函数的极限及函数的连续性典型例题

2024-04-15

函数的极限及函数的连续性典型例题(共12篇)

篇1:函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

一、重点难点分析:

此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。

。④ 计算函数极限的方法,若在x=x0处连续,则

⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题

例1.求下列极限

解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又

从而f(x)在点x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数

试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。

解析:∵

且,∴,∴ a=1, b=0。

例5.求下列函数极限

解析:①。

②。

例6.设

解析:∵

要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。

例7.求函数

在x=-1处左右极限,并说明在x=-1处是否有极限?

解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:

1.已知,则

2.的值是_______。

3.已知,则=______。

4.已知

5.已知,2a+b=0,求a与b的值。,求a的值。

参考答案:1.3

2.3.4.a=2, b=-45.a=0

篇2:函数的极限及函数的连续性典型例题

函数的极限

内容提要

1.函数在一点处的定义

xx0limf(x)A0,0,使得x:0xx0,有f(x)A.右极限

xx0limf(x)A0,0,使得x:0xx0,有f(x)A.左极限

xx0limf(x)A0,0,使得x:0x0x,有f(x)A.注1 同数列极限一样,函数极限中的同样具有双重性.

注2 的存在性(以xx0为例):在数列的“N”定义中,我们曾经提到过,N的存在性重在“存在”,而对于如何去找以及是否能找到最小的N无关紧要;对也是如此,只要对给定的0,能找到某一个,能使0xx0时,有f(x)A即可.

注3 讨论函数在某点的极限,重在局部,即在此点的某个空心邻域内研究f(x)是否无限趋近于A.

注4 limf(x)Alimf(x)limf(x)A.

xx0xx0xx0n注5 limf(x)A{xn}{xn}|xnx0,且xnx0,有limf(xn)A,称为

nxx0归结原则――海涅(Heine)定理.它是沟通数列极限与函数极限之间的桥梁.说明在一定条件下函数极限与数列极限可以相互转化.因此,利用定理必要性的逆否命题,可以方便地验证某些函数极限不存在;而利用定理的充分性,又可以借用数列极限的现成结果来论证函数极限问题.(会叙述,证明,特别充分性的证明.)注6 limf(x)A00,xx00,x:0xx0,有f(x)A0. 函数在无穷处的极限 设f(x)在[a,)上有定义,则

limf(x)A0,xXa,Xa,Xa,使得x:xX,有f(x)A. 使得x:xX,有f(x)A. 使得x:xX,有f(x)A. xlimf(x)A0,limf(x)A0,x注1 limf(x)Alimf(x)limf(x)A.

xxx 1

n注2 limf(x)A{xn}{xn}|xn,有limf(xn)A.

nx3 函数的有界

设f(x)在[a,)上有定义,若存在一常数M0,使得x[a,),有f(x)M,则称f(x)在[a,)上有界. 4 无穷大量

xx0limf(x)G0,0,X0,使得x:0xx0,有f(x)G. 使得x:xX,有f(x)G. limf(x)G0,x类似地,可定义limf(x),limf(x),limf(x),limf(x)等.

xx0xx0xx0xx0注 若limf(x),且0和C0,使得x:0xx0,有f(x)C0,xx0则limf(x)g(x).

xx0

特别的,若limf(x),limg(x)A0,则limf(x)g(x).

xx0xx0xx05 无穷小量

若limf(x)0,则称f(x)当xx0时为无穷量.

xx0注1 可将xx0改为其它逼近过程.

注2 limf(x)Af(x)A(x),其中lim(x)0.由于有这种可以互逆的表xx0xx0达关系,所以极限方法与无穷小分析方法在许多场合中可以相互取代. 注3 limf(x)0,g(x)在x0的某空心邻域内有界,则limf(x)g(x)0.

xx0xx0注4 limf(x)0,且当x足够大时,g(x)有界,则limf(x)g(x)0.

xxx0注5 在某一极限过程中,无穷大量的倒数是无穷小量,非零的无穷小量的倒数是无穷大量. 6 函数极限的性质

以下以xx0为例,其他极限过程类似.(1)limf(x)A,则极限A唯一.

xx0(2)limf(x)A,则,M0,使得x:0xx0,有f(x)M.

xx0(3)limf(x)A,limg(x)B,且AB,则0,使得x:0xx0,xx0xx0有

f(x)g(x)注

这条性质称为函数的“局部保号性”.在理论分析论证及判定函数的性态中应用极普遍.(4)limf(x)A,limg(x)B,且0当0xx0时,f(x)g(x)则xx0xx0AB.

(5)limf(x)A,limg(x)B,则

xx0xx0xx0limf(x)g(x)AB

limf(x)g(x)AB

limxx0f(x)g(x)xx0AB(B0)

要求:①进行运算的项数为有限项;②极限为有限数. 7 夹逼定理 若0,使得x:0xx0,有f(x)g(x)h(x),且

xx0xx0xx0limf(x)limh(x)A,则limg(x)A. Cauchy收敛准则

函数f(x)在x0的空心邻域内极限存在0,0,使得x,x,当0xx0,0xx0时,有f(x)f(x). 无穷小量的比较

设lim(x)0,lim(x)0,且limxx0xx0(x)(x)xx0k,则

(1)当k0时,称(x)为(x)的高阶无穷小量,记作(x)o(x);(2)当k时,称(x)为(x)的低阶无穷小量;(3)当k0且k时,称(x)为(x)的同阶无穷小量.

