浅谈导数在求解与函数单调性有关问题中的应用

2024-05-15

浅谈导数在求解与函数单调性有关问题中的应用(精选6篇)

篇1:浅谈导数在求解与函数单调性有关问题中的应用

本节课是一节新授课,教材所提供的信息很简单,如果直接得出结论学生也能接受。可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。设计思路如下以便教会学生会思考解决问题。

1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。在此基础上提出问题:单调性和导数到底有怎样的关系?学生通过思考、讨论、交流形成结论。也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。

2、在结论得出后,继续引导学生思考,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。

3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开始引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾呼应。

4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深刻。

5、数形结合:数形结合不是光口头去说,而是利用一切机会去实施,在例1的教学中,我让学生先熟练法则,再从形上分析,加深印象,这样在后面紧接的高考题中(没有给解析式),学生会迎刃而解。

为了培养学生的自主学习、自主思考的能力,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。让学生分组讨论,合作交流,共同探讨问题。但是,真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力还是比较困难。在今后的教学中,应更注重学生的参与,引发认知冲突,教会学生思考问题。

篇2:浅谈导数在求解与函数单调性有关问题中的应用

教学目标:

1、知识与技能目标:通过实例,借助图形直观探索并了解导数与函数单调性的关系,理解并掌握利用导数研究函数的单调性以及求解函数单调区间;

2、过程与方法目标:会用导数研究函数单调性,并会用导数求解函数单调区间;

3、情感态度与价值观目标:探究导数与函数单调性关系的过程中培养学生数形结合思想和从特殊到一般的数学思想,以及发现问题、解决问题的能力。教学重点:利用导数研究函数的单调性,求函数的单调区间; 教学难点:发现和揭示导数值的符号与函数单调性的关系; 教学方法与手段:探究式教学模式;利用多媒体现代设备教学 教学过程:

一、复习回顾:

我们知道平均变化率可以刻画函数的变化趋势,大家还记得 问题1:函数yfx在区间x1,x2上平均变化率的数学表达式吗?

fx2fx1生1:(教师板书),x2x1师:那你能给出这个二次函数fxx4x3在x1,x2上的平均变化率吗?

2问题2:导数的概念和它的几何意义?

生2:x2x1时,fx2fx1fx1(教师板书)

x2x1师:这个导数又有什么几何意义?

生2:曲线yfx在点x1,fx1处切线的斜率

师:这个二次函数fxx4x3,它对应的fx1又是什么?

2生3:fx12x14

师:今天我们一起来学习导数在研究函数中的应用,导数作为函数变化率比较精确地刻画了函数的变化趋势,(板书“导数在研究函数 中的应用”)

二、建构数学 师:观察二次函数fxx24x3图象,请大家给出在对称轴左右两侧函数的变化趋势 生:对称轴x2左边下降趋势,对称轴x2右边上升趋势,师:也就是在,2为减函数,在2,为增函数,这也是函数的单调性 师:你是怎样判断函数单调性的? 生:图象法(教师板书)

师:我们曾经还学习过判断函数单调性还有什么方法? 生:定义法(教师板书)问题3:那函数单调性定义又是什么?

生:函数yfx的定义域为A,区间IA,任取x1,x2I,当x1x2时,fx1fx2,则yfx在区间I上是单调增函数; fx1fx2,则yfx在区间I上是单调减函数。

师:回答的非常好!请大家用定义法证明二次函数fxx4x3在2, 为增函数

2生: x1,x22,,不妨设x1x2,则fx2fx1x2x1x1x240,所以fx1fx2,所以函数在2,为增函数。

问题4:大家注意观察,从形式上你发现定义法和平均变化率对应的两式之间有关系吗?

f(x2)f(x1)x1x24,f(x2)f(x1)x2x1x1x24

x2x1生:有关系

师:说的很好!我们发现平均变化率与定义法之间存在某种密切的关系

问题5:当自变量的改变量无限趋近于0时平均变化率无限趋近于导数,而定义法可以判断函数的单调性,大家发现了什么?

生:导数与单调性之间可能也有关系

师:说的太好了!同学们发现了导数与函数单调性之间可能也有着某种密切的关系,这个问题的发现是很非常了不起的,那今天我们就来学习导数在研究函数的单调性中的应用。(教师补全课题)

问题6:导数与单调性之间究竟什么关系?

