成都大学教案高数

2022-08-01

作为一名优秀的教育工作者,总归要编写教案,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?下面是小编收集整理的《成都大学教案高数1》的文章,希望能够很好的帮助到大家,谢谢大家对小编的支持和鼓励。

第一篇:成都大学教案高数1

高数1.3教案

§1.3 数列的极限

函数研究两个变量的对应关系,而极限则是研究自变量变化时,因变量的变化趋势。

一.极限思想―割圆术:用圆内接正多边形面积逼近圆面积

圆内接正六边形面积记为A1

十二 A2

二十四 A3

62n1 AnnN

A1,A2,,An,构成一列有次序的数――数列. n→大,AnA (圆面积)。不论n如何大,只要n取定, AnA. 设想n,即内接正多边形边数无限增加,在这个过程中,内接正多边形的面积无限接近于圆,同时An→确定的数值(即圆的面积)数学上就称为的极限(n)。

极限方法是高数中一个基本方法。

二.数列的极限定义――xnfn,D为正整数。

1.第一种定义:当项数n无限增大时,如果xn无限接近于一个确定的常数a,则称当n无限增大时xn的极限是a. 2.“N”def 当0,不论它多么小,总N0,对于nN的一切xn,恒有xna成立,则limxna.如果数列没有极限,就称是发散的。

n *1.是任意给定(任意性)

*2.N与有关,随给定而选定,一般地越小,N越大,N大到何种程度,取决于使xna成立时xn的项数n的取值,定义中仅要求N有关,并不一定要找出最小的自然数N. *3几何意义:nN时,所有的xn都落在a,a内,即数列只有有限个(最多只有N个)在区间之外。 *4利用定义不能直接求极限。

三.极限的证明

1例1 证明lim(1)1

n1n1111, n1 证:0,要使11n1n1111取N[1],则当nN时,有1, 1n1n1 ∴lim(1)1

n1n limxna的证明步骤:

n 1)给定0

2)要使xna,解出NN() 3)取N,即N. 4)当nN时,有xna

5)下结论。 n! 例2 证明 limn0

nnn!证:0,要使n0<,

nn!nn111只要n0=

nnnnnn!11取 N[],则当nN=[]时,有n0

nn!∴limn0 nn 例3 证明. limnn1n0 n1n

证:0,要使只要111,n2

4n1n2n1取N[2]

则当nN时有n1n, 4∴limnn1n0.

2n1 例4 设q1,证明等比数列1,q,q,,qn1,的极限是0。

 证:01∵xn0qln取自然对数,解得∴n1,

lnqlnn1],则当nN时有xn0q 取N[1lnq limqnn10。

四.收敛数列的性质

1.极限的唯一性

定理1 数列不能收敛于两个不同的极限。 2.有界性

(1)有界概念:数列xn,若M0,对一切xn有xnM,称xn有界。

(2)收敛数列的有界性

定理2 如果数列xn收敛,那么数列xn一定有界。

若xn无界xn发散。xn有界,则不一定收敛。

如xn1n1,即1,1,1,1,,1n1,

∴数列有界是收敛的必要条件,非充分条件。 3.收敛数列与子数列的关系

子数列:在数列xn中任意抽取无限多项并保持这些项在原数列中的次序,得到的一个数列为原数列xn的子数列。xn

k定理3 若xn收敛于a,则它的任一子数列也收敛,且极限也是a。

一个发散的数列也可能有收敛的子数列。 

小结:本节介绍了数列极限的定义,理解利用定义证明数列的极限,知道收敛数列的有关性质。



第二篇:高数证明1+1=2

1+1为什么等于2?这个问题看似简单却又奇妙无比。 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。 1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理