特别的,当k1时,称(x)和(x)为等价的无穷小量,记作(x)~(x).

注1 上述定义中,自变量的变化过程xx0也可用x,x,x,xx0,xx0之一代替. 注2 当x0时,常见的等价无穷小有:

sinx~x,tanx~x,1cosx~

x22,e1~x,ln(1x)~x,(1x)xm1~mx

注3 在用等价无穷小替换计算极限时,一般都要强调限定对“乘积因式”的等价替换.因为:

若(x)~(x)(P),则

limPf(x)(x)limPf(x)(x)f(x)limP(x)(x)(x)或

limg(x)(x)limg(x)(x)PP(x)(x). limg(x)(x)

(P为某逼近过程)

P而对于非乘积因式,这样的替换可能会导致错误的结果.

注4 在某一极限过程中,若(x)为无穷小量,则在此极限过程,有

(x)o(x)~(x). 10 两个重要极限(1)limsinxx1x01;

(2)lim(1x)xe.

x0

二、典型例题

例 用定义证明下列极限:(1)limx(x1)x12x112;

12(2)limxx1x2x.

例 limf(x)A,证明:

xx0(1)若A0,则有lim31f(x)2xx01A2;

(2)lim3xx0f(x)A.

例 设f(x)是[a,b]上的严格严格单调函数,又若对xn(a,b](n1,2,),有limf(xn)f(a),试证明:limxna.

nn

例 函数f(x)在点x0的某邻域I内有定义,且对xnI(xnx0,xnx0),且 0xn1x0xnx0(nN),有limf(xn)A,证明:limf(x)A.

nxx0

设函数f(x),x(0,1),满足f(x)0(x0),且

f(x)f()o(x)(x0)

2x则

f(x)o(x)(x0)

问:在题设条件下,是否有f(0)0?答:否.如f(x)01x0x0.

设函数f(x)在(0,)上满足议程f(2x)f(x),且limf(x)A,则

n

f(x)A(x(0,)).

求下列函数极限(1)limn0xb(a0,b0);

axxb(2)lim(a0,b0);

n0ax12exsinx(3)lim. 4n0x1ex 8

求下列极限(1)lim1tanxx1tanxn0e1;

(2)lim1cosxx)x;

n0x(1cosln(sin22(3)limxe)x2xn0ln(xe)2x.

求下列极限:(1)limn0etanxexsinxxcosx;

(2)lim1cosxcos2x3cos3xx2.

n0 10

求下列极限:(1)limx1xlnxx;

n1(2)lim(ax)ax2xx.

n0

求下列极限:

1(1)lim(cosx)n0ln(1x)2;

11(2)lim(sinn1xcos1x);

nx1xa(3)设ai0(i1,2,,n),求limn0ax2ax. nxn

(1)已知lim(1xaxb)0,求常数a,b;

篇3:函数的极限及函数的连续性典型例题

1.1 观察法

对简单的初等函数求极限, 利用函数极限定义及函数图象, 通过观察自变量变化趋势引起相应函数值变化趋势求得函数极限值。

1.2 代入法

利用函数极限四则运算法则和初等函数连续性, 若x0在其定义域内有意义, 则, 对分式极限也有

解:原式

解:因为是初等函数, 并且它的定义区间为 (1, +∝) , 而2∈ (1, +∝) , 所以

1.3 约零因子

针对型分式极限, 直接代入会出现分子、分母同时为零的情形, 将分式分子、分母因式分解或乘以有理化因式, 再利用分式性质约掉分子、分母为零的因子, 然后用代入法可求函数极限值。

1.4 公式法

利用两个重要极限求函数极限称为公式法。

注意: (1) 强调此极限属于型; (2) sin后面函数部分与分母部分完全一致。

注意: (1) 强调此极限属于1∝型; (2) 指数部分与括号内第二项互为倒数。

分析:先构造出重要极限型形式, 再结合极限运算法则求解。

1.5 洛必达法则

针对型、型函数极限, 不能直接用极限运算法则、代入法及公式法求得, 可使用洛必达法则简洁而有效。

注:使用洛必达法则要谨慎, 每用一次要验证是否满足洛必达法条件。

除此外, 还有无穷小量分出法、利用无穷小量的性质、变量替换法等。

2 常见错误分析

2.1 忽略零因子, 直接代入

分析:尽管分子、分母的极限都存在但分母的极限等于零, 不符合商极限法则要求。

2.2 生搬硬套, 不注意公式特点

分析:没注意sin后面函数部分与分母部分完全一致。

例12

分析:没注意1∝型极限公式中括号内第二项前面的符号。

以上总结了求函数极限的几种常用方法及常见错误分析, 以便于学生更好地掌握函数极限概念的理解及各种类型函数极限求解。

参考文献

篇4:函数的极限及函数的连续性典型例题

关键词: 函数    极限    连续    可导

一、学生在学习高等数学的相关内容中遇到的问题

在判断一函数在某点处的极限是否存在及在该点处是否连续或可导的问题时,学生往往很纠结,经常混为一谈,甚至会出现指鹿为马的现象.