师:请大家结合切线斜率来观察这个二次函数fxx4x3在对称轴左右两侧导数值有

2什么不同特点?切线在对称轴左侧移动时,观察导数值特点并记录你所观察到的结果,切线在对称轴右侧移动时,同样也观察导数值特点并记录你的观察结果。

yfxx24x3x

生: 在区间,2上,fx0函数在该区间为减函数;

在区间2,上,fx0函数在该区间为增函数。(教师板书)师:我们通过图形直观观察得出结论,请大家回到导数定义中来,o2fx2fx1不妨假设x1x2,x2x1时,fx12x14

x2x1问题7:你能从“数”的角度解释为什么在2,上,fx0得到在该区间为增函数?

生:小组交流讨论 教师点评归纳:

不妨设x1x2,当x2x1时,fx2fx1x1x24fx12x14,x2x1fx2fx10,所以 fx2fx1,x2x1若fx10,得到x12,x1x240,得到在2,为增函数。

师:对于这个二次函数我们体会到平均变化率、定义法、导数、单调性四者密切相关,通过这四者之间的关系,我们从图形直观观察得到结论,又结合导数定义从“数”的角度解释了结论,做到了数形的完美结合。更一般地,我们也可以用导数值的符号来判断函数的单调性,你能归纳出一个一般性的结论吗? 生:对于函数yfx,在某个区间上fx0函数在该区间上为增函数; 在某个区间上fx0函数在该区间上为减函数

师:归纳的很好!这样大家便有了一种研究函数单调性新的方法——导数法。尤其对于那些很难作出图象,或者用定义法也很难判断单调性的函数,我们就可以选择导数法(板书)。

三、数学运用:

例1:用导数法确定函数fxx2x3在哪个区间上是增函数,在哪个区间上是减函数?

2解:fx2x2,令fx0,解得x1,即在区间,1上为增函数

令fx0,解得x1,即在区间1,上为减函数(教师板书)师:结合这道例题,你能归纳出利用导数求解函数单调区间的主要步骤吗? 生:回答 教师点评步骤:

(1)求导数fx;(2)解fx0和fx0;(3)写出单调区间。最后不忘函数定义域

四、课堂练习:

例2:用导数法确定函数fx2x6x7在哪些区间上是增函数?在哪个区间上是减函数?

32(请学生板演)

解:fx6x12x6x(x2)2令fx0,解得x0或x2,令fx0,解得0x2,因此函数在,0和2,上为增函数,在0,2上为减函数

教师追问:你能根据函数单调性在演练纸上作出反映三次函数fx2x36x27单调性变化趋势的简图吗?(实物投影学生演练纸)

生:解释怎样做出函数简图:(1)找导函数零点;(2)分区间;(3)由单调性作图

师:我们利用导数值的符号来研究了函数的单调性,体会到导数法可以作为研究函数单调性的一般方法,那对于这个结论请大家思考:

问题8:若函数fx在某个区间单调递增,那么在该区间上必有fx0吗?大家请结合函数fxx3来思考

生:fx3x2,发现 f00

师:由此看来若函数fx在某个区间单调递增,那么在该区间上不一定有fx0。师:通过这节课的学习,你学习了哪些知识?体会了哪些数学思想?

五、回顾小结:

生1: 学习到利用导数值的符号来判断函数的单调性,及利用导数求解函数的单调区间; 生2:在探究导数与函数单调性之间的关系时,通过图形直观观察,体会到了数形结合的数学思想和特殊到一般的数学思想。

师总结归纳:平均变化率、定义法、导数、单调性四者密切相关,通过四者关系我们得到了一个结论,学习了判断函数单调性新的方法—导数法,在探究这个结论的过程中,以一个二次函数为例,先从图形直观观察得出结论,然后结合导数定义从“数”的角度解释结论,最后将结论一般化,渗透了两种思想:数形结合、研究问题从特殊到一般,利用导数求解函数单调区间时把握三个主要步骤“一求,二解,三写”最后不忘定义域,利用导数研究函数单调性是非常重要的,为后面用导数研究函数的极值、最值打下基础,对后续学习非常重要。

六、课外作业:

1、课本29页第1题(必做题)

