任意角的三角函数(教案)

2024-04-29

任意角的三角函数(教案)(精选14篇)

篇1:任意角的三角函数(教案)

1.2.1任意角的三角函数

授课人:何艳峰

教学目标:

(1)让学生理解任意角的三角函数的定义。

(2)让学生运用三角函数的定义求任意角的三角函数。重

点:运用任意角的三角函数的定义求值。

点:运用数形结合思想和分类讨论思想求任意角的三角函数。教学方式:讲练结合 教学媒体:黑板 课

型:新授课 教学过程: 1.课题引入

问题1.在直角△ABC中,sinα,cosα,tanα分别叫做角α的正弦、余弦和正切,它们的值分别等于什么?

问题2.为了研究方便,我们把锐角α放到直角坐标系中,并使角α的顶点与原点O重合,始边与x轴的非负半轴重合。在角α的终边上取一点P(x,y),设点P与原点的距离为r,那么sinα,cosα,tanα的值分别如何表示?

问题3.为了使sinα,cosα的表示式更简单,你认为点P的位置选在何处最好?此时,sinα,cosα分别等于什么? 2.新课讲解

(1)单位圆的定义

思考:在直角坐标系中,以原点O为圆心,以单位长度为半径的圆称为单位圆。对于角α的终边上一点P,要使│OP│=1,点P的位置如何确定?

(2)三角函数的定义

设α是一个任意角,它的终边与单位圆交于点P(x,y),那么

sinycosxytan(x0)x

对于确定的角α,上述三个值都是唯一确定的。故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数。

13练习:已知角的终边与单位圆交于点P(,-),求角的三角函数值。

22例1 求5的正弦、余弦和正切值。3

(3)利用角α终边上任意一点的坐标定义三角函数 例2 已知角α的终边经过点P0(-3,-4),求角α的正弦、余弦和正切值。

思考:若点P(x,y)为角α终边上任意一点,那么sinα,cosα,tanα对应的函数值分别等于什么?

sinyrxcosrytanx其中r=xy22 练习:已知角α的终边经过点P0(-4a,3a)(a≠0),求角α的正弦、余弦和正切值。思考:设α是一个任意的象限角,那么当α在第一、二、三、四象限时,sinα的取值符号分别如何?cosα,tanα的取值符号分别如何? 3.课堂总结 4.课后作业 P20:T1,T2

篇2:任意角的三角函数(教案)

合肥市二十八中学

漆学龙

教学目标 <一> 知识目标

1、掌握任意角的三角函数的定义。

2、已知角α终边上一点,会求角α的各三角函数值。

3、记住三角函数的定义域和诱导公式

(一)。<二> 能力目标

1、理解并掌握任意角的三角函数的定义。

2、树立映射观点,正确理解三角函数是以实数为自变量的函数。

3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。<三> 德育目标

1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。

2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。教学重难点

任意角的正弦、余弦、正切的定义

(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。教学过程

问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗?

在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆

即:锐角三角函数可以用单位圆上的点的坐标来表示

推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切)任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则:

正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.(由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为:

我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1:

解:

例2:

事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

问题4: 根据三角函数的定义能否确定正弦,余弦,正切的值在四个象限内的符号?

例3:当且仅当下列不等式组成立时,角θ为第三象限角

解略

问题5:根据三角函数的定义,终边相同角的同一三角函数值是否相等?

课堂练习练习1:填表

练习2:教材第15页练习1、2、4 本课小结

1.任意角的三角函数定义 直角三角形中的锐角三角函数

象限中的锐角三角函数

单位圆上点的坐标表示的锐角三角函数 单位圆上点的坐标表示的任意角三角函数

任意角终边上任一点(非原点)坐标定义三角函数 2.三角函数的定义域

3.正弦、余弦和正切函数在各个象限的符号 一全正,二正弦,三正切,四余弦 4.诱导公式一

课后作业 1.习题1.2

篇3:任意角的三角函数(教案)

“学生理解和掌握概念的过程实际上是掌握同类事物的共同、关键属性的过程.”“同类事物的共同属性也可以用定义的方式向学生直接揭示, 利用学生已有的认知结构中的有关知识来理解新概念, 这种获得概念的方式叫做概念同化”[1].高一学生在学习了必修1之后, 已对函数有了系统的认识, 在他们的认知结构中已经具备了同化新概念的适当知识.笔者在执教“任意角的三角函数” (江苏教育出版社《普通高中课程标准实验教科书·数学4》第1.2.1节) 时, 以函数为主线, 始终围绕函数的本质构建任意角的三角函数概念的同化过程, 收到了很好的教学效果.现将本次活动的课堂教学案例梳理并反思如下, 与同行分享、交流和指正.

1 教学过程

1.1 引入课题

前面我们已经将角的概念推广到了任意角.为了方便研究, 我们将角“放到”平面直角坐标系中, 并且引入了新的度量———弧度制.请用弧度制写出终边在y轴上的角的集合.

设计意图一方面是简单复习弧度制及“终边相同的角”的表示方法, 另一方面也是为后面定义正切函数铺垫.

角的概念已经推广, 与之相应的锐角三角函数已不满足数学内部发展的需要.因此, 必须研究学习任意角的三角函数. (给出课题)

1.2回顾旧知

如图1所示, 在直角三角形中锐角α的三角函数是如何定义的?

1.3 建构数学

在图1中建立平面直角坐标系, 如图2所示.原来的点A只是锐角α终边上的一个点, 而直角边的长a, b就是点A的坐标 (a, b) .角α的正弦也可以说成是有关坐标的比

问题1初中关于正弦的规定, 其实是给出了锐角α的集合到其终边上的点的坐标比的一种对应:, 即

(1) 任意锐角α都有相应的坐标比与之对应吗?

(2) 如果能, 对应的坐标比大小唯一确定吗?

设计意图两个小问是相关联的, 都指向函数的本质:任意性和唯一性, 通过问题的讨论, 以达到在学生已有的知识和方法的基础上分化出函数的属性, 为进一步推广到任意角做准备.

以锐角α为内角的直角三角形当然存在, 比值是存在的;但这样的直角三角形有无数个, 比值是否随着直角三角形的变化而变化呢?

问题2能否将锐角的正弦推广到任意角的情况呢?如图4, 即对任意角α的终边上的任意一点P (x, y) , 对应关系:

能否作为任意角的集合R到比值集合C的函数呢?

设计意图让学生分组讨论, 关键是感受函数定义中的“任意性”和“唯一性”, 即任意角都存在某个比值与之对应吗?对应的这个比值大小唯一吗 (与点在终边上的位置无关) ?问题2的解决, 有利于概括出任意角的对应关系的共同属性.另外, 不同于问题1, 问题2的提法合并了两小问, 意在提高学生的概括水平.

学生对存在性有疑惑:如果点P在坐标轴上, 哪有直角三角形?教者意识到还有同学的思维停留在“直角三角形的边长比”上, 而不是“角的终边上点的坐标比”.

观察几何画板实验.如图4, 分别转动角α的终边和拖动α终边上的点P, 观察比值是否都有?是否改变?

设计意图上课时将度量坐标、计算坐标比的过程“展示”在学生面前, 再通过点P的两种不同运动, 观察比值的存在性和变化.

通过几何画板实验, 帮助学生实现了抽象思考, 同时正弦函数值为0、为负等现象出现突破了学生原有知识结构, 学生已有的认知结构与新概念之间的不平衡是概念教学的根本动力.

问题3结合图5, 模仿问题1, 逻辑地证明比值与点P位置无关, 即具有唯一确定性.

设计意图将直观感知用严谨的证明表达清楚, 这是数学形式化的要求, 也是概念教学中最重要的环节之一, 即在特定的情境中检验假设, 确认关键属性.自然, 证明过程只需在问题1的板书基础上用显眼的黄色粉笔改动几处即可.

至此我们发现, 对应法则:能作为任意角的集合R到比值集合C的函数, 它就是正弦函数了.

你能用类似的方法定义余弦函数吗?“类比是伟大的引路人.”学生立即得到结论:对应法则:作为任意角的集合R到比值集合D的一个函数, 它就是余弦函数.

问题4那么, 对应法则:能作为任意角的集合R到比值集合E的一个函数吗?为什么?

设计意图仍然从建构函数的本质设计问题, 让学生探索、发现正切函数的定义, 但问题中的“任意性”是一个“陷阱”.

至此, 我们成功地将锐角的三个三角函数, 推广到任意角的三角函数.请给出具体的定义.

点评通过对用函数这根主线串起的4个问题的研究, 学生主动地完成了概括、形成概念, 用习惯的形式符号表示新概念的过程, 并了解了概念产生的背景, 体会了其中所蕴涵的数学思想.

问题5根据前面的讨论, 写出任意角的三角函数的定义域.

教者原以为这是“口答”过关题.想不到被提问的学生说“正切函数的定义域是 (-∞, 0) ∪ (0, +∞) ”.

师:你认为去掉0即可, 为什么?

生:分母不为0.

师:正切函数是以角α为自变量, 定义域指角α的取值集合, x≠0就是α≠0吗?

生: (思考片刻) x≠0指终边不在y轴上, 定义域是

点评课堂生成也是一种教学资源, 如果视而不见, 或者粗暴对待, 前面所有的预设效果将大打折扣;相反, 用好这种资源更能强化概念.

问题6探究三角函数值在各个象限的符号.

设计意图函数有定义域、值域和对应法则三要素.在给出了定义域和对应法则之后, 自然要研究任意角三角函数的值域.而判断三角函数值在各个象限的符号既是研究值域的基础, 也是函数概念的“精致”过程.

