x)]的值域为[-12,116],且定义域为[[a,b]],求[b-a]的最大值.

18. 定义:已知函数[f(x)]在[[m,n](m

(1)判断函数[f(x)=x2-2x+2]在[1,2]上是否具有“DK”性质,说明理由.

(2)若[f(x)=x2-ax+2]在[[a,a+1]]上具有“DK”性质,求[a]的取值范围.

篇5:函数单调性与导数解读

本节课的内容是苏教版选修1-1第一章第二部分的内容(文科)。这一知识点在高考中是热点,06年、08、09年广东、江苏高考均以解答题出现,从这节课中我有以下反思:

一、有明确的教学目标

(一)知识目标(考试大纲与考试说明)

1、了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间.

2、了解函数在某点取得极值的必要条件和充分条件;会用导数求函

数的极大值、极小值;会求闭区间上函数的最大值、最小值(注:对多项式函数一般不超过三次).

3、生活中的优化问题.会用导数解决某些实际问题.

(二)能力目标:让学生具有解高考题的能力。

(三)情感目标:通过本节课的教学,让学生知道数学来源于生活。并且应用于生活。通过研究导数的实际应用增强学生的数学应用意识体现数学价值;另一方面,在近几年高考中导数应用几乎连连出现。

二、能突出重点、分散难点

本课的教学重点是:(1)利用导数研究函数的性质;(2)导数在实际生活中的应用。这是由于:一方面,通过初等方法与导数方法在研究函数性质过程中的比较,让学生体会导数方法在研究函数性质中的一般性和有效性。本课的教学难点是:函数的单调性与导数的关系;极值概念的理解。由于选修课本没有极值概念而用极限引入导数,导致许多学生不理解导数的本质,因此学习中只能将导数作为一种规则。然而新课程强调对导数本质的认识,不仅将导数作为一种规则,更作为一种重要的思想方法来学习。另外,由于当时高二下学期时间紧,教学时仅仅让学生知道如何解题而已,而对于相互间的关系和概念的理解很少涉及,因此在现在复习中很有必要解决这些问题。在教学中采用选择题或填空题形式在基础题中先让学生练习找出问题及出错原因,然后通过知识整合加以总结,再通过典型例题分析加以强化,从而真正突破难点。

三、善于应用现代化教学手段并结合学案教学。

应用多媒体教学和学案教学,(一)有效地增大堂课的课容量,(二)减轻板书的工作量,有更多精力讲深讲透所举例子,提高讲解效率;

(三)是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。

四、根据具体内容,选择恰当的教学方法

本课教学中以讲练结合为主,同时配合使用导思点拨等教学方法。高三学生通过前面复习与练习已经对相关内容有了一定的认识,但是在解题规范性与运算技巧的掌握等细节上仍存在问题,因此课堂上教师多给学生练习时间,再通过适时讲评实现总结与提高。当然对综合题的解决与解题突破口的选择也需要老师在课堂上适时和适当的点拨。

课堂上还将采用多媒体展示、学生独立回答和集体回答、学生板演等多种手段,激发学生的学习兴趣,提高课堂复习效率。当然,在学生回答之后,老师要及时给学生一个鼓励性的评价,以增强学生回答的信心,使课堂始终保持一种热烈、积极、主动的学习气氛。

五、关爱学生,及时鼓励

本节课的宗旨是着眼于学生的发展。对学生在课堂上的表现,及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。

六、充分发挥学生主体作用,调动学生的学习积极

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。

在这节课中,我尽量少讲,让学生多动手,动脑操作

7、渗透教学思想方法,培养综合运用能

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。本节课我采用了数形结合的思想、转化的思想。

8、对教学效果的反思

篇6:导数与函数的单调性的教学反思

1.注重教学设计

本节课由于提前撰写了教学设计,并且经过了精心的修改,通过课堂教学的实施,能够把新课标理念渗透到教学中去,体现了以学生为主体,以教师为主导的作用发挥的比较到位,学生能极思考,思维敏捷,合作学习氛围浓厚,是一堂成功的教学设计课。