篇3:浅谈导数在求解与函数单调性有关问题中的应用

【关键词】分类讨论思想 函数单调性 应用

【中图分类号】G633.6【文献标识码】A 【文章编号】2095-3089(2016)23-0071-02

一、分类讨论思想涵义概述

在我们遇到难解的问题时,首先要看的就是题目中所具备的条件是否能推论出一个确定答案,一旦出现无法求解的问题时,就要采用分类讨论的思想来将原问题分解成相对独立的“小问题”来逐步回答,通过解答这些小问题最终推证出原问题的答案,整个推论的过程就是分类讨论。分类讨论思想是一种至关重要的数学解题思想,秦九韶、刘微、康托、拉格朗日等许多著名的数学家都曾将分类讨论思想作为解决数学难题的重要途径,这些数学家的作答直接促进了分类讨论思想在数学领域的发展。

综上所述,分类讨论思想的实质就是将整体问题划分为部分问题,增加问题的定解条件,将问题化整为零、各个击破,然后再化积为整的解题策略。每个数学结论都是由其所成立的条件所决定的,按照问题的性质解题者需使用相应的解题策略。在面对有些问题结论的不确定性时,解题者要打破统一解题形式的枷锁,以分类转化等手段对各个问题一一击破。

二、分类讨论思想解答问题的步骤

1.确定分类讨论思想的对象

确定分类讨论思想的对象是分类讨论面临的首要问题,将引起分类讨论的原因找出对于分类讨论的论述来说是一个非常良好的开头。张红军曾在其《数学基本思想方法的探讨--分类讨论思想》一文中提出:分类讨论主要有概念分类型、运算需要型、参数变化型、图形变动型等五种讨论对象。在函数单调性问题上,函数分类讨论大致分为分段函数和函数性质问题两大类,前者是将问题分类讨论后才能进行解答,后者是将含有参数的问题进行解答。数学中常见的分类讨论思想对象有:按照函数性质中的奇偶性对区间上的单调性进行解答;函数参数k的情况与单调性问题解答;二次函数的对称轴以及参数讨论;对数函数对底数的分类;数学问题中参数的不确定性与导函数的单调性等等。

2.按照原则对讨论对象进行合理分类

在确定分类讨论思想的对象之后,我们需要按照原则对讨论对象进行合理分类。分类讨论思想的原则有:按统一标准对每一级别进行分类、逐级进行分类、不得进行越级分类。

3.总结分类讨论

分类讨论思想实际上就是要求解题者要以“合—分—合”的结构对讨论对象进行解答。在分类讨论之前,讨论的对象具有一定的完整性,解题者按照一定的标准对讨论对象进行分类,把整个问题化整为零、化难为易来解答。按照分类讨论逐步解答各项小问题的结论后,解题者还应对所有的结论进行总结归纳。一般来讲,分类讨论思想的总结有以下三种类型:首先是并列总结法;其次是并集归纳法;最后是交集归纳法。

三、分类讨论思想在函数单调性问题中的应用

分类讨论思想在函数单调性等问题中有着广泛的运用,在高考试卷上也占有很大的比例,但分类讨论却是很多考生的弱点。我们通过以下几个例子来探讨下分类讨论思想在函数单调性问题中的应用。

每次分类的对象不遗漏、不重复、分层次、不越级讨论当问题中出现多个不确定因素时,要以起主导作用的因素进行划分,做到不重不漏,然后对划分的每一类分别求解,再整合后得到一个完整的答案.数形结合是简化分类讨论的重要方法。

在实际教学中,很多学生对题干中的隐含条件及可能性分析存在偏差,对参数a的分类难以做到不重不漏。因此在解决函数单调性问题时,一旦需要分类讨论,便感到困难。然而分类讨论作为一种重要数学思想,它的培养不是一朝一夕就能完成的,需要我们用较长时间持续渗透,让学生逐渐领悟。

教学启示:分类思想作为一种基本的逻辑方法适用于自然科学乃至社会科学研究之中,在数学教学中也发挥着至关重要的作用。学生在运用分类讨论思想解答函数单调性问题的过程中,可以将思考的周密性与条理性发挥到极致,有助于提高学生合理解题的能力。分类讨论思想与其他解题方法相比,最大的不同是它更依赖于经验和解题的习惯。所以教师在日常的授课中应注重培养学生的分类讨论思想,在解题教学中化隐为显、循序渐进,引导学生用分类讨论思想攻破问题,并在解题结束后,随机提问学生分类标准、分类优势等等问题,以提高学生的思维缜密性。