1、

2、3,则可以至于无穷,什么是物理学当中的

1、

2、3呢?我认为:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用。在经典物理学中一切都是确定无疑的,有了已知条件,我们就可以推出未知。 等到相对论的出现,一切都变了。现在相对论已经深入人心,即便是那些反对相对论的人,也基本上是认可相对论的结论的,什么时间可变、长度可变、质量可变、时空弯曲„„经典物理学认为光速对于不同的观测者是不同的(虽然牛顿是个唯心主义者)。相对论则认为光速对于不同的观测者是不变的(虽然我们是唯物主义者)。我们丢掉了经典物理学所有不变的东西,换来的是相对论唯一不变的东西----光速。我觉得就象是用许多西瓜换来了一个芝麻一样,而且这个芝麻是很抽象的,它在真空中,速度最快,让你根本捉不到、摸不到。 我认为牛顿三条运动定律是真理,是完美的,是不容置疑的。质疑牛顿运动定律的人开口闭口说不存在绝对静止的物体,也不存在绝对不受外力的物体,却忘了上学时用的物理教材,开头都有绪论,绪论中都说:一切物质都在永恒不息地运动着,自然界一切现象就是物质运动的表现。运动是物质的存在形式、物质的固有属性„„还提到:抽象方法是根据问题的内容和性质,抓住主要因素,撇开次要的、局部的和偶然的因素,建立一个与实际情况差距不大的理想模型来研究。例如,“质点”和“刚体”都是物体的理想模型。把物体看作质点时,质量和点是主要因素,物体的形状和大小时可以忽略不计的次要因素。把物体看作刚体——形状和大小保持不变的物体时,物体的形状、大小和质量分布时主要因素,物体的变形是可以忽略不计的次要因素。在物理学研究中,这种理想模型是十分必要的。研究机械

运动的规律时,就是从质点运动的规律入手,再研究刚体运动的规律而逐步深入的。有人在故意混淆视听,有人在人云亦云,但听的人自己要想一想,牛顿用抽象的方法来分析问题,是符合马克思主义分析问题抓主要矛盾的指导思想的,否定了牛顿运动定律,我们拿什么来分析相对静止状态、匀速直线运动、自由落体运动„„? 看来相对论不但搞乱了我们的基本概念,还搞乱了我们的分析方法,这才是最危险的,长此以往,物理学将不再是物理学,而是一锅粥,一锅发霉的粥! 我认为物理学发展的正确思路是先要从质量、长度、时间、能量、速度等基本物理概念的理解上着手,在物理学界开展一场正名运动,然后讨论牛顿运动定律是否错了,错的话错在哪里,最后相对论的对错也就不言自明了,也容易接受了。

第三篇:高数试题1

一、

一、填空题(每小题3分,共15分)

1. 1.设u=x4+y4-4x2y2 ,则u x x

2. 2.设u=xy+y/x,则u y

3. 3.函数z=x2+4xy-y2+6x-8y+12的驻点是4. 4.设幂级数n0的收敛半径是4,则幂级数n0的收敛半径是

225. 5.设Σ是柱面x+y=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,则=

二、

二、单选(每小题2分,共8分)

1、函数zf(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:

(A)必要而非充分条件;(B)充分而非必要条件;

(C)充分必要条件;(D)既非充分又非必要条件。 答( )

2、微分方程yyxy满足条件y’(2)=1, y(2)=1的解是

(A)y=(x-1)2(B)y=(x+1/2)2-21/

4(C)y=1/2(x-1)2+1/2(D)y=(x-1/2)2-5/4anxnanx2n1x2y2z2dxdy答( )

3、若方程ypyqy0的系数p+qx=0,则该方程有特解

(A)y=x(B)y=e x(C)y=e – x(D)y=sin x答( )

4、微分方程yysinx的一个特解应具有形式答( )

(A)Asin x(B)Acos x(C)Asin x +Bcos x(D)x(Asinx+Bcosx)

三、

三、解答下列各题

1. 1.(本小题6分)

利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。

2、(本小题7分) 证明极限y0不存在。

3、(本小题5分)

2验证:y1=cosωx,y=sinωx都是微分方程y’’+ωy=0的解,并写出该方程的通解。

4、(本小题5分) x2ylim4x0xy

31cosx0xf(x)xx0若s(x)是以2为周期的函数f(x)的Fourier级数之和函x设

数,求S(-3π)。

四、

四、解答下列各题:

1、(本小题6分)

12x

更换积分次序:

22、(本小题6分) dxf(x,y)dyx

2求曲线

五、

五、解答下列各题:

1、(本小题6分) xt1t,y,zt21tt在t=1处的切线及法平面方程。

已知Σ是z=x2+y2上 z≤1的部分曲面,试计算4zds

2、(本小题6分)

(zy)dxdy(yx)dxdz(xz)dzdy计算,其中光滑曲面∑围成的Ω的体积为

V。

六、

六、解答下列各题

1、(本小题5分)

判别级数n

12、(本小题5分) 级数

3、(本小题5分)

nsin

n的敛散性。

1

111325272是否收敛,是否绝对收敛?