根据比值, 由学生总结每一个三角函数在四个象限的符号规律.教者提醒, 换个角度看三个三角函数值在四个象限的符号, 如图6所示, 真是“三室一厅, 各得其所”.

1.4 应用新知

例1已知角α的终边经过点P (2, -3) , 求角α的正弦值、余弦值和正切值.

变式1已知角α的终边经过点P (2, y) , 且, 试求y的值.

变式2如图7, 已知点P (x, y) 在以原点为圆心, 5为半径的圆上运动, 当点P运动到3rad角的终边上时, 求点P的坐标.

设计意图例1是概念的简单应用;变式1逆用定义, 并注意解关于y的无理方程时要洞察题设中的条件:y<0, 培养思维的严密性;通过变式2, 将特殊情形一般化, 导出圆周运动的数学模型.

变式2中点P的坐标 (5cos 3, 5sin 3) .将这个问题一般化, 即如图8, 当点P (x, y) 在以原点为圆心, r为半径的圆上运动, 当点P运动到角α的终边上时, 点P的坐标 (rcosα, rsinα) .从而任意角的三角函数定义解决了进行圆周运动的点 (x, y) 与 (r, α) 之间的关系, 即建立了圆周运动的数学模型.

例2及课堂练习、回顾反思等略.

2 教学反思

2.1 用函数主线串起概念同化的过程

这是一堂概念课.本节课传统的设计方法, 正如教材的编写顺序, 先从直角三角形的长度比转化为任意角α终边上一点P (x, y) 有关的坐标比, 再证明 (甚至不证明) 点P的任意性, 就完成了任意角的三角函数的定义建构.但事实告诉我们, 这样的课堂教学, 学生仅仅学会正用定义或逆用定义的计算操练, 学生甚至都不明白“三角函数为什么也是函数?”“三角函数是什么样的函数?”等最本原的问题.

《高中数学课程标准 (实验) 》 (以下简称《标准》) 对数学课程的目标提出了“过程”要求:“获得必要的数学基础知识和基本技能, 理解基本的数学概念、数学结论的本质, 了解概念、结论等产生的背景、应用, 体会其中所蕴涵的数学思想和方法, 以及它们在后续学习中的作用.”[2]

基于此, 笔者先通过问题1, 建立起f:{锐角}→{比值}的函数概念, 并通过追问和证明, 确认这个对应关系满足“任意性”和“唯一性”;有了问题1的铺垫, 对问题2中的f:{任意角}=R→{比值}是否为函数的思考指明了途径, 小组讨论、几何画板探究和严密的逻辑证明为“任意角的正弦函数”定义做足了铺垫;当学生以同样的方法定义余弦和正切时, 虽然出现了错误, 但笔者仍然感到欣喜———他们学会了用已有的知识和方法探索新的问题;最后, 在“知识应用”环节的变式中, 凸显了“任意角的三角函数定义解决了进行圆周运动的点 (x, y) 与 (r, α) 之间的关系, 即建立了圆周运动的数学模型”数学意义, 回答了第一章开头所提出的核心问题, 奠定了本章的学习基础.所以, 完整的概念建构, 还应包括在“知识应用”环节, 它“将新旧概念进行归类整理, 并按照相应的类属关系进行编码, 从而形成一个合理有序的概念系统.”[1]

2.2 教学活动是教师搭台下的学生展示

《标准》指出:“数学教学是数学活动的教学, 是师生之间, 学生之间交往互动与共同发展的过程.”根据文[1]的观点, “新概念的获得主要依赖认知结构中原有的适当观念, 必须通过新旧观念的相互作用, 有意义的学习才能实现.这种相互作用的结果, 就是新旧意义的同化, 进而形成分化程度更高的认知结构”, 因此教者需要对教材进行适当的加工处理, 从学生的已有知识和方法出发, 并从研究正弦函数入手, 鼓励每个学生动手、动口、动脑, 积极参与数学的学习过程, 突破一点, 推向全面.在认清了概念内涵以后再进行概念应用, 引导学生在揭示概念内涵的丰富内容的基础上形成新的概念.

在整个教学过程中, 教师把教学内容以“函数问题链”的方式组织起来, 在教师的引导下, 围绕函数定义恰时恰点地提出问题, 课堂上同学们紧张、有序而又热情饱满.教师用问题一次又一次地把学生引入“愤”、“悱”境地, 引起认知冲突, 促使他们集中注意力, 积极思维.在教师的组织、启发、引导下, 经过思考、提问、会话、交流等一系列活动弄清了问题, 改善了认知结构, 完成教学任务[4].学生不仅学会了有条理地表述自己的观点想法, 还学会了相互接纳、赞赏与互助, 并不断对自己和别人的想法进行批判和反思.通过学生间的多向交流, 可以使他们从多角度看到问题解决的途径.

参考文献

[1]曹才翰, 章建跃.数学教育心理学 (第2版) [M].北京:北京师范大学出版社, 2006.

[2]中华人民共和国教育部.高中数学课程标准 (实验) [M].北京:人民教育出版社, 2003.

[3]李平龙.“任意角三角函数”的建构与反思[J].中国数学教育 (高中版) , 2011, (1-2) :41-43.

篇4:三角函数·任意角的三角函数

1. “[tanα=34]”是“[sinα=-35]”的( )

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

2. 已知[cos(π2+α)=35],且[α∈(π2,3π2)],则[tanα=]( )

A. [43] B. [34]

C. [-34] D. [±34]

3. 已知[tanθ=2],则[sin2θ+sinθcosθ-2cos2θ][=]( )

A. [-43] B. [54]

C. [-34] D. [45]

4. 已知[sin(π+θ)=45],则[θ]角的终边在( )

A. 第一、二象限 B. 第二、三象限

C. 第一、四象限 D. 第三、四象限

5. 已知[α∈(0,2π)],且[α]的终边上一点的坐标为[(sinπ6,cos5π6)],则[α]等于( )

A. [2π3] B. [5π3]

C. [5π6] D. [7π6]

6. 若[0

A. [sinx<3xπ] B. [sinx>3xπ]

C. [sinx<4x2π2] D. [sinx>4x2π2]

7. [sin256π+cos253π-tan(-254)π=]( )

A. 0 B. 1

C. 2 D. -2

8. 若[α]是第四象限角,[tanα=-512],则[sinα=]( )

A. [15] B. [-15]

C. [513] D. [-513]

9. 已知sin[(76π+α)=13],则sin[(2α-76π)=]( )

A. [79] B. [-79]

C. [19] D. [-19]

10. 已知点[P(sinα-cosα,tanα)]在第一象限,则在[0,2π]内[α]的取值范围是( )

A. ([π4],[π2]) B. (π,[54]π)

C. ([3π4],[54]π) D. ([π4],[π2])[?](π,[54]π)

二、填空题(每小题4分,共16分)

11. 若角[β]的终边与[60°]角的终边相同,则在[[0°],[360°)]内,终边与角[β3]的终边相同的角为 .

12. 若角[α]的终边落在直线[y=-x]上,则[sinα1-sin2α+1-cos2αcosα]的值等于 .

13. 若[α]是第一象限角,则[sin2α],[cos2α],[sinα2],[cosα2],[tanα2]中一定为正值的有 个.

14. 若[α]是锐角,且[sin(α-π6)=13],则[cosα]的值是 .

三、解答题(共4小题,44分)

15. (10分)设[α]为第四象限角,其终边上的一个点是[P(x,-5)],且[cosα=24x],求[sinα]和[tanα].

16. (10分)已知扇形[OAB]的圆心角[α]为[120°],半径长为6,求:

(1)求[AB]的弧长;

(2)求弓形[OAB]的面积.

17. (12分)[A,B]是单位圆[O]上的动点,且[A,B]分别在第一、二象限. [C]是圆[O]与[x]轴正半轴的交点,[△AOB]为正三角形. 记[∠AOC=α].

(1)若[A]点的坐标为([35],[45]). 求[sin2α+sin2αcos2α+cos2α]的值;

(2)求[|BC|2]的取值范围.

18. (12分)求值:

(1)已知[sin(3π+θ)=14],求[cos(π+θ)cosθcos(π+θ)-1+][cos(θ-2π)cos(θ+2π)cos(π+θ)+cos(-θ)]的值;

(2)已知[-π2篇5:任意角的三角函数(教案)

课时:07 课型:新授课 教学目标:

1.理解三角函数定义.三角函数的定义域,三角函数线.2.理解握各种三角函数在各象限内的符号.

3.理解终边相同的角的同一三角函数值相等.能力目标:

1.掌握三角函数定义.三角函数的定义域,三角函数线.2.掌握各种三角函数在各象限内的符号. 3.掌握终边相同的角的同一三角函数值相等.教学过程:

一、复习引入:

1、三角函数定义.三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.2.确定下列各式的符号

(1)sin100°·cos240°(2)sin5+tan5 3..x取什么值时,sinxcosx有意义? tanx4.若三角形的两内角,满足sincos0,则此三角形必为()A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能 5.若是第三象限角,则下列各式中不成立的是()A:sin+cos0 B:tansin0 C:coscot0 D:cotcsc0 6.已知是第三象限角且cos20,问

2是第几象限角?

二、讲解新课:

1、(1)若θ在第四象限,试判断sin(cosθ)cos(sinθ)的符号;(2)若tan(cosθ)cot(sinθ)>0,试指出θ所在的象限,并用图形表示出

的取值范围.22、求证角θ为第三象限角的充分必要条件是证明:必要性:∵θ是第三象限角,

sin0

tan0sin0∴

tan0充分性:∵sinθ<0,∴θ是第三或第四象限角或终边在y轴的非正半轴上 ∵tanθ>0,∴θ是第一或第三象限角. ∵sinθ<0,tanθ>0都成立. ∴θ为第三象限角.