2.注重探究方法和数学思想的渗透

教学过程中教师指导启发学生以循序渐进的模式由简到难,再从理论上探究验证,这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知。同时也渗透了归纳推理的数学思想方法。培养了学生的探索精神,积累了探究经验。

3.突出学生主体地位,教师做好组织者和引导者

教师在整个教学过程一直保持着组织者与引导者的身份,通过抛出的若干问题,促使学生主动探索、积极思维。充分发挥学生的主动性,让学生在动脑、动口、动手的活动中掌握知识和方法,提炼规律。并体验发现规律的喜悦感,激发热爱数学的积极情绪。

4.现代信息技术的合理使用

多媒体的使用,第一,在教学上节省了时间,让学生有更多时间去探究。第二,利用几何画板的优势,使原本不能画出的图像都通过几何画板画出,直观的验证了函数的导数的正负与单调性的关系。帮助学生发现规律。使探究落到实处。

二、本节课存在的不足之处是:

(1)课件中有些漏掉的部分。

(2)作业部分未展示。

(3)复习导数概念时,由于学生说不清楚,教师没及时中断,导致引入时间有点长。

三、改进思路:

(1)加强学习现代信息技术,提高制作多媒体技术的水平。

篇7:函数单调性与导数解读

ax11ax

xf(x),所以f(x)为奇函数。(1)f(x)xa1a1

ax1(ax1)221(2)f(x)x,a1ax1ax1

因为a0,所以a11,所以0

所以f(x)的值域为(1,1).(3)任取x1,x2R,且x1x2,则 xx22,ax1

ax11ax2122f(x1)f(x2)x1x2x2x1 a1a1a1a1

2(ax11)2(ax21)2(ax1ax2) x1(ax11)(ax21)(a1)(ax21)

xx因为a1,x1x2,所以a1a2,所以f(x1)f(x2)0,即f(x1)f(x2)

篇8:利用导数解决函数的单调性问题

热点题型一:直接利用导数研究函数的单调性

【例1】设函数f (x) =ln (2x+3) +x2, 求f (x) 的单调区间.

思维拓展:已知函数f (x) =ln (2x+3) +x2, 求f (x) 在上的极值与最值.

热点题型二:利用导数求含参函数的单调性

【例2】已知函数f (x) =ax-lnx, x∈ (0, e], 判断函数f (x) 的单调性.

热点题型三:已知函数的单调性, 求参数的范围

【例3】已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在区间 (-1, 1) 上是增函数, 求r的取值范围.

解析:f (x) =x2 (1-x) +t (1+x) =-x3+x2+tx+t, 则f′ (x) =-3x2+2x+t.

若函数f (x) =a·b在区间 (-1, 1) 上是增函数, 则f′ (x) ≥0在区间 (-1, 1) 上恒成立, 即t≥3x2-2x在区间 (-1, 1) 上恒成立.记g (x) =3x2-2x, 则t≥g (x) 在区间 (-1, 1) 上恒成立, 等价于t≥g (x) max成立.由于二次函数g (x) =3x2-2x的对称轴是x=31, 所以g (x) 在区间[-1, 1]上的最大值为g (-1) =5, 因此t≥5.

思维拓展1:已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在区间 (-1, 1) 上是单调函数, 求t的取值范围.

解析:f (x) =a·b在区间 (-1, 1) 上是单调函数, 则f′ (x) ≥0或f′ (x) ≤0恒成立.

点评:已知函数在某区间上单调, 即f′ (0) ≥0或f′ (x) ≤0恒成立, 其中f′ (x) 不恒为0.

思维拓展2:已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在R上存在单调递增区间, 求t的取值范围.

解析:f (x) =a·b在R上存在单调递增区间, 转化为f′ (x) >0在R上有解, 即-3x2+2x+t>0在R上有解, 即t>3x2-2x有解.

篇9:如何利用导数研究函数的单调性

利用导数研究函数单调性,方法不一,选择恰当的方法,简洁明了;反之,虽然也可以进行到最后,但是需要大量的计算.本文将各类方法进行了总结,并点明了注意问题,分析了各方法的优点、缺点、适用范围.

一、 正用

例1求函数y=3x2-2lnx的单调递增区间.