3n!xn

2试求幂级数k1n!的收敛半径

4、(本小题5分)

试将函数y=1/(4-x4)展开为x的幂级数

七、(本大题10分)已知上半平面内一曲线y=y(x) (x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。

七、

一、填空题(每小题3分,共15分)

1. 1.设u=x4+y4-4x2y2 ,则u x x22 2. 2.设u=xy+y/x,则u y

3. 3.函数z=x2+4xy-y2+6x-8y+12的驻点是4. 4.设幂级数n0的收敛半径是4,则幂级数n0的收敛半径是 R=

222

5. 5.设Σ是柱面x+y=4介于1≤z≤3之间部分曲面,它的法向指向含oz轴的一侧,则= 0

八、

二、单选(每小题2分,共8分)

1、函数zf(x,y)在点(x0,y0)处连续是它在该点偏导数存在的: (A)必要而非充分条件;(B)充分而非必要条件;

(C)充分必要条件;(D)既非充分又非必要条件。 答(A)

2、微分方程yyxy满足条件y’(2)=1, y(2)=1的解是 (A)y=(x-1)2(B)y=(x+1/2)2-21/4 (C)y=1/2(x-1)2+1/2(D)y=(x-1/2)2-5/

4a

n

x

n

a

n

x2n

1

x2y2z2dxdy

答(C)

3、若方程ypyqy0的系数p+qx=0,则该方程有特解 (A)y=x(B)y=e x(C)y=e – x(D)y=sin x答(A)

4、微分方程yysinx的一个特解应具有形式答(D) (A)Asin x(B)Acos x(C)Asin x +Bcos x(D)x(Asinx+Bcosx)

九、

三、解答下列各题

1. 1.(本小题6分)

利用二重积分计算由曲面z=x2+y2,y=1,z=0,y=x2所围成的曲顶柱体的体积。

1

1Vdxx2y2dy

1

x

2

2、(本小题7分)

8810

5证明极限y0

x2ylim

4x0xy

3不存在。

[证明]:取不同的直线路径y=kx ykx0 沿不同的路径极限不同,故由定义二重极限不存在。

3、(本小题5分)

验证:y1=cosωx,y=sinωx都是微分方程y’’+ωy=0的解,并写出该方程的通解。

22

2[验证]:y1’=-ωsinωx,y1’’=- ωcosωx代入方程左端-ωcosωx+ωcosωx=0满足方程。

222

y2’=ωcosωx,y2’’=- -ωsinωx代入方程左端-ωsinωx+ωsinωx=0满足方程。 故y1 、y2皆是微分方程的解。又y1 /y2=(cosωx)/( sinωx)≠常数,故y1与y2线性无关 。方程的通解为y=C1cosωx+C2sinωx

4、(本小题5分)

x2kx

1lim4x0xk3x3k

21cosx

0xf(x)x

x0若s(x)是以2为周期的函数f(x)的Fourier级数之和函x设

数,

求S(-3π)。解:S(-3π)=- π/2

十、

四、解答下列各题:

1、(本小题6分)

更换积分次序:

22、(本小题6分)

dxf(x,y)dydyfx,ydxdyfx,ydx

x

2y

y

12x

1y

42y

t1t,y,zt2

1tt求曲线在t=1处的切线及法平面方程。

x2y2z111

xy12z1012法线方程42解:切线方程:

4x

十一、

五、解答下列各题:

1、(本小题6分)

2

已知Σ是z=x+y上 z≤1的部分曲面,计算:

2、(本小题6分)



4zdsd14r2rdr3



(zy)dxdy(yx)dxdz(xz)dzdy计算,其中光滑曲面∑围成的Ω的体积为

V。

解:由高斯公式,原积分=

十二、

六、解答下列各题

1、(本小题5分)

3dv

v

=3V

判别级数n

1解:因为当n趋于∞时,一般项u n的极限为1,其极限不为0,故级数发散。

2、(本小题5分) 级数

nsin

n的敛散性。

1

111222357是否收敛,是否绝对收敛?

n

(2n1)21

1(1)(2n1)2limn1/n4解:原级数=

3、(本小题5分)

原级数绝对收敛。

3n!xn3n3!n!