3.求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°.

三、巩固与练习1 求函数y=的值域 设是第二象限的角,且|cos2|cos2,求2的范围.四、小结:

五、课后作业:

1、利用单位圆中的三角函数线,确定下列各角的取值范围:

篇6:《任意角的三角函数》教学反思

通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。

在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。

篇7:任意角的三角函数教学设计

一、教学内容分析

本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。

二、学生情况分析

本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。

三、教学目标

知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。

方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。

情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。

四、教学重、难点分析:

重点:理解任意角三角函数(正弦、余弦、正切)的定义。难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。

五、教学方法与策略:

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.六、教具、教学媒体准备:

为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角三角函数与它的终边上点的坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.

七、教学过程

(一)教学情景

1.复习锐角三角函数的定义

问题1:在初中,我们已经学过锐角三角函数.如图(课件2)在直角△ABC中,∠B是直角,那么根据锐角三角函数的定义,锐角A的正弦、余弦和正切分别是什么?

设计意图:帮助学生回顾初中锐角三角函数的定义.

师生活动:教师提出问题,学生回答. 2.认识任意角三角函数的定义

问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?

设计意图:引导学生将锐角三角函数推广到任意角三角函数.

师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:

(1)能不能继续在直角三角形中定义任意角的三角函数? 以此来引导学生在平面直角坐标系内定义任意角的三角函数.

(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?

进一步引导学生在平面直角坐标系内定义任意角的三角函数.在此基础上,组织学生讨论。

(3)如图2,在平面直角坐标系中,如何定义任意角的三角函数呢?

(4)终边是OP的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角θ的终边不在第I象限又该怎么办?

问题3:大家现在能不能给出任意角三角函数的定义了?

设计意图:引导学生在定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.

师生活动:由学生给出任意角三角函数的定义,教师进行整理.

问题4:你能否给出正弦、余弦、正切函数在弧度制下的定义域? 设计意图:通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.

师生活动:学生求出定义域,教师进行整理. 例1:(题目在课件8中)

设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.

3.练习(在课件9中)

设计意图:通过应用三角函数的定义,加强对三角函数概念的理解. 4.小结

问题5:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了.你能再回顾一下任意角三角函数的定义吗?

设计意图:回顾和总结本节课的主要内容.

八、作业设计:

教科书P106习题1.2题.

设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.

九、教学反思:

上述教学设计及具体教学实施过程我认为有以下几点意义:

1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。

2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。

篇8:任意角的三角函数(教案)

因此, 还有一种想法是在函数概念下以“圆心在原点的圆周上的点的坐标”随角的变化而变化的“操作、观察”, 先让学生建立起“任意给定一个角 α, 圆周上就有唯一的一个点P ( x, y) 与之对应”的直观感受, 把注意力集中在三角函数的“函数特性”上, 能使学生认清其对应关系、定义域和值域等, 从而真正把握三角函数的“本来面目”. 是否可以在“函数是描述客观世界变化规律的数学模型”的思想指导下, 以“如何建立圆周运动的数学模型”为教学起点, 调动象限角、弧度制、单位圆、锐角三角函数等相关知识, 在建立函数模型的过程中水到渠成地引入任意角三角函数的概念.这样, 既可以使学生知道这一概念的背景、解决的问题, 也可以使他们感受运用函数概念建立模型的过程和方法, 还可以让他们体会三角函数在物理学科中的重要性. 如果这样的设计思想能够实现, 那么其效果是一举多得的. 以下为笔者在教学实践中对任意角的三角函数定义引入的微课设计.

一、教材分析

三角函数是函数的一个基本组成部分, 也是一个重要组成部分, 在整个高中以至于大学都会经常用到三角函数的知识. 初中已经学习过锐角的三角函数, 教材第一节学习了任意角的表示方法, 这些是学习任意角三角函数的基础.本节课的主要内容是: 正弦、余弦、正切的定义; 正弦、余弦、正切函数的定义域.

二、教学目标

理解任意角的三角函数的定义.

三、重点, 难点

1. 重点: 任意角的正弦、余弦、正切的定义;

2. 难点: 任意角的三角函数概念的建构过程;

四、教学情景设计

1. 引入

我们初中已经学习了锐角三角函数, 知道它是以锐角为自变量, 以比值为函数值的函数, 那么高中为什么还要继续研究呢?

实例导入: “离离原上草, 一岁一枯荣. 野火烧不尽, 春风吹又生. ” ( 王安石诗) . 诗中描绘的是自然界中“按一定规律周而复始”的现象, 称之为“周期现象. ”我们曾学习过用“指数函数”模型刻画人口增长问题, 用“对数函数”的模型刻画地震的震级变化, 用怎样的数学模型来刻画周期现象呢? “周期现象一般与周期运动有关”, 一个简单而基本的例子便是“圆周上的一点旋转运动”.

2. 探究

情境———选择数学模型.

问题: 摩天轮的中心离地面高度为h0, 它的直径为2r, 逆时针方向匀速转动, 转动一周需要360 秒, 若现在你坐在座舱中, 从初始位置点A出发 ( 如图1 所示) .

求人相对于地面的高度h与时间t的函数关系式.

先从一个具体情境入手, 例如过了30 秒后, 你离地面的高度如何计算?

答: h = h0+ rsin 30° = h + MP.

再计算几个: 60 秒时. 答: h = h0+ rsin 60°.

90秒时.答:h=h0+rsin 90°.

一般的, 过了t秒呢? 猜想 ( 愿望) :

答:h (t) =h0+r sint0.

“这样的想法合情, 但合理吗?”

( 意图: 先从几个特殊情形出发, 而后猜测一般性结论, 再进行合理性论证! )

总结: 人距离地面的高度h = h0+ MP, 其中h0是不变量, MP表示点P到水平位置OA的距离, 是变量; 可以通过点P旋转的角度∠POA的大小, 再结合初中锐角三角函数来计算.

3. 分析数学模型

问题: 对任意角∠POA; sin∠POA该如何定义? 对前面这个问题往下具体分析:

当时间为t秒时, 人距离地面的高度用h = h0± MP来表示, 其中MP表示点P到水平位置OA的距离.

对比: h = h0± MP与h ( t) = h0+ r sint0.

愿望:要想两者和谐统一.

必须有: rsint0= ± MP即: sint0= ± MP / r.

小结: 点P在圆周上旋转运动, 引起∠POA的变化, 对任意一个确定的∠POA对应着唯一点P, 进而有唯一的MP, 得到sin∠POA = ± MP / r①.

提问一: ①式的分子何时取正值, 何时取负值?

答:OA上方为正, OA下方为负.

提问二: 根据①式这些特点, 用怎样的一个量来替代MP或- MP, 可以使上面的表示更简洁?

答: 建直角坐标系, 利用P的纵坐标替代MP或- MP.

4. 建构三角函数的定义

任意的角的正弦一种定义方法.

( 1) 把 α“放到直角坐标系内”.

( 2) 以原点为圆心, 半径r作圆, 又与 α 的终边相交于点P坐标为 ( x, y) .

(3) 规定:sinα=y/ r.

5. 分析: 以上规定是否合理?

问题一:当α为锐角时, 此规定与初中定义矛盾吗?

结论:不矛盾, 而且坐标法的引入摆脱了锐角的束缚.

问题二:圆的半径r大小有限定吗?

结论: 根据相似三角形的知识, 对于确定的角 α, 这个比值不会随点P在 α 的终边上的位置的改变而改变, 是唯一确定的.

问题三:半径r取多少时, 会使得比值更加简洁?

结论:可以考虑取r=1, 这样的圆我们称单位圆.

即: 在直角坐标系中, 以原点为圆心, 以单位长度1 为半径的圆.

( 意图: 可以打破知识结构的平衡, 感受到学习新知识的必要性———角的范围扩大了, 锐角三角函数也应该“与时俱进”, 并不显得突然. 把定义的主动权交给学生, 引导学生参与定义过程发展思维. )

6. 导出任意角的三角函数定义

设 α 是一个任意角, 它的终边与单位圆交于点P ( x, y) , 那么,

y叫做α的正弦, 记作sinα, 即sinα=y;

x叫做α的余弦, 记作cosα, 即cosα=x;

y /x叫做α的正切, 记作tanα, 即tanα=y/ x (x≠0) .

正弦、余弦、正切都是以角为自变量, 以单位圆上点的坐标或坐标的比值为函数值的函数, 我们将它们统称为三角函数. 使比值有意义的角的集合即为三角函数的定义域.

7. 归纳总结, 注重渗透

本节课通过对实际问题的解决, 学习了任意三角函数的概念. 请同学们简要回顾探究过程. 三角函数的定义可谓“看似平凡最崎岖. 成如容易却艰辛. ” ( 王安石诗) . 早期的三角学隶属于天文学, 为了天文观测的需要, 与古希腊几何有不可分割的联系. 尽管三角知识起源较早, 但在欧拉以前, 人们对三角函数的研究大都在一个半径不定的圆内进行的, 运用起来很不方便. 直到欧拉时代, 才令圆的半径为1, 置角于单位圆中, 把三角函数定义为相应的线段与圆半径1 之比. 教材中现在的定义与历史上大数学家欧拉的定义是一致的. 欧拉用直角坐标来定义三角函数, 彻底解决了三角函数在四个象限中的符号问题, 使三角函数成为研究现实世界中周期变化现象的“最有表现力的函数”.

( 设计意图: 对教学内容进行归纳、疏理、提升. 有意加强数学文化的熏陶, 让学生在数学学习中寻求数学发展的历史轨迹, 感受数学家们严谨治学和锲而不舍的探索创新精神, 从而提升自身的文化素养和创新意识. )

参考文献

[1]简洪权.高中数学运算能力的组成及培养策略[J].中学数学教学参考, 2000.1-2.