二、如何处理好学生所遇到的相关问题

要想避免把三个不同的问题混为一谈,就必须弄清以下两个充要条件和一个必要条件及导数的定义.

1.函数f(x)当x→x 时极限存在的充要条件是左极限、右极限存在且相等,即

f(x)=A?圳 f(x)= f(x)=A

注:当左、右极限都存在,但不相等,或者二者至少有一个条件不存在时,就可以断言函数f(x)在x 处的极限不存在.

2.函数f(x)在点x 处连续的充要条件是函数在该点处的左、右极限存在、相等且等于该点处的函数值,即函数f(x)在点x 处连续?圳 f(x)= f(x)=f(x ).

注:当函数在点x 存在下列三种情形之一:

(1)在x=x 处无定义;

(2)在x=x 处有定义,但 f(x)不存在;

(3)在x=x 处有定义,且 存在,但 f(x)≠f(x ),则函数f(x)在点x 处不连续.

3.函数y=f(x)在点x 处可导的必要条件是:f(x)在点x 处的左、右导数存在且相等,即f′ (x )=f′ (x ).

4.导数的定义

设函数y=f(x)在点x 的某一领域内有定义,如果极限

=  存在,则称此极限为函数y=f(x)在点x 处的导数,记作

f′(x )或y′| ,即:

f′(x )=  =

此时也称函数f(x)在点x 处可导;若极限不存在,则称函数f(x)在点x 处不可导或导数不存在.

例1:设函数

f(x)=x·sin     x>01    x=0x     x<0

判断函数f(x)在x=0处的极限是否存在及函数在x=0处是否连续?

解:因为 f(x)= x =0, f(x)= x·sin =0

即 f(x)= f(x)=0,故函数f(x)在x=0处的极限存在.

又因为f(0)=1,即: f(x)= f(x)≠f(0),故函数f(x)在x=0处不连续.

例2:选择适当的a、b值,使函数

f(x)=2x        x≤1ax+b    x>1在点x=1处既连续又可导.

解: f(x)= 2x =2, f(x)= (ax+b)=a+b

因f(x)在点x=1处连续,即: f(x)= f(x)=f(1)

故a+b=2

f′ (1)=  =  = 2(x+1)=4

f′ (1)=  =  = a=a

因f(x)在x=1处可导,即f′ (1)=f′ (1)

故a=4,于是b=-2.

所以,当a=4,b=-2时,函数f(x)在x=1处既连续又可导.

例3:判断函数

f(x)=x +1    x≤22x+3    x>2在x=2处的极限是否存在,且在x=2处是否连续、可导?

解:因 f(x)= (x +1)=5, f(x)= (2x+3)=7

即 f(x)≠ f(x)

故函数在x=2处的极限不存在,从而函数在x=2处也不连续.

因f′ (2)=  =  =  =4

f′ (2)=  =  =2

即f′ (2)≠f′ (2)

故函数f(x)在x=2处不可导.

三、结论

一般地,判断函数在某点处的极限是否存在或在该点处是否连续,所讨论的函数都是分段函数,因为一切基本初等函数、初等函数在其定义域内都是连续的,而分段函数一般不是初等函数.

综上所述,要做到能熟练解决以上所提到的问题,不至于将三者混淆起来,只需明确三者之间的共同点都是求极限的问题,而连续的条件比极限存在的条件要多加强一个,不能把只要满足了左、右极限存在且相等就看成是函数在该点处连续.判断函数在某点处是否可导,只需看是否满足左、右导数是否存在且相等即可.

参考文献:

[1]姚孟臣.大学文科高等数学.高教出版社,2010.5.

[2]薛桂兰.高等数学学习指导.高教出版社,2005.6.

[3]沈聪.高等数学.首都经济贸易大学出版社,2010.5.

篇5:函数的极限及函数的连续性典型例题

第一节函数的极限和函数的连续性

考点梳理

一、函数及其性质

1、初等函数

幂函数:yxa(aR)

指数函数yax(a1且a1)

对数函数:ylogax(a0且a1)

三角函数:sin x , cos x , tan x , cot x

反三角函数:arcsin x , arcos x , arctan x , arccot x2、性质(定义域、值域、奇偶性、单调性、周期性、有界性)

【注】奇偶性、单调性相对考察的可能性打,但一般不会单独出题,常与其他知识点结合起来考察(比如与积分、导数结合)

二、函数极限

1. 数列极限

定义(略)

收敛性质:极限的唯一性、极限的有界性、极限的保号性。

·类比数列极限,函数极限有唯一性、局部有界性、局部保号性。

单侧极限(左极限、右极限)

【注】函数极限为每年的必考内容,常见于客观题中。一般为2~3题。

2. 两个重要极限

(1)limsinx1 x0x

x类似得到:x→0时,x~ln(x+1)~arcsin x~arctan x~tan x(2)lim(1x)e x0

类似得到:lim(1)elim(1)xx1xx

1xx1 e

·此处,需提及无穷大,无穷小的概念,希望读者进行自学。

三、函数的连续性

1. 概念:函数f(x)在x0处的连续(f(x)在x0点左连续、f(x)在x0点右连续)函数f(x)在开区间(a,b)上的连续

函数f(x)在闭区间[a,b]上的连续

2. 函数的间断点分类

● 跳跃式间断点:函数f(x)在点x0的左右极限都存在但不相等。

● 函数在点x0的左右极限都存在且相等,但不等于该点的函数值(或函数值在该

点无定义)