解析:函数的定义域为(0,+∞)

∵ f′(x)=6x-2x=2(3x2-1)x

∴ 令f′(x)>0,结合x>0,得x>33

∴ f(x)的单调递增区间为33,+∞

【方法总结】用导数方法求函数单调区间:首先,求函数定义域、求导f′(x);然后令f′(x)>0得到函数的递增区间,令f′(x)<0得到函数的递减区间.

二、 逆用

例2已知函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,求m的取值范围.

【方法一】若函数f(x)在区间(a,b)上单调递增,则f′(x)≥0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的;若函数f(x)在区间(a,b)上单调递减,则f′(x)≤0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的.恒成立问题可以转化成求最值问题.

解析:∵ 函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,

∴ f′(x)=2x3-mx2≥0在x∈[2,+∞)上恒成立

∴ m≤2x3在x∈[2,+∞)上恒成立

∴ m≤(2x3)min,x∈[2,+∞)

∵ 当x∈[2,+∞)时,y=2x3是增函数

∴ (2x3)min=16∴ m≤16

当m=16时,f′(x)≥0且f′(x)=0的点是孤立的(只有f′(2)=0),∴ m=16合题

∴ m的取值范围为(-∞,16]

适用性分析:这是解决“逆用”问题的基本方法.注意检验f′(x)=0的点是否孤立.

例如:(1) 已知函数g(x)=ax+1在[1,2]上是减函数,则a的取值范围是a>0(a=0时,经检验不合题).

(2) 若函数f(x)=cosx+px+q在x∈R上是减函数,则p的取值范围是p≤-1(p=-1时,f′(x)=0的点有无数个,但这些点是孤立的,故p=-1合题)

【方法二】首先用m表示出f(x)的单调递增区间(a,b),然后根据关系[2,+m)(a,b)得出m的取值范围.

解析:f(x)的定义域为{x|x≠0}

∵ f′(x)=2x3-mx2,令f′(x)>0,得x>3m2

∴ f(x)的单调递增区间为(3m2,+∞)

∵ f(x)在x∈[2,+∞)时单调递增

∴ 3m2≤2解得m≤16

∴ m的取值范围为(-∞,16]

适用性分析:该法思路清晰、简单明了,但有时涉及解无理不等式,需要分类讨论,运算量大.例如(例3):已知函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减,求m的取值范围.利用该法需要解不等式组-a-a2-33≤-23

-a+a2-33≥-13,诸多不便.

那么,象上面的例3,该怎样解决呢?

【方法三】二次函数法,结合二次函数性质,寻求使得导数恒≥0(或恒≤0)成立的充要条件.

解析:∵ 函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减

∴ f′(x)=3x2+2mx+1≤0在x∈-23,-13上恒成立

∴ f′-23≤0

f′-13≤0即73-4m3≤0

43-2m3≤0解得m≥2

∴ m的取值范围是[2,+∞)

适用性分析:(1) 适用面窄,只有当f(x)是三次函数(此时,其导数为二次函数)时,才可用该法;(2) 列出的条件容易不充分(少条件)或不必要(多条件),需要进行严谨的分析.一般的解决二次函数问题可以从以下四个方面入手:① 开口方向② 对称轴③ 判别式④ 端点处函数值.

篇10:函数单调性与导数解读

学习目标:

1.使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。2.会用单调性求最值。

3.掌握基本函数的单调性及最值。知识重现

1、一般地,设函数f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;

(2)存在x0I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值(maximum value)

2、一般地,设函数f(x)的定义域为I,如果存在实数M满足:(3)对于任意的xI,都有f(x) M;(4)存在x0I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最小值(minimum value)理论迁移

例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h米与时间t秒之间的关系为h(t)=-4.9t+14.7t+18,那么烟花冲出后什么1 时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)?