篇9:任意角的三角函数(教案)

一、教材编写特点

教材的编写是以锐角三角函数为基础,角的概念的推广为前提,利用平面直角坐标系为工具定义了任意角的正弦、余弦、正切函數,并利用与单位圆有关的有向线段研究了正弦、余弦、正切函数的一种几何表示——正弦线、余弦线、正切线;然后定义任意角的余切、正割、余割函数,研讨了正弦、余弦、正切函数的定义域,用例1、例2巩固任意角的三角函数的概念;最后研究正弦、余弦、正切函数值在平面直角坐标系中的各象限内的符号及“终边相同的角的同一三角函数值相等”这一公式(即公式一),并给出了3个例题(例3、例4、例5)加以巩固。

二、教学目的、重点、难点及关键

1、教学目的。本节教学目的是:掌握任意角的正弦、余弦、正切函数的定义,了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;了解余切、正割、余割函数的定义;掌握正弦、余弦、正切函数的定义域和这三种三角函数值在各象限内的符号;掌握公式一及其应用.

2、教学重点。任意角的正弦、余弦、正切函数的定义及其定义域,函数值在各象限内的符号、公式一及其应用是本节的教学重点。

3、教学难点。如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来,是学习本节的难点所在。

4、教学关键。掌握单位圆的概念,了解三种线段的正、负与坐标轴正、反方向之间的对应及三种有向线段(的数量)与三种三角函数值之间的对应是解决本节难点的关键.

三、教学建议

1、课时划分与内容安排。本节教学建议用3课时完成,并且对教材内容顺序作适当的整合,具体情况如下。

第一,第1课时及教学内容。以锐角三角函数、角的概念的推广等知识为生长点,以平面直角坐标系为研究工具,一气呵成地定义了任意角的正弦、余弦、正切、余切、正割、余割函数;并研究正弦、余弦、正切函数的定义域;最后讲解例1、例2加以巩固。

第二,第2课时及教学内容。根据任意角的三角函数的定义,研究六种三角函数值在平面直角坐标中各象限的符号及“终边相同的角的同一三角函数值相等”(即诱导公式一),最后讲解例3、例4、例5加以巩固。

第三,第3课时及教学内容。根据任意角的三角函数的定义,引入单位圆的概念,在单位圆中研究正弦、余弦、正切函数的一种几何表示——三角函数线(这里仅研究正弦线、余弦线和正切线),由于教材中设有相应的例题,建议补充适量例题加以巩固。

2、案例呈现。根据不同班级学生的实际情况,以下案例可供选择。

案例1:已知角的终边上一点P(x,-2)(x≠0),且cos,求sin 和tan的值.

解题分析:由r =|OP|=.由三角函数的定义有:cos=,∵x∴.=3,∴x=±.当x=时,点P(,-2),此时sin=,tan=;

当x=-时,点P(-,-2),此时sin=,tan=.

点评:严格按照任意角的三角函数定义进行示范,重视数学符号语言的应用及分类讨论思想的渗透.

案例2:sin2·cos3·tan4的值( ).

A大于0 B小于0 C 等于0 D不能确定

解题分析:∵sin2>0, cos3<0,tan4>0,∴sin2·cos3·tan4<0, ∴选B.

点评:重视弧度制下,任意角的三角函数值在各象限的符号.

案例3:函数y=

的值域是( ).

A﹛-2,4﹜; B﹛-2,0,4﹜

C﹛-2,0,2,4﹜;D﹛-4,-2,0,﹜

解题分析:先求出该函数的定义域为﹛x|x≠ ﹜;再用分类分类讨论的思想,按角所在象限讨论相应的三角函数的符号,从而脱去绝对值符号,当x为第一象限角时,y=4;当x为第二象限角时,y=-2;当x为第三象限角时,y=0;当x为第四象限角时,=-2. ∴ 函数的值域为﹛-2,0,4﹜. 选 B.

点评:值域也可用列举法表示。

案例4 :解不等式sinx≥ (0≤x≤2).

解题分析:由于正弦线在单位圆中是用方向平行于y轴的有向线段来表示.因此,先在y轴的正半轴上取一点P使得|OP|=,恰好表示角x的正弦值sinx=.作x轴的平行线交单位圆于P1、P2(如图1),在〔0,2〕内,OP1、OP2分别对应角、的终边,要使sinx>,只需将弦P1P2沿y轴正向平移,使OP1与OP2所扫过的范围即图中的阴影部分即为所求.

∴原不等式的解集为[、].

案例5:若<<,则sin,cos,tan的大小顺序为______(用“<”连接).

解题分析:如图2所示,在单位圆中作出的正弦线MP、余弦线OM、正切线AT.

∵OM

点评:师生共同研讨此结论后,如“sin750,cos750,tan750的大小关系是(用“<”连接)这种题目便迎刃而解了!

案例6:已知0

解题分析:如图3,设角x的终边与单位圆交于点P﹝xp,yp﹞,单位圆交x轴的非负半轴于A(1,0),过点P作PMOA于M,过点A作单位圆的切线交OP的延长线于T,连结PA.

∵S△OAP =|OA||MP|,

Slr =,

而S

点评:该案例的引入,不仅使三角函数线及相关知识得到综合的应用,而且使数形结合的思想在潜移默化中渗入学生的脑海。

3、注意引导学生归纳总结。由于本小节内容在教材中具有承上启下的作用,本节有许多结论易于(也值得)归纳、总结.例如:关于六种三角函数值在平面直角坐标中的各个象限的符号可归纳为:“一全正,二正弦,三两切,四余弦”——即第一象限角的六种三角函数值全部为正,第二象限只有正弦(余割)为正;第三象限只有正切、余切为正,第四象限只有余弦(正割)为正。又如:0篇10:任意角的三角函数(教案)

一、教材分析

这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数。任意角的三角函数通常是借助直角坐标系来定义的。三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键。因此,要重点地体会、理解和掌握三角函数的定义。

二、学生情况分析

本课时研究的是任意角的三角函数,学生在初中阶段曾研究过锐角三角函数,其研究范围是锐角;

其研究方法是几何的,没有坐标系的参与;

其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。

三、教学目标

知识与能力:借助单位圆理解意角的三角函数(正弦、余弦、正切)的定义。(能根据任意角的三角函数的定义求出具体的角的各三角函数值。)

过程与方法:在学习的过程中,培养学生用代数方法研究几何问题的思路。

情感态度与价值观:让学生积极参与知识的形成过程,经历知识的“发现”过程,获得发现的“经验”。

四、教学重点、难点分析

重点:理解任意角三角函数(正弦、余弦、正切)的定义。

难点:通过坐标求任意角的三角函数值。

五、教学方法与策略

教学过程中采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。

六、教学过程

问题1:现在请你回忆初中学过的锐角三角函数的定义,并思考一个问题:如果将锐角置于平面直角坐标系中,如何用直角坐标系中角的终边上的点的坐标表示锐角三角函数呢?

设计意图:将已有知识坐标化,分化难点。用新的观点再认识学生的已有知识经验,发挥其正迁移作用,同时使本课时的学习与学生的已有知识经验紧密联系,使知识有一个熟悉的起点,扎实的固着点。)

预计的回答:学生可以回忆出初中学过的锐角三角函数的定义,但是在用坐标语言表述时可能会出现困难――即使将角置于坐标系中但是仍然习惯用三角形边的比值表示锐角三角函数,需要教师引导学生将之转换为用终边上的`点的坐标表示锐角三角函数。

问题2:回忆弧度制中1弧度角的几何解释,它是借助于单位圆给出的,能否从中得到启示将上述定义的形式化简,化简的依据是什么?写出最简单的形式。

设计意图:引入单位圆。深化对单位圆作用的认识,用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。该问题与问题1结合,分步推进,降低难度,基本尊重教材的处理方式。

预计的困难:由于学生只接触过一次单位圆,对它所能起的作用只有一般的了解,所以需要教师的引导。也可以引导学生从形式上对上述定义化简,使得分母为1,之后通过分母的几何意义将之与单位圆结合起来。

单位圆中定义锐角三角函数:点P的坐标为(x,y),那么锐角α的三角函数可以用坐标表示为:

[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。

题3:大家现在能不能给出任意角的三角函数的定义。

设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义。

有学生给出任意角三角函数的定义,教师进行整理。

例1:(P12)例2:(P12)

学生练习:P15练习1、2。

小结:任意角的三角函数的定义。

篇11:任意角的三角函数(教案)

教材分析

这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数.任意角的三角函数通常是借助直角坐标系来定义的.三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键.因此,要重点地体会、理解和掌握三角函数的定义.在此基础上,这节课又进一步研讨了三角函数的定义域,函数值在各象限的符号,以及诱导公式

(一),这既是对三角函数的简单应用,也是为学习后续内容做了必要准备.

教学目标

1.让学生认识三角函数推广的必要性,经历三角函数的推广的过程,增强对数的理解能力.

2.理解和掌握三角函数的定义,在此基础上探索与研究三角函数定义域、三角函数值的符号和诱导公式

(一),并能初步应用它们解决一些问题.

3.通过对任意角的三角函数的学习,初步体会数学知识的发生、发展和运用的过程,提高学生的科学思维水平.

任务分析

在初中,我们只是学习了锐角三角函数,现在学习的是任意角的三角函数.定义的对象从锐角三角函数推广到任意角的三角函数,从四种三角函数增加到六种三角函数.定义的媒介则从直角三角形改为平面直角坐标系.为了便于学生体会和理解,突出定义适用于任意角,通常要把终边出现在四个象限的情况都画出来(注意表示角时不用箭头),学习时,必须弄清并强调:

这六个比值的大小都与点P在角的终边上的位置无关,只与角的大小有关,即它们都是以角为自变量,以比值为函数值的函数,符合函数的定义,从而归纳和总结出任意角的三角函数的定义.对于三角函数的定义域、函数值在各象限内的符号和诱导公式

(一),可放手让学生探索、研究、讨论和归纳,用以培养学生的数学思维能力.