四、结语

分类讨论思想是高中数学中常用的解题思想方法之一,对培养学生解决问题的能力有很大的帮助,并且有利于提高学生数学思维的严谨性、填密性和灵活性。在日常教学过程中,教师应注重培养学生运用分类讨论思想解决问题的能力,引导学生总结解决问题的规律与共性,以达到迅速、准确解题的效果。

参考文献:

[1]吴炯折,林培榕.数学思想方法:创新与应用能力的培养[M].厦门:厦门大学出版社,2009

[2]慕泽刚.用函数思想解证不等式问题[J].数学大世界(高中生数学辅导版),2012(14)

[3]马士磊.浅析分类讨论思想[Jl.理化空间,2012(10)

作者简介:

篇4:如何利用导数研究函数的单调性

利用导数研究函数单调性,方法不一,选择恰当的方法,简洁明了;反之,虽然也可以进行到最后,但是需要大量的计算.本文将各类方法进行了总结,并点明了注意问题,分析了各方法的优点、缺点、适用范围.

一、 正用

例1求函数y=3x2-2lnx的单调递增区间.

解析:函数的定义域为(0,+∞)

∵ f′(x)=6x-2x=2(3x2-1)x

∴ 令f′(x)>0,结合x>0,得x>33

∴ f(x)的单调递增区间为33,+∞

【方法总结】用导数方法求函数单调区间:首先,求函数定义域、求导f′(x);然后令f′(x)>0得到函数的递增区间,令f′(x)<0得到函数的递减区间.

二、 逆用

例2已知函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,求m的取值范围.

【方法一】若函数f(x)在区间(a,b)上单调递增,则f′(x)≥0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的;若函数f(x)在区间(a,b)上单调递减,则f′(x)≤0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的.恒成立问题可以转化成求最值问题.

解析:∵ 函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,

∴ f′(x)=2x3-mx2≥0在x∈[2,+∞)上恒成立

∴ m≤2x3在x∈[2,+∞)上恒成立

∴ m≤(2x3)min,x∈[2,+∞)

∵ 当x∈[2,+∞)时,y=2x3是增函数

∴ (2x3)min=16∴ m≤16

当m=16时,f′(x)≥0且f′(x)=0的点是孤立的(只有f′(2)=0),∴ m=16合题

∴ m的取值范围为(-∞,16]

适用性分析:这是解决“逆用”问题的基本方法.注意检验f′(x)=0的点是否孤立.

例如:(1) 已知函数g(x)=ax+1在[1,2]上是减函数,则a的取值范围是a>0(a=0时,经检验不合题).

(2) 若函数f(x)=cosx+px+q在x∈R上是减函数,则p的取值范围是p≤-1(p=-1时,f′(x)=0的点有无数个,但这些点是孤立的,故p=-1合题)

【方法二】首先用m表示出f(x)的单调递增区间(a,b),然后根据关系[2,+m)(a,b)得出m的取值范围.

解析:f(x)的定义域为{x|x≠0}

∵ f′(x)=2x3-mx2,令f′(x)>0,得x>3m2

∴ f(x)的单调递增区间为(3m2,+∞)

∵ f(x)在x∈[2,+∞)时单调递增

∴ 3m2≤2解得m≤16

∴ m的取值范围为(-∞,16]

适用性分析:该法思路清晰、简单明了,但有时涉及解无理不等式,需要分类讨论,运算量大.例如(例3):已知函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减,求m的取值范围.利用该法需要解不等式组-a-a2-33≤-23

-a+a2-33≥-13,诸多不便.

那么,象上面的例3,该怎样解决呢?

【方法三】二次函数法,结合二次函数性质,寻求使得导数恒≥0(或恒≤0)成立的充要条件.

解析:∵ 函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减

∴ f′(x)=3x2+2mx+1≤0在x∈-23,-13上恒成立

∴ f′-23≤0

f′-13≤0即73-4m3≤0

43-2m3≤0解得m≥2

∴ m的取值范围是[2,+∞)

适用性分析:(1) 适用面窄,只有当f(x)是三次函数(此时,其导数为二次函数)时,才可用该法;(2) 列出的条件容易不充分(少条件)或不必要(多条件),需要进行严谨的分析.一般的解决二次函数问题可以从以下四个方面入手:① 开口方向② 对称轴③ 判别式④ 端点处函数值.