● 振荡间断点:f(x)在点x0的左右极限至少有一个不存在。

3. 连续函数的和、积、商,初等函数的连续性

● 有限个在某点连续的函数的和是一个在该点连续的函数。

● 有限个再某点连续的函数的积是一个在该点连续的函数。

● 两个在某点连续的函数的商事一个在该点连续的函数(分母在该点不为零)● 一切基本初等函数在定义域(或定义区间)上是连续的。

4. 闭区间上的连续函数的性质

●(最大、最小定理)在闭区间上连续的函数一定有最大值和最小值。

●(有界性定理)在闭区间上连续的函数一定在该区间上有界。

●(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)·f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点。

● 介值定理:设函数f(x)在闭区间[a,b]上连续,且在这区间的端点处取不同的函

数值f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)

内至少有一点ξ,使得f(b)=C(a<ξ

【注】函数的连续性,一般在客观题目中出现,分值不大,一般1~2题。

典型例题分析

【例1】(2010年真题)(工程类)计算极限limxsinx x0xsinx

A.1B.-1C.0D.2sinx1这一重要极限。如此,我们不难解x0x

sinxsinx11limxsinxx00。出该极限为0.即limlimx0xsinxx011limx0xx

xcx)e6,则常数c=_________。【例2】(2010年真题)(工程类)设lim(xxc

1x1【解析】解决此类题目,我们要灵活运用lim(1)。xxe【解析】:解决此类题目,我们要深刻掌握lim

2cxxcx2cx

2ccxclim()lim(1)limexxcxxxc2c1ce2ce6。则c=-3。

1xsin,x0【例3】(2009年真题)(工程类)设f(x)若f(x)在点x=0处连续,则αx0,x0的取值范围是

A.(-∞,+ ∞)B.[0,+ ∞]C.(0,+ ∞)D.(1,+ ∞)

【解析】函数f(x)为一个分段函数,要使其在点x=0处连续,只需limxsinx010,不难x

发现x→0时,sin x 为有界的,我们只需满足limx0即可。易得,α>0。但α不能等于x0

0,否则limsinx010。x

提高训练

1、求下列函数的定义域

(1)y

(2)y1 2x2x

(3)y=lg(3x+1)

(4)y1 1x22、判断一下函数的奇偶性

axax

(1)y = tan x(2)ya(3)y 2x3、求下列函数的极限

1x34x2(1)lim(3x1)(2)lim3(3)limxsinx3x0x0xxx

sin3x15sin2x(4)lim(5)lim(6)lim(1)x0xx01cosxxx

1ex,x0

4、讨论f(x)0,x0在x=0点的连续性。

x05、证明方程x3x1至少有一个根介于1和2之间。

【答案】

1、(1)[-1,1](2)(-∞,0)∪(0,2)∪(2,+∞)(3)(-1/3,+∞)

(4)[-2,-1)∪(-1,1)∪(1,+∞)

2、(1)奇(2)非奇非偶(3)偶

3、(1)8(2)4(3)0(4)2(5)3(6)

14、连续

篇6:函数的极限及函数的连续性典型例题

2016考研数学大纲解析及复习重点--函

数、极限、连续

9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:

一、大纲要求:函数、极限、连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点

本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:

利用极限的四则运算法则、幂指函数运算、连续函数代入法

利用两个重要极限求极限

利用洛必达法则

利用等价无穷小

极限存在准则:夹逼准则,单调有界准则

利用左右极限求分段函数分段点

利用导数定义

利用定积分定义

利用泰勒公式求极限

通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016

凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)

大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。

下面我们就看看今年数学二高等数学部分的大纲要求:

一、函数、极限、连续

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会

凯程考研辅导班,中国最强的考研辅导机构

描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学

1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学

1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程

篇7:多元函数的极限与连续

1.求下列极限:

x2y111)lim(4x3y);

2)lim(xy)sinsin;

3)lim2.2x0x2x0xyxyy0y1y02

2.证明:若f(x,y)

xy,(xy0),求 limlimf(x,y)与limlimf(x,y).x0y0y0x0xyx4y43.设函数f(x,y)4,证明:当点(x,y)沿通过原点的任意直线(ymx)趋于(0,0)时,函数f(x,y)23(xy)存在极限,且极限相等.但是,此函数在原点不存在极限.x2y22D(x,y)yx4.若将函数f(x,y)2限制在区域,则函数f(x,y)在原点(0,0)存在极限.2xy

5.求下列极限: 1)lim

3)lim(xy)In(xy);

4)limx0y022xysinxy;

篇8:函数极限的求法探讨

1 两边夹法则

要点 当极限不宜直接求出时, 可考虑将求极限的变量, 作适当的放大和缩小, 得到易于求极限且极限相等的两个新变量, 则原极限存在, 且等于此公共值。

例1 求undefined表示不大于a的最大的整数) 。

解:由于undefined

则有当x>0时, undefined, 当x<0时, undefined,

故undefined。

2 两边夹法则的推广形式

要点 当使用两边夹法则时, 若放大与缩小所得变量的极限值不相等, 但两者只相差一个任意小量, 则两边夹法则任然有效。

例2 设f (x) >0, 在[0, 1]上连续, 试证undefined。

证:令undefined, 则undefined

因为f (x) 在[0, 1]上连续, 根据闭区间连续函数的性质, ∃x0∈[0, 1], s.t.f (x0) =M.