教学设计

一、情景设置 了当α

初中我们学习过锐角三角函数,知道它们都是以锐角为自变量,由其所在的直角三角形的对应边的比值为函数值,并且定义角α的正弦、余弦、正切、余切的三角函数.这节课,我们研究是一个任意角时的三角函数的定义.

在初中,三角函数的定义是借助直角三角形来定义的.如图32-1,在Rt△ABC中,现在,把三角形放到坐标系中.如图32-2,设点B的坐标为(x,y),则OC=b=x,CB=a=y,OB=,从而

即角α的三角函数可以理解为坐标的比值,在此意义下对任意角α都可以定义其三角函数.

二、建立模型

一般地,设α是任意角,以α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系xOy.P(x,y)为α终边上不同于原点的任一点.如图:

那么,OP=,记作r,(r>0). 对于三个量x,y,r,一般地,可以产生六个比值:.当α确定时,根据初中三角形相似的知识,可知这六个比值也随之相应的唯一确定.根据函数的定义可以看出,这六个比值都是以角为自变量的函数,分别把角的正弦、余弦、正切、余切、正割和余割函数,记为

称之为α

对于定义,思考如下问题:

1.当角α确定后,比值与P点的位置有关吗?为什么?

2.利用坐标法定义三角函数与利用直角三角形定义三角函数有什么关系? 3.任意角α的正弦、余弦、正切都有意义吗?为什么?

三、解释应用 [例 题]

1.已知角α的终边经过P(-2,3),求角α的六个三角函数值. 思考:若P(-2,3)变为(-2m,3m)呢?(m≠0)2.求下列角的六个三角函数值.

注:强化定义. [练习]

1.已知角α的终边经过下列各点,求角α的六个三角函数值.(1)P(3,-4).(2)P(m,3). 2.计 算.

(1)5sin90°+2sin0°-3sin270°+10cos180°.

四、拓展延伸

1.由于角的集合与实数集之间可以建立一一对应的关系,三角函数可以看成以实数为自变量的函数,如sina=,不论α取任何实数,恒有意义,所以sina的定义域为{α|α∈R}.类似地,研究cosa,tana,cota的定义域.

2.根据三角函数的定义以及x,y,r在不同象限内的符号,研究sina,cosa,tana,cota的值在各个象限的符号.

3.计算下列各组角的函数值,并归纳和总结出一般性的规律.(1)sin30°,sin390°.

(2)cos45°,cos(-315°).

规律:终边相同的角有相同的三角函数值,即sin(α+k360°)=sina,cos(α+k·360°)=cosa,tan(α+k·360°)=tana,(k∈Z).

五、应用与深化 [例 题]

1.确定下列三角函数值的符号.

2.求证:角α为第三象限角的充要条件是sinθ<0,并且tanθ>0. 证明:充分性:如果sinθ<0,tanθ>0都成立,那么θ为第三象限角.

∵sinθ<0成立,所以θ的终边可能位于第三或第四象限,也可能位于y轴的负半轴上. 又∵tanθ>0成立,∴θ角的终边可能位于第一或第三象限. ∵sinθ<0,tanθ>0都成立,∴θ角的终边只能位于第三象限.

必要性:若θ为第三象限角,由三角函数值在各个象限的符号,知sinθ<0,tanθ>0. 从而结论成立. [练习]

1.设α是三角形的一个内角,问:在sina,cosa,tana,tan取负值?为什么?

中,哪些三角函数可能2.函数的值域是 ____________ .

点 评

这节课在设计上特别注意了以下几点:①前后知识的联系,知识的产生、发展过程,如任意角的三角函数的定义,由初中所讲“0°~360°”的情况逐渐过渡到“任意角”的情况,讲清了推广的必要性及意义.②注重了知识的探究,如三角函数值在各象限的符号,及诱导公式

(一).这里由学生自己去研究,讨论,探索得出一般性结论,培养了学生获取知识、探究知识的能力,强化了自主学习的意识.③注意了跟踪练习的设计.

例题典型,练习有层次和变化,巩固知识到位.

篇12:任意角的三角函数(教案)

一.教学目标:

1.知识与技能

(1)能够由和角公式而导出倍角公式;

(2)能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力;

(3)能推导和理解半角公式;

(4)揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识.并培养学生综合分析能力.2.过程与方法

让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识.3.情感态度价值观

通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力.二.教学重点 :倍角公式的应用.难点:公式的推导.三.课型、教法:新授课;观察、类比、启导、发现 四.课时安排:2课时 五.教学过程

(一)探究新知

1、复习两角和与差的正弦、余弦、正切公式。

2、提出问题:公式中的角是任意角,如果,公式会变得如何?

3、学生自主探究二倍角公式:

[展示投影]这组公式有何特点?应注意些什么?

注意:1.每个公式的特点,嘱记:尤其是“倍角”的意义是相对的,如:2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)3.特别注意公式的三角表达形式,且要善于变形: cos2是的倍角.481cos2,2sin21cos2 这两个形式今后常用.2

(二)[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充)例1.(公式巩固性练习)求值: ①.sin2230’cos2230’=122 ②.2cos21cos sin4524428③.sin2④.8sin2 cos2cos42881coscoscos4sincoscos2sincossin ***21262例2.化简 ①.(sin55535555 cos2coscos)(sincos)sin***②.cos4sin4(cos2sin2)(cos2sin2)cos 222222③.112tantan2 21tan1tan1tan④.12cos2cos212cos22cos212

5,(,),求sin2,cos2,tan2的值。***0 解:sin2 = ,cos2 = 12sin2,tan2 = 

169169119例

3、已知sin思考:你能否有办法用sin、cos和tan表示多倍角的正弦、余弦和正切函数?你的思路、方法和步骤是什么?试用sin、cos和tan分别表示sin3,cos3,tan3.2

1sin40cos40cos80例4.cos20cos40cos80 = sin20cos20cos40cos802

sin20sin2011sin160sin80cos801 8 48sin20sin20例5.求函数ycosxcosxsinx的值域.2 解:y1cos2x121sin2xsin(2x) ————降次 222

42(三)学生练习: 教材P140练习第1、2、3题

(四)学习小结

1.公式的特点要嘱记:尤其是“倍角”的意义是相对的,如:

是的倍角.482.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次).3.特别注意公式的三角表达形式,且要善于变形:

1cos2 这两个形式今后常用.24.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的“本质”

2是用角的余弦表示角的正弦、余弦、正切.2 cos21cos2,2sin25.注意公式的结构,尤其是符号.(五)作业布置:习题3.2 A组第1、2、3、4题. 六.板书设计:3.3二倍角的三角函数

1、二倍角公式 例1 例3 例5

篇13:任意角的三角函数(教案)

三角形按角的分类

总课时数:第14课时

上课时间:2013年╳╳月╳╳日 教学内容:p.26.27 教学重点:会按角的大小给三角形分类。

教学难点:集合图揭示了这3种三角形都是三角形这个整体的一部分。教学目标:

1.让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形和钝角三角形。

2.让学生在实际操作中发展空间观念。教学准备:三角板等 教学过程:

一、交流展示

角是有大有小的,角按大小可以分成哪几类?

老师随学生回答依次板书:锐角、直角、钝角、平角、周角 这些角有的度数是确定的?分别是多少度?

锐角和钝角的度数是不确定的,但有一个范围,谁来说一说? 板书整理成:锐角、直角、钝角、平角、周角 1º~89º、90º、91º~179º、180º、360º

指出:89º、90º、91º这三种度数非常的接近很难判断,所以当看到接近直角的角时,都要用三角板上的直角量一量。

二、自主探索

1.老师画一个直角。再连接两点,问:这样画得到的三角形叫什么三角形?(板书:直角三角形)

老师再画一个钝角,并连接两点,问:这样画得到的三角形叫什么三角形?(板书:钝角三角形)

联想:刚才我们分别先画一个直角和钝角,再连接就得到了一个直角三角形和一个钝角三角形;如果我先画一个锐角,再连接是不是也会得到一个锐角三角形呢?

请你试一试。交流(有意识选择开始画的锐角较小的学生来交流):(1)连接后可能得到的是一个钝角三角形。问:你怎么知道现在这个三角形是钝角三角形?

通过说理,使学生明白:判断的时候只要看其中最大的一个角,如果这个最大的角是钝角,那这个三角形就是钝角三角形。

(2)连接后可能得到一个直角三角形。

通过三角板的之间检验,确认其中最大的角是一个直角。使学生进一步明白

灌云实验小学数学四年级下册教案

判断方法:其中最大的一个角是直角,该三角形就是直角三角形。

比较、讨论:为什么刚才可以肯定的得到钝角三角形和直角三角形,而现在却不能肯定的得到锐角三角形呢?

(通过学生回答,使大家明白:钝角三角形中只有一个钝角,还有两个是锐角;直角三角形中只有一个角是直角,还有两个角也都是锐角;确定了钝角或直角后剩下的肯定是锐角了。而先画了锐角之后,剩下的角可能是三种角中的任意一种。)

(3)画锐角三角形比较保险的一种方法:

先画的锐角不能太小,可略小于直角;画的两条边长短比较接近,这样就能得到一个锐角三角形了。画完后为了保险起见,可找出其中最大的一个角,量一量是不是锐角。

学生分别在本子上画出这三种三角形。

三、精讲点拔

通过刚才的学习,你觉得三角形可以分为几类?用自己的话分别说说怎样的角是锐角三角形?怎样的角是直角三角形?怎样的角是钝角三角形?