例2 已知函数f(x)=

22(x[2,6]),求函数的最大值和最小值。x1归纳基本初等函数的单调性及最值

1.正比例函数:f(x)=kx(k0),当k0时,f(x)在定义域R上为增函数;当k0时,f(x)在定义域R上为减函数,在定义域R上不存在最值,在闭区间[a,b]上存在最值,当k0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k0时, ,最大值为f(a)=ka,函数f(x)的最小值为f(b)=kb。2.反比例函数:f(x)=k(k0),在定义域(-,0)(0,+)上无单调性,也不存在x最值。当k0时,在(-,0),(0,+)为减函数;当k0时,在(-,0),(0,+)

为增函数。在闭区间[a,b]上,存在最值,当k0时函数f(x)的最小值为f(b)= 最大值为f(a)=

k,bkkk, 当k0时, 函数f(x)的最小值为f(a)=,最大值为f(b)=。aab3.一次函数:f(x)=kx+b(k0),在定义域R上不存在最值,当k0时,f(x)为R上的增,当k0时,f(x)为R上的减函数,在闭区间[m,n]上,存在最值,当k0时函数f(x)的最小值为f(m)=km+b,最大值为f(n)=kn+b, 当k0时, 函数f(x)的最小值为f(n)=kn+b,最大值为f(m)=km+b。4.二次函数:f(x)=ax+bx+c, 当a0时,f(x)在(-,-2bb)为减函数,在(-,+)为增函数,在定义域R上

2a2ab4acb2有最小值f()=,无最大值。

2a4a当a0时,f(x)在(-,-

bb)为增函数,在(-,+)为减函数,在定义域R上

2a2ab4acb2有最大值f()=,无最小值。

2a4a函数单调性的应用

1.利用函数的单调性比较函数值的大小

例1 如果函数f(x)=x+bx+c,对任意实数t都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。

例2 已知函数y=f(x)在[0,+)上是减函数,试比较f(22

32)与f(a-a+1)的大小。42.利用函数的单调性解不等式

例3 已知f(x)是定义在R上的单调函数,且f(x)的图像过点A(0,2),和点B(3,0)

(1)解方程 f(x)=f(1-x)

(2)解不等式 f(2x)f(1+x)

(3)求适合f(x)2或f(x)0的x的取值范围。

3.利用函数的单调性求参数的取值范围

已知函数的单调性,求函数解析式中参数的范围,是函数单调性的逆向思维问题。这类问题能够加深对概念、性质的理解。

例3 已知f(x)=x-2(1-a)x+2在(-,4)上是减函数,求实数a的取值范围。

例4 已知A=[1,b](b1),对于函数f(x)=求b的值。

练习:已知函数y=f(x)=-x+ax-

2212(x-1)+1,若f(x)的定义域和值域都为A,2a1+在区间[0,1]上的最大值为2,求实数a的值。

42求函数值域(最值)的一般方法

1.二次函数求最值,要注意数形结合

与二次函数有关的函数,可以用配方法求值域,但要注意函数的定义域。例1:求函数y=-x2x2的最大值和最小值。

例2:求f(x)=x-2ax+x2,x[-1,1],求f(x)的最小值g(a).4.利用单调性求值域:当函数图像不好作或作不出来时,单调性成为求值域的首选方法。例3:求函数f(x)=2x在区间[2,5]上的最大值与最小值。x

5.分段函数的最值问题

分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数函数的最大或最小值,应该先求各段上的最值,再比较即得函数的最大、最小值。

12x,(x1)2例6:已知函数f(x)= 求f(x)的最大最小值。

篇11:函数单调性与导数解读

(时间:45分钟 分值:100分)

基础热身

1.下列函数中,满足“对任意x1,x2∈(0,+∞),当x1f(x2)”的是()

1A.f(x)=x

B.f(x)=(x-1)

xC.f(x)=e

D.f(x)=ln(x+1)

12.函数f(x)=1-在[3,4)上()2x

A.有最小值无最大值

B.有最大值无最小值

C.既有最大值又有最小值

D.最大值和最小值皆不存在3.[2013·天津卷] 下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()

A.y=cos2x,x∈R

B.y=log2|x|,x∈R且x≠0

x-xe-eC.y=x∈R2

3D.y=x+1,x∈R

4.函数f(x)=x

x+1________.