2lim22n3n!n1!试求幂级数k1n!的收敛半径。解

4、(本小题5分)

试将函数y=1/(4-x4)展开为x的幂级数

R0

1y

解:

七、(本大题10分)已知上半平面内一曲线y=y(x) (x≥0)过点(0,1),且曲线 上任一点M(x0,y0)处切线斜率数值上等于此曲线与x轴,y轴,直线x=x0所围成的面积与该点纵坐标之和,求此曲线方程。

x4n11x4x42x4n

12nn1444x44n0414



2x2

解:

yyxdxy

x

yyy即yyy0

特征方程:r2-r-1=0

r1,2

12

15

x2

通解:yc1ec2e

1x2

555

初始条件:y(0)=1 , y’(0)=1解得:C1=10,C2=10

15

x2

5特解是:ye

10

15

x2

5e

10

第四篇:高数(1)极限和连续

第二章 极限和连续 【字体:大 中 小】【打印】

2.1 数列极限

一、概念的引入(割圆术)

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽

正六边形的面积A

1 正十二边形的面积A2

n-1

正6×2形的面积An

A1,A2,A3,„,An,„→„S

二、数列的定义

定义:按自然数1,2,3„编号依次排列的一列数x1,x2,„,xn,„ (1)

称为无穷数列,简称数列。其中的每个数称为数列的项,xn称为通项(一般项)。数列(1)记为{ xn }。

例如

nn

2,4,8,„,2,„;{ 2}

注意:

(1)数列对应着数轴上一个点列,可看作一动点在数轴上依次取

(2)数列是整标函数xn=f(n)

三、数列的极限

1.定义 设{xn}是一数列,如果存在常数a,当n无限增大时,xn无限接近于常数a,则称数列{ xn }收敛,a是数列{ xn }的极限,或者称数列xn收敛于a,记为

如果数列没有极限,就说数列是发散的。

例如

nn

2,4,8,„,2,„;{ 2},发散

,发散

收敛于0

2.数列极限的性质 (1)唯一性

定理 每个收敛的数列只有一个极限。 (2)有界性

定义: 对数列xn, 若存在正数M,使得一切自然数n, 恒有|xn|≤M成立, 则称数列xn有界,否则,称为无界。

例如,数列有界,数列无界

数轴上对应于有界数列的点xn都落在闭区间[-M,M]上。

定理 收敛的数列必定有界。

注意:有界性是数列收敛的必要条件。 推论 无界数列必定发散。 (3)保号性

收敛数列的保号性:假设数列{αn}收敛,其极限为α,

1)若有正整数N,n>N时,αn>0(或<0),则α≥0(或α≤0) 2)若α>0(或<0,则有正整数N,使得当n>N时,αn>0(或<0)

2.2 级数

1.级数的定义:

称为数项无穷级数(或简称数项级数),un为一般项。

2.级数的部分和

3.部分和数列

4.级数的收敛与发散

当n无限增大时,如果级数的部分和数列Sn有极限S, 即则称无穷级数收敛,这时极限S叫做级数的和,并写成。

如果Sn没有极限,则称无穷级数

数项级数收敛

存在

发散。

例1.讨论等比级数(几何级数)

(a≠0)的收敛性。

【答疑编号11020101:针对该题提问】

解:如果q≠1时,

当|q|<1时,

当|q|>1时

如果|q|=1时

当|q|=1时,

,级数发散

收敛 发散

当q=-1时,级数变为α-α+α-α+„

不存在,级数发散

综上

例2.(56页1(3))判断下列级数的敛散性,并在收敛时求出其和:

【答疑编号11020102:针对该题提问】

解:

得级数收敛,其和为。

例3.判断级数的敛散性

【答疑编号11020103:针对该题提问】

例4.判断级数的敛散性,并在收敛时求出其和

【答疑编号11020104:针对该题提问】

例5.判别无穷级数

的收敛性。

【答疑编号11020105:针对该题提问】

∴级数收敛,和为。

2.3 函数极限

两种情形:

(1)x→∞情形:

(2)x→x0情形:

一、自变量趋于无穷大时函数的极限

定义:设M是任意一个正数,函数f(x)在

上有定义,如果存在常数A,当|x|无限增大(即|x|→∞)时,f(x)无限接近于A,则称A为函数f(x)当x→∞时的极限,或简称为f(x)在无穷大处的极限,记为

或f(x)→A,当x→∞时。

定理:

例1.(60页例

5、例6)求下列函数的极限

(1)

【答疑编号11020201:针对该题提问】

(2)

【答疑编号11020202:针对该题提问】

解:对于函数

对于函数f(x)=arctanx,由反正切曲线y=arctanx的图形,易见

所以,极限

例2.

不存在。

【答疑编号11020203:针对该题提问】

例3.

【答疑编号11020204:针对该题提问】

例4.

【答疑编号11020205:针对该题提问】

二、函数在有限点处的极限(自变量趋于有限值时函数的极限)

1.定义:给定函数y=f(x)在(x∈D)上有定义,假设点x0的某一去心邻域,如果存在常数A,使得当x→x0时,函数值f(x)无限接近于A,则称A为函数f(x)当x→x0时的极限,记为

或 f(x)→A,当x→x0时。

2.单侧极限

定义:设 f(x)在x0的一个左邻域中有定义,如果存在常数A,使得当相应的函数值(fx)无限接近于A,则称A为函数f(x)当 时的左极限,记为

定理:

时,或(fx0-0)。

例5.62页2:(5)(6)(7)

求函数在指定点的左右极限,判定该点极限是否存在。

(5) x=2

【答疑编号11020206:针对该题提问】

(6) x=0

【答疑编号11020207:针对该题提问】

(7),x=0

【答疑编号11020208:针对该题提问】

问题:函数y=f(x)在x→x0的过程中,对应函数值f(x)无限趋近于确定值A。

例6.求

【答疑编号11020209:针对该题提问】

注意:函数极限与f(x)在点x0是否有定义无关

三、函数极限的性质 1.唯一性

定理 若limf(x)存在,则极限唯一。 2.有界性

定理 (有极限函数的局部有界性)假设中有界,即有常数M>0,使得在x0的某个去心邻域

3.保号性

推论

存在,则f(x)在x0点的某个邻域

中,有

,且A>0(或A<0)

若时

f(x)≥0(或f(x)≤0),则A≥0(或A≤0)

四、小结

函数极限的统一定义

2.4 极限的运算法则

一、极限运算法则

定理

(1)

(2)

,则

(3)

例7.【答疑编号11020210:针对该题提问】

推论1

如果lim f(x)存在,而c为常数,则

常数因子可以提到极限记号外面。

推论2

如果lim f(x)存在,而n是正整数,则

二、求极限方法举例

例8.求

【答疑编号11020211:针对该题提问】

(直接代入法)

例9.求。

【答疑编号11020212:针对该题提问】

解:x→1时,分子,分母的极限都是零。(型)

(消去零因子法或因式分解法)

例10.求

【答疑编号11020213:针对该题提问】

解:先变形再求极限。

例11.求

【答疑编号11020214:针对该题提问】

三、小结

1.极限的四则运算法则及其推论; 2.极限求法

a.多项式与分式函数代入法求极限; b.因式分解法消去零因子求极限; c.通分法

d.利用左右极限求分段函数极限。

2.5 无穷小和无穷大

一、无穷小

1.定义:极限为零的变量称为无穷小。

函数f(x)当x→x0 (或x→∞)时为无穷小,记作

例如,

,∴函数sinx是当x→0时的无穷小。

,∴函数是当x→∞时的无穷小。

,∴数列是当n→∞时的无穷小。

注意:

(1)无穷小是变量,不能与很小的数混淆; (2)零是可以作为无穷小的唯一的数。 2.无穷小与函数极限的关系:

其中α(x)是当x→x0时的无穷小。

定理

3.无穷小的运算性质:

(1)在同一过程中,有限个无穷小的代数和仍是无穷小。 (2)有限个无穷小的乘积也是无穷小。 (3)有界变量与无穷小的乘积是无穷小。

例如,当x→0时,

二、无穷大

1.定义:绝对值无限增大的变量称为无穷大。

函数f(x)当x→x0 (或x→∞)时为无穷大,记作

2.特殊情形:正无穷大,负无穷大。

注意:

(1)无穷大是变量,不能与很大的数混淆; (2)切勿将 认为极限存在。

(3)无穷大是一种特殊的无界变量,但是无界变量未必是无穷大。

例如,

三、无穷小与无穷大的关系

是无界变量不是无穷大。

1.定理 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。

2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。

例1.求。

【答疑编号11020301:针对该题提问】

解:

商的法则不能用

由无穷小与无穷大的关系,得

例2.求。

【答疑编号11020302:针对该题提问】

解:x→∞时,分子,分母的极限都是无穷大。(

先用x3去除分子分母,分出无穷小,再求极限。

型)

(无穷小因子分出法)

例3.求

【答疑编号11020303:针对该题提问】

例4.求

【答疑编号11020304:针对该题提问】

小结:当

,m和n为非负整数时有

无穷小分出法:以分子、分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限。

例5.

【答疑编号11020305:针对该题提问】

例6.求

【答疑编号11020306:针对该题提问】

例7.求

【答疑编号11020307:针对该题提问】

例8(2007年10月)

【答疑编号11020308:针对该题提问】

例9(2007年10月)、下面A、B、C、D四个极限中,哪一个极限存在()

A.

B.C.

D.

【答疑编号11020309:针对该题提问】

答案:D

例10(2007年4月)

( )

A.0

B.1 C.-1

D.不存在

【答疑编号11020310:针对该题提问】 答案:B

例11(2007年7月)

【答疑编号11020311:针对该题提问】

计算

例12(2005年)计算

【答疑编号11020312:针对该题提问】

2.6 两个重要极限

2.6.1 关于

1、计算

【答疑编号11020401:针对该题提问】

解:

2、

【答疑编号11020402:针对该题提问】

解:

3、80页第1题(5)

【答疑编号11020403:针对该题提问】

解:

4、

【答疑编号11020404:针对该题提问】

解:

5、

【答疑编号11020405:针对该题提问】

解:

6、判断四个极限分别属于哪一种类型:

(1)

【答疑编号11020406:针对该题提问】

(2)

【答疑编号11020407:针对该题提问】

(3)

【答疑编号11020408:针对该题提问】

(4)

【答疑编号11020409:针对该题提问】

解:

解:

7、求

【答疑编号11020410:针对该题提问】

2.6.2 关于

1、求

【答疑编号11020501:针对该题提问】

解:

2、

【答疑编号11020502:针对该题提问】

解:

3、

【答疑编号11020503:针对该题提问】

解:

4、

【答疑编号11020504:针对该题提问】

解:

方法一:

方法二:

5、

【答疑编号11020505:针对该题提问】

解:

6、

【答疑编号11020506:针对该题提问】

解:

7、

【答疑编号11020507:针对该题提问】

解:

8、

【答疑编号11020508:针对该题提问】 解: 方法一:

方法二:

9、81页4题(8)

【答疑编号11020509:针对该题提问】

解:

小结:

第一类重要极限:

第二类重要极限:

2.5.4 无穷小的比较

例如,当x→0时,

观察各极限

都是无穷小。

,x比3x要快得多; 2 ,sinx与x大致相同;

不存在,不可比。

极限不同,反映了趋向于零的“快慢”程度不同。

定义:

设α,β是同一过程中的两个无穷小,且α≠0.

(1)如果,就说β是比α高阶的无穷小,记作β=o(α);

(2)如果,就说β与α是同阶的无穷小;

特殊地如果

等价无穷小:

,则称β与α是等价的无穷小;记作α~β;

例:

【答疑编号11020601:针对该题提问】

例:

【答疑编号11020602:针对该题提问】

得:当x→0时,

例:

(1)73页8题:

当x→∝时,a,b,c应满足什么条件可使下式成立?