画出示意图。

揭示课题:这节课我们学习三角形按角分类的方法。

四、运用提升

1.(第2题)你能连一连吗?

学生独立做,做完后把有疑问的几个选出来交流。

2.在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。学生围好后,互相检查验证。

3.用一张长方形纸,折出两个完全一样的直角三角形。用一张正方形纸,折出四个完全一样的直角三角形。让学生动手折一折,在交流的时候用“对角线“来说一说。

4.把右边这样的平行四边形纸剪成两个完全一样的锐角三角形,应该怎样剪?剪成两个完全一样的钝角三角形呢?

5.你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗? 通过交流使学生明白:画出的线段就是原来三角形的高。

6.在直角三角形中画一条线段,把它分成两个三角形。你分成了两个什么样的?三角形还可以怎样分?

老师可以在学生画的基础上,展示其中几种比较典型的画法,组织学生再交流。

五、达标作业

补充习题相关作业

灌云实验小学数学四年级下册教案

篇14:任意角三角函数定义

浙江金华第一中学 孔小明

本文首先对三角函数定义的教学进行从整体到局部的分析,并在此基础上给出定义教学的主干问题设计.1.整体把握,使教学线索清晰,层次分明

三角函数是以函数为主线,刻画周期现象的数学模型.高中学习的三角函数是在初中学习锐角三角函数的基础上,通过用旋转的观点将角的概念推广到任意角,并使角与实数建立一一对应关系,然后结合坐标系和单位圆重新定义任意角的三角函数.因此,三角函数是函数的下位概念,同时又是锐角三角函数的上位概念,教学要以函数思想为指导,以坐标系和单位圆为定义工具,以初中锐角三角函数概念为认知的起点,促进任意角三角函数定义的有效生成.教科书在完成任意角三角函数定义基础上衍生出:(1)三角函数值在各个象限的符号;(2)单位圆中的三角函数线;(3)同角三角函数的基本关系;(4)三角函数的诱导公式;(5)三角函数的图象与性质等.可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键作用.本节课的学习目标是理解任意角三角函数(正弦、余弦、正切)的定义,经历从锐角三角函数定义过渡到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程,领悟直角坐标系和单位圆的功能,丰富数形结合的经验.由于三角函数的定义内涵丰富、外延广泛等原因,同时,用单位圆上点的坐标表示的任意角三角函数定义,与学生初中学习的锐角三角函数定义有一定的距离,一个侧重几何的边与边的比值表示,一个侧重代数的坐标(比值)表示.与学生熟悉的一般函数定义也有距离,一般函数是实数到实数的对应,而三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应.学生理解该定义很难一步到位,需要分成若干个层次,逐步加深提高.促进学生理解定义的关键是让学生经历定义的形成过程,增强学习活动的体验,在教师的引导下独立思考、自主探究,完成定义的意义建构.教材中任意角三角函数定义的得出经历了以下四个循序渐进、不断深化的过程:(1)回忆用直角三角形边长的比产生的锐角三角函数的定义;(2)把锐角α放在直角坐标系中,用角的终边上点的坐标表示锐角α的三角函数;(3)由相似三角形的知识可知,三角函数值只与α的大小有关,与点在终边上的位置无关,因此可用单位圆上点的坐标表示锐角α的三角函数;(4)类比得出用单位圆定义任意角三角函数,并将它纳入到一般函数概念的范畴.教科书这样设计改变了以往纯学术形态的形式,一定程度上具有了教育形态的特征,体现了数学知识的产生、发展过程,反映了数学的“来龙去脉”,通过有效的铺垫,使之符合学生的认知规律,使从锐角三角函数到任意角三角函数过渡自然,有利于学生步步加深对三角函数定义本质的理解.因此,笔者认为,教学设计时无须“另起炉灶”,只要在此基础上,依据学生的认知特点,进行教学法的深加工即可.2.抓住关键,使教学精炼、简约而高效

由于教科书自身特点的限制,教科书还不能成为教师教学用的教学设计,根据教材的内容、要求以及编写意图,教师还需要一个再加工、再创造的过程.具体的,就是将教材中得出任意角三角函数定义经历的四个环节进一步教学化,使之符合学生的认知特点和规律,包括内容研究的必要性,坐标系、单位圆引入的自然性,以及用单位圆定义的可行性、合理性等.把它变成适合学生认知特点的具体的教育形态,使学生感受“数学是自然的、清楚的、水到渠成的”.当前,高中数学课标课程比大纲课程的内容有所增加,初中数学对高中数学支持减弱,新课程赋予数学教学更多的价值取向,要让课堂的所有环节都让学生有深度思考、自主探究并展示结果是不现实也是没必要的.事实上,学生在校以学习间接经验为主,学生的学习主要是“接受——建构”式的,因此,对教学起关键作用的内容,要留足时间让学生充分思考、交流与展示,其它内容教师可多讲授与引导,发挥先行组织者作用,使教与学达到平衡,让教学效益达到最大化.在引导学生回忆初中锐角三角函数定义之前,先解决“学习的必要性”问题,明确要研究的内容.教材将“三角函数”作为重要的基本初等函数,是周期现象的基本模型,教师可借助本章的章头语,完成课题的引入.由于初中的锐角三角函数定义不能推广到任意角的情形,从而引发学生认知冲突,激发学生进一步探究的欲望.用什么定义、怎样定义、这样定义是否合理等,成为继续研究的自然问题.之前,在任意角内容的学习中,学生已经有了在直角坐标系内讨论角的经验,但教学实践表明,学生仍不能自然想到引入坐标系工具,利用坐标来定义任意角三角函数.笔者认为,从帮助学生理解定义的实质,体会坐标思想与数形结合思想的角度,教师可利用适当的语言,引导学生重点解决“如何用坐标表示锐角三角函数”的关键问题.需要提及的是,陶老师的问题设计具有启示性:

现在,角的范围扩大了,由锐角扩展到了0°~360°内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合.在这样的环境中,你认为,对于任意角α,sinα怎样定义好呢?

上述问题提得“大气”,既能使学生的学习围绕关键问题展开,又突出正弦函数的概念分析.当然,若能依教材先作锐角情形的铺垫,教学更符合学生“最近发展区”,提高效率.这里,需要引导学生从函数的观点认识用坐标表示的锐角三角函数,有助于从函数的本质特征来认识三角函数.在第三个环节中,首先是如何自然引入单位圆的问题.用单位圆上点的坐标定义三角函数有许多优点,其中最主要的是使正弦函数、余弦函数从自变量(角的弧度数)到函数值(单位圆上点的横、纵坐标)之间的对应关系更清楚、简单,突出了三角函数的本质,有利于学生利用已有的函数概念来理解三角函数,其次是使三角函数反映的数形关系更直接,为后面讨论函数的性质奠定了基础.但单位圆的这些“优点”要在引入单位圆后才能逐步体会到.因此,引入单位圆的“理由”应该另辟蹊径,白老师在引导学生完成用角的终边上任意一点的坐标表示锐角三角函数之后,从求简的角度设置问题,不愧为“棋高一招”:

大家有没有办法让所得到的定义式变得更简单一点?

在学生得出时定义式最简单后,白老师引入单位圆,引导学生利用单位圆定义锐角三角函数.至此,学生就有了第四环节中用单位圆定义任意角三角函数的认知准备.由于“定义”是一种“规定”,因此,第四环节中,教师可类比用单位圆定义锐角三角函数情形,直接给出任意角三角函数定义,对学生而言,关键是理解这样“规定”的合理性,对定义合理性认知基础就是三角函数的“函数”本质——定义要符合一般函数的内涵(函数三要素).3.精心设计问题,让课堂成为学生思维闪光的舞台 基于上述认识,对定义部分的教学,给出如下先行组织者和主干问题设计.先行组织者1:周期现象是社会生活和科学实践中的基本现象,大到宇宙运动,小到粒子变化,这些现象的共同特点是具有周期性,另外,如潮汐现象、简谐振动、交流电等,也具有周期性,而“三角函数”正是刻画这些变化的基本函数模型.三角函数到底是一种怎样的函数?它具有哪些特别的性质?在解决具有周期性变化规律的问题中到底能发挥哪些作用?本课从研究第一个问题入手.意图:明确研究方向与内容.问题1:在初中,我们已经学习了锐角三角函数,它是怎样定义的? 意图:从学生已有的数学经验出发,为用坐标定义三角函数作准备.问题2:现在,角的概念已经推广到了任意角,上述定义方法能推广到任意角吗? 意图:引发学生的认知冲突,激发学生求知欲望.问题3:如何定义任意角的三角函数? 意图:引导学生探索任意角三角函数的定义.先行组织者2:我们知道,直角坐标系是展示函数规律的载体,是构架“数形结合”的天然桥梁,上堂课我们把任意角放在平面直角坐标系内进行研究,借助坐标系,可以使角的讨论简化,也能有效地表现出角的终边位置“周而复始”的现象.坐标系也为我们从“数”的角度定义任意角三角函数提供有效载体.意图:引导学生借助坐标系来定义任意角三角函数.问题4:先考虑锐角的情形,如图1,在平面直角坐标系中,你能用点的坐标来表示锐角α的三角函数吗?

意图:引导学生用坐标表示锐角三角函数.问题5:各个比值与角之间有怎样的关系?比值是角的函数吗?