能力提升

5.[2013·宁波模拟] 已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在(1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=()

A.{x|x≤0或1≤x≤4}B.{x|0≤x≤4}

C.{x|x≤4}D.{x|0≤x≤1或x≥4}

6.[2013·全国卷] 设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),5则f-=()211A24

11C.D.42

1x27.[2013·哈尔滨师大附中期中] 函数y=2

1A.(-∞,1)B.,1 2

11C.,1D.,+∞ 22

x的值域为()

8.[2013·惠州二调] 已知函数f(x)=e-1,g(x)=-x+4x-3,若有f(a)=g(b),则b的取值范围为()

A.(2-2,2+2)B.[22,22] C.[1,3]D.(1,3)

xa(x<0),9.[2013·长春外国语学校月考] 已知函数f(x)=满足对任

(a-3)x+4a(x≥0)

f(x1)-f(x2)

意的实数x1≠x2都有成立,则实数a的取值范围是()

x1-x2

A.(3,+∞)B.(0,1)1C.0D.(1,3)4

1110.若函数y=f(x)的值域是,3,则函数F(x)=f(x)+________. f(x)2

112

11.若在区间,2上,函数f(x)=x+px+q与g(x)=x+在同一点取得相同的最小

x2

值,则f(x)在该区间上的最大值是________.

12.函数y=

x

x+a

(-2,+∞)上为增函数,则a的取值范围是________.

1+x

13.函数y=的单调递增区间是________.

1-x14.(10分)试讨论函数f(x)=

15.(13分)已知函数f(x)=a-|x|

(1)求证:函数y=f(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

x

x+1

难点突破

16.(12分)已知函数f(x)=

x2

x-2

x∈R,且x≠2).

(1)求f(x)的单调区间;

(2)若函数g(x)=x-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

课时作业(五)

【基础热身】

1.A [解析] 由题意知,函数f(x)在(0,+∞)上是减函数.而反比例函数f(x)=在x

(0,+∞)上是减函数.故选A.2.A [解析] 函数f(x)在[3,4)上是增函数,又函数定义域中含有3而没有4,所以该函数有最小值无最大值,故选A.3.B [解析] 方法一:由偶函数的定义可排除C,D,又∵y=cos2x为偶函数,但在(1,2)内不单调递增,故选B.方法二:由偶函数定义知y=log2|x|为偶函数,以2为底的对数函数在(1,2)内单调递增.

1x4.[解析] 因为x≥0,当x=0时,y=0不是函数的最大值.当x>0时,f(x)=2x+1111=x+2,当且仅当x=1时等号成立,所以f(x)≤12xx+

x

【能力提升】

5.A [解析] 由题意,结合函数性质可得x>1时f(x)>0,x<1时f(x)<0;x<0或x>4时g(x)<0,00,故f(x)g(x)≥0的解集为{x|x≤0或1≤x≤4}.

5111

6.A [解析] 因为函数的周期为2,所以f=f2+=f2222

155∴f-=-f=-A.222

11111t1011t2

7.C [解析] 因为x+1≥1,所以0<21,令t=2,则≤<,≤<1,x+1x+122222

所以≤y<1.故选C.x22

8.A [解析] 由题可知f(x)=e-1>-1,g(x)=-x+4x-3=-(x-2)+1≤1,若

有f(a)=g(b),则g(b)∈(-1,1],即-b+4b-3>-1,解得22

9.C [解析] 由题设条件知函数f(x)在R上为减函数,所以x<0时,f1(x)=a为减函

数,则a∈(0,1);x≥0时,f(x)=(a-3)x+4a中a-3<0,且f(0)=(a-3)×0+4a≤a,11

得a≤综上知0

1101110.2,[解析] 令f(x)=t,t∈3,问题转化为求y=t+t∈,3的值

3t22

域.