(1)

(2)

等价无穷小代换

等价代换原理:在同一极限过程中的三个变量u,v,w,如果u,v是无穷小量,且等价,则有

得:当x→0时,

常用等价无穷小:

当x→0时,

牢记常用的等价无穷小:

当x→0时,

例:

【答疑编号11020603:针对该题提问】

例:

【答疑编号11020604:针对该题提问】

【答疑编号11020605:针对该题提问】

错解

当x→0时,

当x→0时,

(1)80页1题(7)

【答疑编号11020606:针对该题提问】

(2)80页1题(9)

【答疑编号11020607:针对该题提问】

(3)80页1题(10)

【答疑编号11020608:针对该题提问】

(4)80页2题:设

【答疑编号11020609:针对该题提问】

,求a,b

例:94页3题(4):

【答疑编号11020610:针对该题提问】

例:94页4题(1):证明当时,sin(2cosx)与是同阶无穷小。

【答疑编号11020611:针对该题提问】

例:81页8题:设

【答疑编号11020612:针对该题提问】

,求k。

小结

1.两个重要极限

2.无穷小的比较: 反映了同一过程中,两无穷小趋于零的速度快慢,但并不是所有的无穷小都可进行比较. 高(低)阶无穷小;等价无穷小; 3.等价无穷小的替换:

求极限的又一种方法,注意适用条件.

2.7 函数的连续性和连续函数

一、函数的连续性

1.函数的增量

设函数f(x)在

内有定义,

称为自变量在点

的增量。

2.连续的定义

定义1 设函数f(x)在的函数的增量f(x)在点

定义2 设函数f(x)在也趋向于零,即连续,

称为

内有定义,如果当自变量的增量

的连续点.

趋向于零时,对应,那么就称函数

内有定义,如果函数

时的极限存在,且

第五篇:考研高数知识总结1

考研数学讲座(17)论证不能凭感觉

一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。

1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换?

分析 只凭感觉,多半不敢。依据定义与规则,能换就换。

x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小, sinα(x) ~ α(x)且 sinα 处于“因式”地位。可以换。

等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2

2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性) ?

分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x) 等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x) (实际上,由复合函数求导法则, (f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x))

所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。

(潜台词:周期函数的原函数不一定是周期函数。)

单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。

如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。

有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。

取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。 这个反例说明有界函数的导数不一定有界。

(画外音:写出来很吓人啊。 x → 1 时 ,lim f (x) = 0 ,而 lim fˊ(x)= -∞ )

3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?

分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:

取分段函数 g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。 取 f(u)=√u ,则 f(g(x))= 1 在 x > 0 时有定义且连续。 还有一些原因让“病态点”消失。

如果只图简单,你可以取 f(u)为常函数。以不变应万变。

取 f(u)= u的平方 ,则 f(g(x))= 1 ,显然是个连续函数。

4.设 f (x)可导,若x趋于 +∞ 时 ,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。 例如 y = x 更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞ 时 ,它是无穷大。但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。 5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x) = +∞ , 是否必有 lim f(x) = +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x) = +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式

f (x)= f (x0)+ fˊ(ξ)(x-x0) , x0 <ξ< x (潜台词: ξ=ξ(x) 。你有这种描述意识吗?) 进而就有, x >x0 时, f (x) >f (x0) + 1(x-x0) (画外音:这一步是高级动作。) 因为 f (x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f (x) = +∞ 6 。 设 f (x)可导,若 x 趋于 -∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f (x)= -∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。 请你还是老老实实地象5中那样写出推理吧。结论是

若 x 趋于 -∞ 时,lim fˊ(x)= -∞ , 则必有 lim f (x) = +∞

7.设 f (x)可导,若x 趋于+∞时,lim f (x) = c(常数,)是否必有lim f ˊ(x) = 0 分析 否。lim fˊ(x) 有可能不存在。

这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x) = c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”

想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。

由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如, 曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x) 不存在的后果。 对比条件强化 —— 如果 lim fˊ(x) 存在,则必有 lim fˊ(x) = 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x) = A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2 ,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有

f (x) >f (x0) + A(x-x0) /2 —→+∞ 矛盾。

8.函数在一点可导,且导数大于0 ,能说函数在这一点单增吗?