于是∀ε>0, ∃δ>0当|x-x0|<δ, x∈[0, 1]时, 有M-ε

当n充分大时有undefined (即分点undefined的间距小于undefined

故undefined

由 (1) (2) , 有undefined

左端极限为M-ε, 右端极限为M, 由ε>0的任意性, 知undefined。

3 洛必达法则

要点undefined待定型) 若undefined在x0的去心邻域Uo (x0) 内可导, 且undefined, 则undefined。

undefined待定型) 若undefined在x0的去心邻域Uo (x0) 内可导, 且undefined, 则undefined。

注意:0·∞, ∞-∞, 00, 1∞, ∞0等待定型都可化为undefined或undefined型, 所以也可以用洛比达法则求值。

例3求undefined。

undefined

4 通过等式变形化为已知极限

要点 当极限不宜直接求出时, 可考虑将求极限的变量作适当的等式变形, 得到已知极限的新变量。

例4 求undefined。

解:undefined。

5 级数法

要点 级数法一般是利用麦克劳林级数undefined将函数展开, 取有效部分求极限。

例5 求undefined

undefined

6 用等价无穷小替换

要点 在求当时函数极限时, 常用以下等价无穷小进行等价替换:

undefined等。

例6 求undefined。

解:undefined。

7 自然对数法

要点 对于幂指函数y=u (x) v (x) 的极限在多数情况下都不能单纯的利用常规方法求解, 这时可采用对数法对函数取自然对数, 再求极限。

例7 求undefined。

undefined

因此undefined。

8 利用积分中值定理

要点 一般根据积分第一中值定理:若f (x) 在[a, b]上连续, 则将某些含有积分的变量化为一般形式再求极限。

例8求

解:由积分中值定理

9 因式分解法

要点 如果可以通过因式分解将变量化简或转化为已知的极限, 即可利用此方法求变量极限。

例9 求undefined。

解:undefined。

10 用变量替换

要点 为了将未知的极限化简, 或转化为已知的极限, 可根据极限式的特点, 适当引入新变量, 以替换原有的变量, 使原来的极限过程, 转化为新的极限过程。

例10 求undefined。

undefined

极限问题是一个极为复杂的问题, 在这里也仅仅是将十种常用的方法简要的说明和举例, 还有更多的方法有待我们寻求、探讨。

参考文献

篇9:函数的极限及函数的连续性典型例题

关键词:幂指函数 极限 对数函数 无穷小代换

中图分类号:G642 文献标识码:A 文章编号:1674-098X(2015)05(c)-0233-02

1 问题的提出

考虑一个连续复利问题,设有一笔存款(本金),年利率为,若一年分为期计息,则每期的利率为,于是年后的本利和为: (1)

若计息的期数,则问题就归结为连续复利问题,则年后的本利和转化为以下函数的极限。

nk (2)

上面函数的极限是高等数学中非常重要的一类极限,常规的处理方法是利用进行求解,但在大部分高等数学教材编写过程中,对的讨论过程比较繁琐,而且有些结果也没有给出严格的数学证明,不利于教师的教学和学生的理解。这里我们简单回顾一下对其处理过程:首先,通过单调有界准则证明了数列极限的存在性,随后就直接给出了,没有给出严格的证明过程;其次,在不严格的基础上,又证明了函数极限。该文针对以上存在的两个问题:(1)极限值等于没有给出严格的证明;(2)的求解比较繁琐。该文对此类极限的求解方法进行了总结,并通过matlab进行数值仿真。由于是一类特殊的幂指函数,下面我们首先讨论一般幂指函数极限的求解问题,然后过渡到特殊的幂指函数的极限问题。

2 幂指函数极限的求解方法

形如的函数称为幂指函数,幂指函数的极限问题在高等数学的教学中经常遇到,下面介绍几种求幂指函数极限时常用到的方法。

2.1 直接代入法

若幂指函数在处是连续的,根据连续函数的定义,可以通过如下方法求极限。

定理1:

若不在函数定义域内,或者自变量的变化过程为,这有如下结果。

定理2:若,,则。

其中表示自变量同一变化过程中的极限。

例1:求极限

解:由于在处连续,根据定理1,我们有:

上述极限过程也可以通过matlab中的simulink模块进行数值仿真,程序的模块圖和函数图像分别为图1和图2。

从图2可以看出当时,的无限趋近于是1,这个与我们计算结果是一致的。

2.2 洛必达法则

对于,和型的幂指函数的极限,可以将幂指函数化为对数恒等式的形式,将其转化为型的未定式,再根据函数的具体形式,将其转化为或,使用洛必达法则进行极限的计算。

例2:求

解:

在上面极限求解过程中,除了使用洛必达法则之外,还利用了等价无穷小代换。

当时,的无限趋近于1,这个与我们计算结果是一致的。

2.3 无穷小等价代换方法

无穷小等价代换方法是求函数极限常用的方法,但在大多数教材中,无穷小代换常用于乘积运算,事实上,对某些幂指函数的极限也可以通过无穷小代换方法计算。

定理3:若函数,和满足以下三个条件。

(1),且,,。

(2)。

(3)存在。

则。

例3 求的极限。

解:当时,,,且,满足定理3的条件(1)和(2);又因为成立,满足条件(3),因此,可以利用定理3进行求解。

当时,无限趋近于1。

3 极限的证明

利用定理2和等价无穷小代换方法,证明

证明:

在上面证明过程中,使用了无穷小代换 ,同时,也可以看出是的一种特殊形式。

可以利用求一类幂指函数的极限,其中可以是一个表达式。

定理4:若,,,且存在,则有下面结果

例4 求的极限

解:

4 结语

幂指函数的极限类型较多,是高等数学教学中的一个重点内容。学生学习起来往往比较困难,该文对幂指函数极限的常规求解方法做了一个概括和总结,并通过matlab软件进行了数值仿真。

参考文献

[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001.

[2]同济大学数学系编.高等数学[M].北京:高等教育出版社,2001.

[3]刘小华.关于幂指函数求极限问题[J].高等数学研究,2008,11(5):5-6.

篇10:多元函数的极限与连续习题

1.用极限定义证明:lim(3x2y)14。x2y1

2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。

(1)f(x,y)xy; xy

(2)f(x,y)(xy)sisi; 1

x1y

x3y3

(3)f(x,y)2; xy

1(4)f(x,y)ysi。x

3.求极限(1)lim(xy)x0y022x2y2;

(2)limx2y2

xy122x0y0;

(3)lim(xy)sinx0y01; 22xy

sin(x2y2)(4)lim。22x0xyy0

ln(1xy)4.试证明函数f(x,y)xy

x0x0在其定义域上是连续的。

1.用极限定义证明:lim(3x2y)14。

x2y1

因为x2,y1,不妨设|x2|0,|y1|0,有|x2||x24||x2|45,|3x2y14||3x122y2|

3|x2||x2|2|y1|15|x2|2|y1|15[|x2||y1|]

0,要使不等式

|3x2y14|15[|x2||y1|]成立 取min{

30,1},于是

0,min{

30,1}0,(x,y):|x2|,|y1|

且(x,y)(2,1),有|3x2y14|,即证。

2.讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。(1)f(x,y)

xy

; xy

xyxy

limli1,limlim1

y0x0xyx0y0xy

二重极限不存在。

xyxy1

或lim0,li。

x0xyx0xy3

yx

y2x

(2)f(x,y)(xy)sin

11sin; xy

0|(xy)sinsin||x||y|

xy

可以证明lim(|x||y|)0所以limf(x,y)0。

x0y0

x0y0

当x

111,y0时,f(x,y)(xy)sinsin极限不存在,kxy

因此limlim(xy)sisi不存在,x0y0xy

lim(xy)sisi不存在。同理lim

y0x0

x1y

x3y3

(3)f(x,y)2;

xy

2x3

limf(x,y)lim0,x0x0xx

yx

当 P(x, y)沿着yxx趋于(0,0)时有

yxx

x3(x3x2)3limf(x,y)li21,x0x0xx3x223

x0y0

所以 limf(x,y)不存在;

limlimf(x,y)0,limlimf(x,y)0。

x0y0

y0x0

(4)f(x,y)ysinx

0|ysin||y|

x

∴limf(x,y)0,x0y0

limlimysi0,limlimysi不存在。x0y0y0x0xx

3.求极限(1)lim(xy)

x0

y0

2x2y2;

(x2y2)2

0|xyln(xy)||ln(x2y2)|,22

(x2y2)2t

ln(x2y2)limlnt0,又 lim

x0t044

y0

∴lim(xy)

x0

y0

2x2y2

e

limx2y2ln(x2y2)(x,y)(0,0)

1。

(2)lim

x2y2xy1

x0y0;

(x2y2)(x2y21)lim2。lim2222x001xy1xy1x

y0y0

x2y2

(3)lim(xy)sin

x0y0

;22

xy

||xy|,|(xy)sin2

xy

而lim(xy)0

x0

y0

故lim(xy)si20。2x0xyy0

sin(x2y2)

(4)lim。22x0xyy0

令xrcos,yrsin,(x,y)(0,0)时,r0,sin(x2y2)sinr2

limlim21。22x0r0rxyy0

ln(1xy)

4.试证明函数f(x,y)x

y

x0x0

在其定义域上是连续的。

证明:显然f(x, y)的定义域是xy>-1.当x0时,f(x, y)是连续的,只需证明其作为二元函数在y轴的每一点上连续。以下分两种情况讨论。(1)在原点(0,0)处

f(0, 0)=0,当x0时

0ln(1xy)1f(x,y)

xyxyln(1xy)