篇5:浅谈导数在求解与函数单调性有关问题中的应用

【关键词】参数;单调性;分类讨论;二次函数;判别式;方程的根

导数是研究函数的重要工具,而利用导数来判断函数的单调性也是高考重点考查的内容之一。用导数来判断函数的单调性,其一般步骤为:

1.确定函数y=f(x)的定义域;

2.求导函数f'(x);

3.在函数f(x)的定义域的范围内解不等式f'(x)>0或f'(x)<0;

4.根据3的结果确定函数f(x)的单调区间。

例1:求函数 的单调区间。

解:函数f(x)的定义域为R,f'(x)=x2-2x-3,解不等式f'(x)<0,得-1<x<3;解不等式f'(x)>0,得x<-1或x>3。所以f(x)的单调递减区间为(-1,3),单调递增区间为(-∞,-1)(3,+∞)。当我们遇到含参数函数时,基本上也要按照这个步骤进行。

例2:求函数的单调减区间。

解:函数f(x)的定义域为R, f'(x)=x2-(2a+1)x+2a,解方程f'(x)=0,得x1=1,x2=2a,只需解不等式f'(x)<0即可,但需要对x1,x2之间的大小关系进行讨论。

若x1>x2,即时,f'(x)<0的解集为:(2a,1);

若x1<x2,即时,f'(x)>0的解集为:(1,2a)。

所以,当时,f(x)的单调递减区间为(2a,1); 当时,f(x)的单调递减区间为(1,2a)。

通过例2可以发现,含参数函数问题,往往需要分类讨论,而且有的时候,含参数类问题的讨论并不仅仅像例2那样,只是对两个根之间大小关系的讨论,其讨论的过程会更加复杂,运算会更加繁琐。不少同学解答起来会感觉很混乱,无从下手。下面,就对上述问题进行一些探讨和研究。看看如何才能在这个混乱的“局面”中找到解题的思路,做到“乱中有序”。

先看一个例题:

例3:设函数f(x)=mx2-ln(x+1),其中m∈R,求f(x)的单调区间。

分析:函数f(x)的定义域为(-1,+∞),

这里通过通分的方法,得到,这样做的好处是显而易见的,因为x+1>0,所以只需判断好2mx2+2mx-1的符号。不妨设,则,不等式f'(x)>0等价于 ,不等式f'(x)<0等价于,看来问题可以得到解决了,但是在解决的过程中,有一些确是不容回避的:

1.是否为二次函数?这需要通过对m=0或m≠0来加以讨论;

2.若 为二次函数,则是否恒为正(负)?这一点,可以通过判别式△来判断。

3.若△>0,则方程=0的两个解x1,x2之间的大小关系是否确定?x1,x2是否在定义域(-1,+∞)内?如不确定需要分类讨论,这也直接关系到不等式 或 的解集。

看来这个问题涵盖了三个层次的分类讨论,当它们叠加在一起的时候,需要我们有很好的分析问题和解决问题的能力,同时还需要有一定的耐心。具体解答如下:

解:函数f(x)的定义域为(-1,+∞),

设=2mx2+2mx-1,①m=0时, ,此时 ,

∴f(x)在区间(-1,+∞)单调递减,②m≠0时,=2mx2+2mx

-1为二次函数,其中△=4m2+8m。

1.若△≤0,即-2≤m<0时,函数=2mx2+2mx-1的图像是开口向下的抛物线,故≤0恒成立,此时在定义域x∈(-1,+∞)上也恒成立。

∴f(x)在区间(-1,+∞)单调递减

2.若△>0,即m>0或m<-2时,=0的两个根分别为

,。

①当m>0时,,故在

上 <0,此时;在上 <0,此时。

∴f(x)在区间 单调递减,在区间(,+∞)上单调递增。

②当m<-2时,由于m<-2,

,所以-1<x2<-,故在区间(,)上 >

0,此时f'(x)>0,在区间上<0,此时f'(x)<0,∴f(x)在区间 单调递增,在区间

上单调递减。

综上可得:当m<-2时,f(x)的单调递增区间为: ,单调递减区间为: ;当-2≤m≤0时,f(x)的单调递减区间为(-1,+∞),无单调递增区间;当m>0时,f(x)的单调递增区间为: ,单调递减区间为:(-1, )。