1110因为y=t+在1上递减,在[1,3]上递增,所以y∈2,.3t2

x·2,当x=1时等号成立,所以x=1时,g(x)

xx

p4q-p的最小值为2,则f(x)在x=1时取最小值2,所以-12.解得p=-2,q=3.11.3 [解析] g(x)=x+≥2

12

所以f(x)=x-2x+3,所以f(x)在区间2上的最大值为3.2

12.a≥2 [解析] y=

x

x+a

1-

a

x+a

(-2,+∞)上为增函数,所以a>0,所以得函数的单调增区间为(-∞,-a),(-a,+∞),要使y=增函数,只需-2≥-a,即a≥2.x

x+a

在(-2,+∞)上为

1+x

13.(-1,1)[解析] 由得函数的定义域为(-1,1),原函数的递增区间即为

1-x

1+x1+x2

函数u(x)=在(-1,1)上的递增区间,由于u′(x)=′=2故函数u(x)

1-x1-x(1-x)

1+x=的递增区间为(-1,1),即为原函数的递增区间. 1-x

14.解:f(x)的定义域为R,在定义域内任取x1<x2,x1x2(x1-x2)(1-x1x2)

有f(x1)-f(x2)2-2=,2

x1+1x2+1(x21+1)(x2+1)22

其中x1-x2<0,x1+1>0,x2+1>0.①当x1,x2∈(-1,1)时,即|x1|<1,|x2|<1,所以|x1x2|<1,则x1x2<1,1-x1x2>0,f(x1)-f(x2)<0,f(x1)<f(x2),所以f(x)为增函数. ②当x1,x2∈(-∞,-1]或[1,+∞)时,1-x1x2<0,f(x1)>f(x2),所以f(x)为减函数.

综上所述,f(x)在(-1,1)上是增函数,在(-∞,-1]和[1,+∞)上是减函数.

15.解:(1)证明:当x∈(0,+∞)时,f(x)=a

x

设00,x2-x1>0.1111x1-x2

∴f(x1)-f(x2)=a-a=-<0.1

(2)由题意a-<2x在(1,+∞)上恒成立,x1x2x2x1x1x2

∴f(x1)

x

设h(x)=2x+,则a

x

可证h(x)在(1,+∞)上单调递增. 所以a≤h(1),即a≤3.所以a的取值范围为(-∞,3]. 【难点突破】

x2[(x-2)+2]4

16.解:(1)f(x)==(x-2)+4,x-2x-2x-2

令x-2=t,由于y=t+4在(-∞,-2),(2,+∞)内单调递增,t

在(-2,0),(0,2)内单调递减,∴容易求得f(x)的单调递增区间为(-∞,0),(4,+∞);单调递减区间为(0,2),(2,4).

(2)∵f(x)在x∈[0,1]上单调递减,∴其值域为[-1,0],即x∈[0,1]时,g(x)∈[-1,0].

∵g(0)=0为最大值,∴最小值只能为g(1)或g(a),a≥1,若g(1)=-1,则⇒a=1;

1-2a=-11≤a≤1,若g(a)=-1,则2⇒a=1.-a2=-1

篇12:函数单调性与导数解读

(一)课 型:新授课 教学目标:

理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。

教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。教学难点:理解概念。教学过程:

一、复习准备: 1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢? 2.观察下列各个函数的图象,并探讨下列变化规律:

①随x的增大,y的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性?

3.画出函数f(x)= x+

2、f(x)= x2的图像。(小结描点法的步骤:列表→描点→连线)

二、讲授新课:

1.教学增函数、减函数、单调性、单调区间等概念:

①根据f(x)=3x+

2、f(x)=x2(x>0)的图象进行讨论:

随x的增大,函数值怎样变化? 当x1>x2时,f(x1)与f(x2)的大小关系怎样? ②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?

③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

④探讨:仿照增函数的定义说出减函数的定义;→ 区间局部性、取值任意性

⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。⑥讨论:图像如何表示单调增、单调减?

所有函数是不是都具有单调性?单调性与单调区间有什么关系? ⑦一次函数、二次函数、反比例函数的单调性

2.教学增函数、减函数的证明:

例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?

1、例题讲解

例1(P29例1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

例2:(P29例2)物理学中的玻意耳定律pkV

(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.例3.判断函数y

三、巩固练习: 1.求证f(x)=x+1x2x1在区间[2,6] 上的单调性 的(0,1)上是减函数,在[1,+∞]上是增函数。

上一篇:芍药的养殖方法和注意事项下一篇:木塑复合材料市场分析