意图:扣准函数概念的内涵,把三角函数知识纳入函数知识结构,突出变量之间的依赖关系或对应关系,增强函数观念.先让学生想象思考,作出主观判断,再用几何画板动画演示,得出结论:三个比值分别是以锐角α为自变量、以比值为函数值的函数.问题6:既然可在终边上任取一点,那有没有办法让所得的对应关系变得更简单一点? 意图:为引入单位圆进行铺垫.教师给出单位圆定义之后,可引导学生进一步明确:正弦、余弦、正切都是以锐角α为自变量、以单位圆上点的坐标(或比值)为函数值的函数.问题7:类比上述做法,设任意角α的终边与单位圆交点为P(x,y),定义正弦函数为,余弦函数为,正切函数为.你认为这样定义符合函数定义要求吗? 意图:给出任意角三角函数的定义,引导学生用函数三要素说明定义的合理性,明确任意角三角函数的对应法则、定义域、值域.引导学生思考定义的合理性,先让学生作出主观判断,再用几何画板动画演示,同时作好解释说明,得出结论:正弦、余弦、正切都是以任意角α为自变量、以单位圆上的坐标或坐标的比值(如果存在的话)为函数值的函数.接着给出任意角三角函数的定义域、值域.“任意角三角函数的概念”教学设计

陶维林(江苏南京师范大学附属中学,210003)

一.内容和内容解析

三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础.

角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.

比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便.

从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念.

任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数.

任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.

任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义.

在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法. 二.目标和目标解析

本节课的目标是,理解任意角三角函数(正弦、余弦、正切)的定义.

学生已经学习过锐角三角函数sinα,cosα,tanα,了解三角函数是直角三角形中边长的比值,这个比值仅与锐角的大小有关,是随着锐角取值的变化而变化的,其值是惟一确定的,等函数的要素.这是任意角三角函数概念的“生长点”.

理解任意角三角函数(正弦、余弦、正切)定义的关键是由锐角三角函数这个线段长度的比值扩展为点的坐标或坐标的比值.因此,对锐角三角函数理解得怎样,对理解任意角三角函数有决定意义,复习锐角三角函数,加深对锐角三角函数的理解是必要的.

要实现让学生“理解”任意角三角函数定义的教学目标,莫过于让学生参与任意角三角函数定义的过程.让学生感受到因角的概念的扩展,锐角三角函数概念扩展的必要性,任意角三角函数是锐角三角函数概念的自然延伸.反过来,既然锐角集合是任意角集合的子集,那么,锐角三角函数也应该是任意角三角函数的特殊情况,是一个包含关系.让学生参与定义,可以感受到这样定义的合理性,感受到这个定义是自然的.

三.教学问题诊断分析

从锐角三角函数到任意角三角函数的学习,从认知结构发展的角度来说,是属于“下、上位关系学习”,是一个从特殊到一般的过程,“先行组织者”是锐角三角函数的概念.教学策略上先复习包容性小、抽象概括程度低的锐角三角函数的概念,然后让学生“再创造”抽象程度高的上位概念(参与定义),并形成新的认知结构,让原有的锐角三角函数的概念类属于抽象程度更高的任意角三角函数的概念之中.

学生过去在直角三角形中研究过锐角三角函数,这对研究任意角三角函数在认识上会有一定的局限性,所以学生在用角的终边上的点的坐标来研究三角函数可能会有一定的困难.可以让学生在原有的对锐角三角函数的几何认识的基础上,尝试让学生建立用终边上的点的坐标定义任意角三角函数,或者尝试用终边上的点的坐标定义锐角三角函数,然后再定义任意角的三角函数.

教学的另一个难点是,任意角三角函数的定义域是实数集(或它的子集).因为学生刚刚接触弧度制,未必能理解“把角的集合与实数集建立一一对应”到底是为了什么.可以在复习锐角三角函数时,把锐角说成区间(0,四.教学支持条件分析

利用几何画板软件,可以动态改变角的终边位置,从而改变角的终边上点的坐标大小的特点,便于学生认识任意角的位置的改变,所对应的三角函数值也改变的特点,感受函数的本质;感受终边相同的角具有相同的三角函数值;也便于观察各三角函数在各象限中符号的变化情况,加深对任意角三角函数概念的理解,增强教学效果.)内的角,以便分散这个难点. 五.教学过程设计 1.理解锐角三角函数

要理解任意角三角函数首先要理解锐角三角函数.锐角三角函数是任意角三角函数的先行组织者.

问题1 任意画一个锐角α,借助三角板,找出sinα,cosα,tanα的近似值.

教师用几何画板任意画一个锐角.要求学生自己任意也画一个锐角,利用手中的三角板画直角三角形,度量角α的对边长、斜边长,计算比值.

意图:复习初中所学习过的锐角三角函数,加深对锐角三角函数概念的理解,它是学习任意角三角函数的基础.突出:

(1)与点的位置的选取无关;(2)是直角三角形中线段长度的比值. 问题2 能否把某条线段画成单位长,有些三角函数值不用计算就可以得到?

意图:学生根据自己实际画图操作,以及计算比值的体验,会很快认为把斜边画成单位长比较方便,为后续任意角三角函数的“单位圆定义法”做铺垫.

问题3 锐角三角函数sinα作为一个函数,自变量以及与之对应的函数值分别是什么?

意图:以便与后面的任意角三角函数的自变量是角(的弧度,对应一个实数),对应的函数值是α的终边与单位圆交点的纵坐标比较.

锐角三角函数sinα作为一个函数,自变量是锐角.由于角的弧度值与实数可以一一对应,所以,α是(0,)上的实数.而与之对应的函数值sinα是线段长度的比值,是区间(0,1)上的实数.

问题4 你产生过这个疑问吗:“三角函数只有这三个?”

意图:这个问题具有元认知提示的特点,引导学生勤于思考,逐步学会发现问题、提出问题、研究问题.

三条边相互比,可以产生六个比.还有哪三个呢?再把已知的三个倒过来. 2.任意角三角函数定义的“再创造”

教师利用几何画板,把角α的顶点定义为原点,一边与x轴的正半轴重合,转动另一条边,表现任意角.

问题5 现在,角的范围扩大了.在直角坐标系中,使得角的顶点在原点,始边与x轴的正半轴重合.在这样的环境下,你认为,对于任意角α,sinα,cosα,tanα怎样来定义好呢?

意图:可以打破知识结构的平衡,感受到学习新知识的必要性——角的范围扩大了,锐角三角函数也应该“与时俱进”,并不显得突然.把定义的主动权交给学生,引导学生参与定义过程,发展思维.

有两种可能的回答.

可能一:在α的终边上任意画一点P(x,y),|OP|=r.

可能二:设角α的终边与单位圆的交点为P(x,y).

不论出现可能一还是可能二,都再问:“都是这样的吗?”

引导学生议论,以确认两种定义方法的一致性、各自特点.再问“你赞成哪一种?”,统一认识,建立任意角三角函数的定义.(板书)

因为前面已经有引导,学生可能很快接受“可能二”. 3.任意角三角函数的认识(对定义的体验)

问题6(1)求下列三角函数值:

问题6(2)说出几个使得cosα=1的α的值. 意图:通过定义的简单应用,把握定义的内涵.

逐题给出,对于每一个答案,都要求学生说出“你是怎样得到的.”突出“画终边,找交点坐标,算比值(对正切函数)”的步骤.

问题6(3)指出下列函数值:

意图:角的终边位置决定了三角函数值的大小.终边位置相同的角同一三角函数值相等.于是有 sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα.(其中k∈Z)问题6(4)

①确定下列三角函数的符号:

②θ在哪个象限?请说明理由.反过来呢?

③角α的哪些三角函数值在第二、三象限都是负数?为什么? ④tanα在哪些象限中取正数?为什么? 意图:认识三角函数在各象限中的符号.

问题7 做了这么多题,要反思.你是否发现了任意角三角函数的一些性质?还有些什么体会? 意图:体验以后的概括,阶段小结.(1)抓住各三角函数的定义不放;(2)各象限中三角函数的符号特点,等.

教师板书学生获得的成果、感受. 4.任意角三角函数的定义域

问题8 α是任意角,作为函数的sinα,cosα,tanα,它们的定义域分别是什么?

意图:三角函数也是函数,自然应该关心它的定义域.

建立了角的弧度制,角的集合与实数集合之间建立了一一对应关系,因此,sinα,cosα的定义域是R;tanα=中,x≠0,于是tanα的定义域是

仍然紧扣定义,并引导以弧度制表示它的定义域. 5.练习

(1)确定下列三角函数值的符号,并借助计算器计算:

(2)求下列三角函数值:

6.小结

问题9 下课后,你走出教室,如果有人问你:“过去你就学习过锐角三角函数,今天又学习了任意角的三角函数,它们的差别在哪里呢?”你怎么回答他?

意图:通过问题小结.不追求面面俱到,突出锐角三角函数是三角形中,边长的比值,而任意角的三角函数是直角坐标系中角的终边与单位圆交点的坐标,或者是坐标的比值.

若时间允许,再问:“还有其他收获吗?”比如,终边相同的角的同一三角函数相等;各象限三角函数的符号;任意角三角函数的定义域,等. 六.目标检测设计

(1),写出α的终边与单位圆交点的横坐标,并写出tanα的值.

(2)求下列三角函数的值:

(3)角α的终边与单位圆的交点是Q,点Q的纵坐标是1/2,说出几个满足条件的角α.

(4)点P(3,-4)在角α终边上,说出sinα,cosα,tanα分别是多少?