通过解答的过程,我们可以发现,像这样的,导函数f'(x)可以转化成二次函数的题型,其解答的一般步骤为:

1.确定函数f(x)的定义域,求导函数f'(x),并将f'(x)转化成用二次函数,(可设为 )来表示;要注意两点:①若f'(x)本身就是二次函数,则无需转化;②若 的二次项系数不确定,需再加一步讨论。

2.先讨论二次函数的判别式△,一般是分△≤0和△>0。因为当△≤0时,往往 恒为正(负),此时,f'(x)的符号就可以较为容易的判断出来,先将这一部分问题解决后,再解决△>0时的部分;

3.当△>0时,对应方程=0有两个不同的根,需要进一步讨论x1,x2。这一块主要讨论两点:①x1,x2之间的大小关系;②x1,x2是否在定义域或题目条件指定的区域中。这一部分运算往往比较繁琐,讨论容易出现混乱,解答时思路要清晰,还要有耐心。

解答这类问题时,要严格按照上面的步骤和要求,有序进行,解答的过程才能更加全面和彻底,不会有遗漏。

仿照例3,按上述的步骤和要求,再来训练一个题目。

例4:已知函数f(x)=x2-(2a+1)x+alnx,求函数f(x)在区间[1,e]上的最小值。

分析:需要确定函数f(x)在区间[1,e]上的单调性,按步骤进行。

解:第一步:确定函数f(x)的定义域,求导函数f'(x),并将f'(x)转化成用二次函数来表示。

函数f(x)的定义域为(0,+∞), ,

设=2x2-(2a+1)x+a,则 ,

第二步:讨论二次函数 的判别式△。

因为这里的△=(2a+1)2-8a=4a2-4a+1=(2a-1)2恒大于等于0,所以不需要再讨论,直接求出方程 =2x2-(2a+1)x+a=(2x-1)

(x-a)=0的根: 。

第三步:讨论x1,x2之间的大小关系,x1,x2是否在区间[1,e]上。

=(2x-1)(x-a),x∈[1,e]时,

1.当a≤1时, =(2x-1)(x-a)≥0对任意x∈[1,e]恒成立,此时 ≥0对任意x∈[1,e]也恒成立,

∴f(x)在区间[1,e]上单调递增,∴f(x)min=f(1)=-2a

2.当1<a<e时,

若x∈[1,a]时,则 =(2x-1)(x-a)<0,此时 <0

若x∈[a,e]时,则 =(2x-1)(x-a)>0,此时 >0

∴f(x)在区间[1,a]上单调递减,在区间[a,e]上单调递增,

∴f(x)min=f(a)=a(lna-a-1)

3.当a≥e时,=(2x-1)(x-a)≤0对任意x∈[1,e]恒成立,此时 ≤0对任意x∈[1,e]也恒成立,

∴f(x)在区间[1,e]上单调递减,∴f(x)min=f(e)=e2-e(2a+1)+a

综上可得:a≤1时,f(x)min=f(1)=-2a;

1<a<e时,f(x)min=f(a)=a(lna-a-1)

a≥e时,f(x)min=f(e)=e2-e(2a+1)+a

第三步可以通过绘制草图或列表格来辅助完成。

篇6:浅谈函数单调性的应用

1. 函数单调性应用的常见几类问题

1.1 定义证明函数的单调性

利用函数单调性定义来判定函数的单调性,能更深刻的理解概念

例1 讨论f(x)=1-x2在区间[-1,1]上的单调性

解:设x1,x2∈[-1,1]且x1<x2即-1≤x1<x2≤1

则f(x1)-f(x2)=1-x21=1-x21-(1-x22)1-x21+1-x22=(x2-x1)(x2+x1)1-x21+1-x22

当x1>0,x2>0时x1+x2>0那么f(x1)>f(x2)

当x1<0,x2<0时x1+x2<0那么f(x1)<f(x2)

故f(x)=1-x2在区间[-1,0]上为增函数f(x)=1-x2在区间[0,1]上为减函数

1.2 利用函数单调性比较大小

比较两个含有幂指数的大小,往往显得比较复杂,把其转化为函数,利用函数的单调性就显的比较容易.