由于limln1(xy)

x0

y0

1xy

y0,y0

1

1xy

不妨设|ln1(xy)从而0,取

xy

1|1,|ln1(xy)|2,当0|x|,0|y|时,

ln(1xy)

0||yln(1xy)xy||

x

|y||ln(1xy)|2|y|,于是,无论x0,x0,当|x|,|y|时,都有limf(x,y)0f(0,0)

x0y0

1xy

(2)在(0,)处。(0)

xy

当x0时,|f(x,y)f(0,)||yln(1xy)

1xy

|

1(xy)|y(ln1)(y)| 1||y|

|y||ln(1xy)

xy

当x=0时,|f(x,y)f(0,)||y|,1xy

注意到,当0时limln1(xy)

x0

篇11:第十三章多元函数的极限和连续性

第十三章 多元函数的极限和连续性

§

1、平面点集

一 邻域、点列的极限

定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫做M0的邻域,记为OM0,。

定义2 设Mnxn,yn,M0x0,y0。如果对M0的任何一个邻域OM0,,总存在正整数N,当nN时,有MnOM0,。就称点列Mn收敛,并且收敛于

M0,记为limMnnM0或xn,ynx0,y0n。

性质:(1)xn,ynx0,y0xnx0,yny0。(2)若Mn收敛,则它只有一个极限,即极限是唯一的。二 开集、闭集、区域

设E是一个平面点集。

1. 内点:设M0E,如果存在M0的一个邻域OM0,,使得OM0,E,就称M0是E的内点。2. 外点:设M1E,如果存在M1的一个邻域OM1,,使得OM1,E,就称M1是E的外点。

3. 边界点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,其中既有E的点,又有非E中的点,就称M*是E的边界点。E的边界点全体叫做E的边界。4. 开集:如果E的点都是E的内点,就称E是开集。

5. 聚点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,至少含有E中一个(不等于M*的)点,就称M*是E的聚点。性质:设M0是E的聚点,则在E中存在一个点列Mn以M0为极限。6. 闭集:设E的所有聚点都在E内,就称E是闭集。

7. 区域:设E是一个开集,并且E中任何两点M1和M2之间都可以用有限条直线段所组成的折线连接起来,而这条折线全部含在E中,就称E是区域。一个区域加上它的边界就是一个闭区域。三平面点集的几个基本定理

1.矩形套定理:设anxbn,cnydn是矩形序列,其中每一个矩形都含在前一个矩形中,并且

13-1

《数学分析(1,2,3)》教案

bnan0,dncn0,那么存在唯一的点属于所有的矩形。

2.致密性定理:如果序列Mnxn,yn有界,那么从其中必能选取收敛的子列。

3.有限覆盖定理:若一开矩形集合x,y覆盖一有界闭区域。那么从里,必可选出有限个开矩形,他们也能覆盖这个区域。

N4.收敛原理:平面点列Mn有极限的充分必要条件是:对任何给定的0,总存在正整数N,当n,m时,有rMn,Mm。

§2 多元函数的极限和连续

一 多元函数的概念

不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vrh。这些都是多元函数的例子。

2一般地,有下面定义:

定义1 设E是R的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。

有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xR22x2y2就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式xyR222222的x,y全体,即D{(x,y)|xyR}。又如,Zxy是马鞍面。二 多元函数的极限

2定义2

设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述1 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0yy0时,有f(x,y)A,就称A是13-2

《数学分析(1,2,3)》教案

二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述2 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有

f0f(x,y)A,就称A是二元函数在M0点的极限。记为limMMMA或fMAMM0 。注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋于M0时,f(M)MM0的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数f(x,y)xyx2y22,讨论在点(0,0)的的二重极限。

例:设二元函数f(x,y)2xyx2y或2,讨论在点(0,0)的二重极限是否存在。

0,例:f(x,y)1,xy其它y0,讨论该函数的二重极限是否存在。

二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:limxyxyx2xyysinxyx2。

例:① limx0y0② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)

例:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0coscos32sin23sin0?(注意:cos3sin在374时为0,此时无界)。

xyx22例:(极坐标法再举例):设二元函数f(x,y)y2,讨论在点(0,0)的二重极限.

证明二元极限不存在的方法.

基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关. 例:f(x,y)xyx2y2在(0,0)的二重极限不存在.

13-3

《数学分析(1,2,3)》教案

二元函数的连续性

定义3

设fM在M0点有定义,如果limf(M)f(M0),则称fM在M0点连续.

MM0“语言”描述:0,0,当0

四 有界闭区域上连续函数的性质

有界性定理

若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理

若fx,y再有界闭区域D上连续,则它在D上一致连续。

最大值最小值定理

若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。

nP0和P1是D内任意两点,f是D内的连续函数,零点存在定理

设D是R中的一个区域,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。

二重极限和二次极限

在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重极限(二重极限).此xx0yy0外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下:

若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)在yy0时的xx0极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再对y的二次极限,记为yy0limlimf(x,y)A.

yy0xx0同样可定义先y后x的二次极限:limlimf(x,y).