(1)实际教学片段

上课始,教师用几何画板任意画一个锐角,提出问题1:“任意画一个锐角α,借助三角板,找出sinα,cosα,tanα的近似值.”然后走进学生中间,观察他们的学习行为.结果发现,有一部分同学画出角之后,一片茫然.教师又不愿意把结果告诉学生,提示同桌的两位同学可以商量一下,并提示,完成的同学请举手示意,以便教师了解情况,结果举手的人很少.之后,教师提问一位举手的学生,问:“你是怎么做的?”她要求上黑板,教师非常赞成.她在黑板上画出一个直角三角形,并不熟练地写出一个锐角的正弦是它的对边比斜边以及余弦、正切等三个三角函数.之后,教师又与学生讨论了问题2:能否把某条线段画成单位长,有些三角函数值不用计算就可以得到?学生比较一致认为把斜边长画成单位长比较好,为“单位圆定义法”做必要的铺垫.接着讨论问题3:锐角三角函数sinα作为一个函数,自变量以及与之对应的函数值分别是什么?在教师类比正方形的面积s=a2的提示下,学生说出锐角三角函数中自变量以及与之对应的函数值分别是角、比值,最后讨论问题4:你产生过这个疑问吗:“三角函数只有这三个?”有学生举手,表示想过这个问题,应该是六个,另外三个可以把现有的三个倒一下得到.至此,时间已经过去20多分钟.

教师本以为,学生在初中既然学习过锐角三角函数,对给出的一个锐角,借助三角板构造直角三角形,找出它的正弦、余弦的近似值是很容易的事,而恰恰在这一点上,学生耗费了大量的时间,而教师又不想越俎代庖地告诉学生,这就严重影响了后续建立任意角三角函数的概念,并通过特殊角的求值体验、把握内涵的时间保证,造成体验不够,概括

过早,应用更少的现象.

(2)问题出在哪里

问题在教学设计不够合理,当中的“教学问题诊断分析”不够准确.没有准确把握学生的知识基础与认识能力,对学生在学习中可能出现的困难估计不足.尤其是,对学生关于锐角三角函数的理解估计过高.主要表现在两个方面,一是初中学习锐角三角函数是在直角三角形中进行的,并不要求给出一个锐角,两边是射线,求出它的三角函数值.二是并不要求把“锐角三角函数”作为函数来认识,比如关注它的自变量是角,对应的函数值是比值,更不关心它的定义域、值域以及对应法则这些函数的要素.只要求运用符号sinA,cosA,tanA的意义来进行有关的计算,等.现在,要求学生从函数角度建立任意角三角函数概念这就失去了概念的上位支持.

关于锐角三角函数,在《全日制义务教育数学课程标准(实验稿)》中,是在“空间与图形”的“图形与变换”部分.标准指出:“通过实例认识锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.”以及“运用三角函数解决与直角三角形有关的简

单实际问题.”

笔者查阅了按照“课程标准”编写的几套初中教材,给出sinA的方式基本上一致,是:

如图(图略),在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正弦(sine),记作sinA,即”(对cosA,tanA有类似的定义)并指出“锐角A的正弦、余弦和正切都是∠A的三角函

数.”

以后的内容(包括解实际问题),都是有关三角函数值的计算,并不强调它们的函数特征.有的教材虽然指出“对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,cosA,tanA也是A的函数.”作出了锐角三角函数是一种特殊的函数的提示,由于缺少必要的练习,作用并不大.应该说,这些都不违背“课程标准” 的要求.可见学生在初中学习过的函数有正比例函数、反比例函数、一次函数、二次函数,锐角三角函数并不纳入“函

数”这个系统.

初中学习锐角三角函数有一个特定的载体,这就是直角三角形,因此,当他们面对任意画出的一个锐角,其两条边是射线,要求出这个角的三角函数的近似值这个新情境时,竟不知如何是好,手足无措,无计可施,也说明学生对锐角三角函数并不理解.这样看来,画出一个锐角,要求学生会取点、画垂线、度量、计算比值的要求是必要的.

有教师认为,不必复习锐角三角函数,直接提出问题“同学们已经学习过锐角三角函数,你认为应该怎样来定义任意角的三角函数?”这种“大撒手”的问题跨度太大,学生更难回答.原因是对锐角三角函数的“函数”特征认识不足、理解不到位,要让学生直接建立任意角的三角函数,又要突出“函数”这一特征,很困难.因此,为建立任意角的三角函数的概念,需要先复习初中锐角三角函数的概念,因为从锐角(三角函数)到任意角(三角函数)又是由下位到上位的学习.教材要求首先把直角三角形中边长的比值扩展到坐标或者坐标的比值,在直角坐标系中认识锐角三角函数,并引导学生从“函数”的角度认识它,也就是弄清自变量以及与之对应的函数分别是什么是必要的.

(3)对教学的反思

高中教师应该了解义务教育阶段的数学课程标准,了解初中教材,了解学生在初中学习过哪些内容,尤其是相应的教学目标是什么,关注学生的认知结构.应该做好初、高中的衔接工作,不仅注意知识的衔接,还要注意思想方法、能力要求等各方面的衔接,为学习高中的相关内容做好铺垫.以为已经学习过锐角三角函数,学生就能够把它理解为一种特殊的函数,是一个明显的例子.

教科书在节首提出的“思考”是:“我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗”其实,学生只知道锐角三角函数是直角三角形中边长的比值,并不完全知道“它们都是以锐角为自变量,以比值为函数值的函数”,这就需要通过复习,来帮助学生

补上这一点.

2.其他反思

(1)由于学生在复习阶段花了较多的时间,影响了新课的学习,用任意角三角函数概念解题的时间不多,体验不够,有教师提出“下课后练习不好做”,说明复习锐角三角函数没有必要.笔者认为,当“预设”与“生成”发生矛盾时,教师宁可选择“生成”.尊重学生的认知水平,尊重学生的认知心理过程,决不简单化,把结论直接告诉给学生,追求“结果”,追求“完成”教学任务.教师不能认为我已经把这个概念告诉你了,你就应该知道了.数学教学不是“告诉教学”,概念不能靠学生“复制”,对概念需要的是理解,需要学生用自己的体验建立起对概念的理解.什么是“教学任务”,不能仅限于知识要求,要注意学生的全面发展.比如,当学生不能正确选择在角的一边上取点,画垂线时,启示学生互相讨论、启发一下,借助于同伴的帮助解决问题.当学生不能说出“作为函数的锐角三角函数,自变量以及它的函数分别是什么”(属性)意义不清,不好回答时,教师降低难度,启发类比S=a2中a表示边长,而S表示正方形的面积.突出线段长、面积,等等.

“任意角三角函数的概念”与作为第一节课的“任意角三角函数的概念”不是同一个概念.对“任意角三角函数的概念”的认识、理解不是一蹴而就的,不是一节课可以完成的任务,需要一个长期的过程.比如,把角度化成弧度到底是为了什么?即便化成弧度,又为什么省略不写呢?建立角的弧度与实数间的一一对应有什么必要呢?任意角三角函数的自变量明明白白是角,为什么偏要把它说成实数呢?刚刚接触任意角三角函数就要求理解这一切是十分困难的.随着学习的深入,尤其是三角函数的应用,学生才能慢慢消除这些疑问,逐渐理解它.比如,在三相交流电路中,某一相电路中的电流强度IA=Imsin(ωt)(其中Im是电路中电流强度的峰值),三角函数是刻画现实世界中周期现象的基本数学模型;再比如,当学生接触到函数y=sin(cosx)后,再来看三角函数的定义域,会认识到抽象后的任意角三角函数的自变量作为实数更具广泛性.

这一节课把教学的基本要求定位在,弄清任意角三角函数与锐角三角函数的区别,接受用坐标(或坐标的比值)表示三角函数就够了.如同在建立数轴之后,一个知道把向东2公里表示为2公里而向西2公里表示成-2公里,接受“路程也可以是负数”的学生,就已经开始接受有理数,逐渐成为中学生了.

还需要注意的是,应该通过什么方式让学生建立起用坐标(或比值)表示任意角三角函数,以及领会建立这个概念过程

中所蕴涵的数学思想方法.

(2)在求cosπ时,一个学生说出的结果是0.9985.教师追问“你是怎么算出来的?”他回答:“用计算器.”后来,笔者用计算器做了实验,发现他用计算器计算时,把计算器中的角度模式(Mode)设置成了角度制(Degree).在这种模式下,计算cosπ可以得到0.9985(即计算的是cosπ°).如果把角度模式设置成了弧度制(Radian),计算cosπ仍可以得到-1.这件事的出现给我以及所有听课教师引发诸多思考.第一,这位同学没有关注到这节课刚学习过的概念,运用新概念解决当前的问题,而是停留在“三角函数值是能够用计算器算出来的”这个认识水平上;第二,反映了计算器的过度使用,会形成对学具的依赖,影响学生思维能力的发展.学具的功能越全面越强大不一定是好事.比如,具有解方程(Solve)功能的计算器在初中使用可能会削弱解一元二次方程的学习;具有图象功能的计算器的过早使用可能会干扰函数的学习.因此,教师应该注意技术在教学中的“辅助”作用,适度使用教具,重视算理分析,重视算法的来源,重视思维能力的培养,而不是追求计算结果.

借班上课,对学生的不熟悉是教师的苦恼,加上教学进度等问题,学生的知识储备不足(在教学任意角三角函数概念之前仅上过一堂“任意角”的课),是教学并不理想的一个重要原因.教学过程是师生双边活动的过程,离不开师生之间的交流,生疏是交流的障碍之一,生疏更难以做到师生之间配合默契.另外,学生对教师的教学风格的适应或认可也有一个过程,比如教师希望学生积极发言而不仅是听讲,等等.

(3)讨论中,老师们提出了许多有价值的教学应该遵循的一般规律以及一些先进的教学理念,但是,要求一节课全面体现各种先进教学理念,去承担反映数学教学规律中太多的东西是不现实,也是不应该的.

上一篇:2016带领工资承诺书下一篇:如何解决收入分配的问题