例2 比较20062007与20072006的大小

解:经过归纳,我们可以发现,当n=1,2时nn+1<(n+1)n当n=3,4,5时nn+1>(n+1)n因此可以猜测当n>3时nn+1>(n+1)n下面构造函数f(x),利用函数的单调性证明nn+1>(n+1)n

构造函数f(x)=xx+1(x+1)x(x≥3)则有

f(x+1)-f(x)=(x+1)x+2(x+2)x+1-xx+1(x+1)x=(x+1)2x+2-[x(x+2)]x+1(x+2)x+1(x+1)x=(x2+2x+1)x+1-(x2+2x)x+1(x+2)x+1(x+1)x>0

所以函数f(x)在[3,+∞)∩Z上单调增加

因为f(3)=3443=8164>1 故当n>3时,f(n)=nn+1(n+1)n>1

即nn+1>(n+1)n 所以20062007>20072006

1.3 求函数最值

根据函数单调性的增加(或减少)的性质,来解决函数的最值问题,问题显的更加简洁,容易解决

例3 已知数列{an}中,a1=1且点(an,an+1)在直线x+y-1=0上

(1) 求数列{an}的通项公式

(2) 若f(n)=1n+a1+1n+a2+…+1n+an(n∈N,n≥2)求f(n)的最小值

解:(1) 因为点(an,an+1)在直线x+y-1=0上

所以an+1-an=1 由{an}是首项和公差为1的等差数列 故an=n

(2) 因为f(n)=1n+1+1n+2+…+12n

f(n+1)-f(n)=1n+2+1n+3+…+12n+2-1n+1+…+12n

=12n+1+12n+2-1n+1=1(2n+1)(2n+2)>0

所以f(n)为增函数 由f(n)≥f(2)=12+1+12+2=712则f(n)min=712

1.4 函数单调性在不等式中的应用

不等式是数学中重要组成部分,在实际应用中,最为简捷的方法,利用函数单调性来解决不等式中的问题.

例4 a,b∈R+ a+b=1,求解a+1ab+1b的最值.

解 由a+1ab+1b=ab+2ab+2而0<ab≤a+b22=14

令ab=x0<x≤14构造函数f(x)=x+2x+2则f′(x)=1-2x2

显然当0<x<2时,f′(x)<0又f(x)在x∈(0,2]上为严格单调减函数,f(x)在x∈0,14为减函数 当x∈0,14时,f(x)≥f14则x+2x+2≥14+8-2=254

所以ab+2ab-2≥254即a+1ab+1b≥254

1.5 利用单调性解决数列问题

数列{an}中的an是以n为自变量的函数,所以在解决有关数列的最值问题时,可考察其单调性.

例5 已知an=1n+1+1n+2+…+13n+1(n∈N+),

若an>2b-5恒成立,且b为自然数.求b的最大值

解 因为an=1n+1+1n+2+…+13n+1 an+1=1n+2+1n+3+…+13n+4

则an+1-an=13n+2+13n+3+13n+4-1n+1=13n+2+13n+4-23n+3

=23(n+1)(3n+2)(3n+4)>0

所以an+1>an所以数列{an}是递增数列

{an}min=a1=12+13+14=1312

则由2b-5<1312可解得b<7324

2. 函数单调性在高考中的应用

函数是高中数学的重要内容,是高考重点考察的对象,也是常考不衰的考点不但考察函数单调性的概念,而且更主要的是考察其思想.

例6 (2005年全国卷Ⅱ)设函数f(x)=2|x+1|-|x-1|,求f(x)≥22使的取值范围?

解:要求f(x)≥22即2|x+1|-|x-1|≥22

又y=2x是增函数 所以|x+1|-|x-1|≥32 (1)

1. 当x≥1时|x+1|-|x-1|=2时(1)恒成立

2. 当-1<x<1时|x+1|-|x-1|=2x(1)式化为2x≥32得x≥34

即34≤x<134≤x<1

3. 当x≤-1时|x+1|-|x-1|=-2 (1)式无解

综上x取值范围34,+∞

上一篇:校园正能量的阳光语录下一篇:高三百日冲刺主题