xx0yy0上述两类极限统称为累次极限。

注意:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例:(二重极限存在,但两个二次极限不存在).设

11xsinysinyxf(x,y)0x0,y0x0ory0

由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y0y01y不存在知f(x,y)的累次极限不存在。

例:(两个二次极限存在且相等,但二重极限不存在)。设

13-4

《数学分析(1,2,3)》教案

f(x,y)xyx2y2,(x,y)(0,0)

由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知limf(x,y)不存在。

x0y0y0x0x0y0例:(两个二次极限存在,但不相等)。设

f(x,y)xx22yy22,(x,y)(0,0)

则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不可交换)

x0y0y0x0x0y0y0x0上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。

定理1 设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y)。则

xx0yy0xx0yy0lim(y)limlimf(x,y)A。

yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。推论1

设(1)limf(x,y)A;(2)y,yy0,limf(x,y)存在;(3)x,xx0,limf(x,y)xx0yy0xx0yy0存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限limf(x,y)。

yy0xx0xx0yy0xx0yy0推论2 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限limf(x,y)必不存在(可xx0yy0yy0xx0xx0yy0用于否定重极限的存在性)。例:求函数fx,yxy22222xyxy在0,0的二次极限和二重极限。

篇12:函数极限与连续教案

Ⅰ 授课题目(章节)

1.8:函数的连续性

Ⅱ 教学目的与要求:

1、正确理解函数在一点连续及在某一区间内连续的定义;

2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的、基本初等函数在定义域内是连续的;

5、了解初等函数的和、差、积、商的连续性,反函数与复合函数的连续性; 6 掌握闭区间上连续函数的性质

教学重点与难点:

重点:函数在一点连续的定义,间断点,初等函数的连续性

难点:函数在一点连续的定义,闭区间上连续函数的性质

Ⅳ 讲授内容:

一 连续函数的概念函数的增量

定义1设变量u从它的初值u0变到终值u1,终值与初值之差u1u0,称为变量u的增

量,或称为u的改变量,记为u,即uu1u0

xx1x0

yf(x0x)f(x0)函数的连续性

定义2 设函数yf(x)在点x0的某个邻域内有定义,若当自变量的增量x趋近于零

时,相应函数的增量y也趋近于零,即

limy0或 x0

x0limf(x0x)f(x0)0

则称函数f(x)在x0点连续

2例1 用连续的定义证明y3x1在点x02处是连续的证明 略

若令xx0x则当x0时,xx0又yf(x0x)f(x0)即

f(x)f(x0)y故y0就是f(x)f(x0)

因而limy0可以改写成limf(x)f(x0)x0xx0

定义3 设函数yf(x)在点x0的某个邻域内有定义,若

xx0limf(x)f(x0)

则称函数f(x)在x0点连续

由定义3知函数fx在点x0连续包含了三个条件:

(1)fx在点x0有定义

(2)limf(x)存在xx0

(3)limf(x)f(x0)xx0

sinx,x0例2 考察函数f(x)x在点x0处得连续性

1,x0

解略

3左连续及右连续的概念.定义4 若limf(x)f(x0),则函数f(x)在x0点左连续 xx0

若limf(x)f(x0),则函数f(x)在x0点右连续 xx0+

由此可知函数f(x)在x0点连续的充分必要条件函数f(x)在x0点左连续又右连续

4、函数在区间上连续的定义

(a,b)(a,b)定义5 若函数f(x)在开区间内每一点都连续,则称函数f(x)在开区间内连

(a,b)若函数f(x)在开区间内连续,且在左端点a右连续,在右端点b左连续,则

称称函数f(x)在闭区间a,b上连续

(-,+)例3 讨论函数yx在内的连续性

解 略

二 函数的间断点定义6函数f(x)不连续的点x0称为函数f(x)的间断点

由定义6可知函数f(x)不连续的点x0有下列三种情况

(1)fx在点x0没有定义

(2)limf(x)不存在xx0

(3)limf(x)f(x0)xx0

2间断点的分类

左右极限都相等(可去间断点)第一类间断点:左右极限都存在间断点 左右极限不相等(跳跃间断点)

第二类间断点:左右极限至少有一个不存在

x21,x0例4考察函数f(x)在x0处得连续性

0,x0

解 略

例5考察函数f(x)

解 略

1,x0例6考察函数f(x)x在x0处得连续性

0,x0x,x0x1,x0在x0处得连续性

解 略

三 连续函数的运算与初等函数的连续性

1、连续函数的和、差、积、商的连续性

2、反函数与复合函数的连续性

3、初等函数的连续性:基本初等函数在它们的定义域内都是连续的.一切初等函数在其定义区间内都是连续的.对于初等函数,由于连续性xx0limf(x)f(x0),求其极限即等价于求函数的函数值

四闭区间上连续函数的性质

定理1(最大值最小值定理)

若函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小值

定理2(介值定理)

若函数f(x)在闭区间a,b上连续,m 和M分别为f(x)在a,b上的最小值和最大值,则对于介于m 和M之间的任一实数C,至少存在一点a,b,使得

f()C

定理3(零点定理)

若函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则至少存在一点a,b,使得f()0

例7 证明x52x20在区间(0,1)内至少有一个实根 证明 略

Ⅴ 小结与提问:

Ⅵ 课外作业:

上一篇:仓库管理员毕业生个人简历表格下一篇:礼辛小学道德讲堂工作计划