分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim ( f (x)-f(x0))/ (x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f (x) > f(x0) 。但是,我们不知道函数值相互间的大小。

*9 设f (x)可导,若fˊ(a)·fˊ(b) < 0 ,则(a,b)内必有点c ,fˊ(c) = 0

分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。

在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a) > 0 而 fˊ(b) < 0 分别在a , b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:

函数的端值 f (a),f (b) 都不是 f (x)在[a,b] 上的最大值。 最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。 考研数学讲座(18)泰勒公式级数连

中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。

中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。 描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。

在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。 1.“微分是个新起点” —— 若函数 f(x)在点x0可微,

Δy = f ′(x0)Δx +ο(Δx) ;其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:

f(x)= f (x0) + f ′(x0)(x-x0) + ο(Δx) ( ο(Δx) 尾项,比Δx高阶的无穷小)

(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)

历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。

2. 拉格郎日公式 —— 若 函数f (x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f (b)-f (a) = f ′(ξ)(b-a)

定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f (x)-f (x0) = f ′(ξ)(x-x0),ξ 在 x 与 x0之间,

(潜台词:任意一点x,对应着一个客观存在的“点ξ”, ξ=ξ(x) ) 即 f(x)= f(x0)+ f ′(ξ)(x-x0) ,ξ 在 x 与 x0之间, 3. 泰勒公式 —— 如果函数在点x0 邻近有二阶导数

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(ξ) /2)(x-x0)² ,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0) ,0<θ<1 一般情况下,我们无法知道

ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。

如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(x0) /2)(x-x0)²+ ο(|Δx| ²) 泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0) ,f ′(x0) , f ″(x0) / 2! ,f ′ ″(x0) / 3! ,„„

可以写出, f(x)= n 次泰勒多项式 + 拉格朗日尾项

4. 泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数

f(x)= f(0)+ f ′(0) x +(f ″(0) /2)x²+(f ′ ″(0 ) / 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!

(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数 ,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)

关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0 ,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。 验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。

美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。

exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞

(逐项求导, cos x = 1- x²/2!+ „„

-∞

泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。 关键在于低阶项相互抵消。应用泰勒公式直接有 ,x → 0 时, exp(x)- 1 ~ x , exp(x)-1-x ~ x² / 2

sin x ~ x , sin x - x ~ - x³ / 3! , cos x -1 ~ - x²/2 ln(1+x)~ x , ln (1+x)-x ~ -x²/2 (1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3) -A-B(x -1)-(x -1) ² )/(x -1) ² = 0 ,试确定常数,A,B,C 分析

已知表明 x → 1 时,分子是较分母高阶的无穷小。

题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有

常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。

于是 A = y(1) = 2 ,B = y ′(1) = 3/4 , C = y″(1) / 2 = 39/64 (画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。 如果只有两个参数,可看讲座(9)。)

泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限

例88 若 x→ 0 时 ,极限 lim ( sin6 x+ f(x))/ x³ = 0 ,则

x→ 0 时,极限 l im ( 6 + f(x))/ x² = ? 分析

分子有两项。决不能把 sin6 x 换为 6x , (潜台词:sin6 x不是分子的因式,是分子的一项。)

这时正好用“带皮阿诺余项的一阶泰勒公式”, sin 6x = 6 x - ( 6x)³/3!+ ο(|Δx| ³) 代入已知极限,移项得 lim ( 6 + f(x))/ x² = 36

例89 设函数 f (x) 在 x = 0 的某邻域内有连续的二阶导数,且 f (0)≠0 ,f ′(0)≠0, 记 F(h) = λ1 f (h) + λ2 f (2h) + λ

f (3h) 一 f (0),

试证,存在唯一的实数组 λ1,λ2,λ3 ,使 h → 0 时,F(h) 是比 h ² 高阶的无穷小。

3 分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x + (f ″(0) /2)x²+ ο(|x| ²)

这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f (h) , f (2h), f (3h) f (h) = f(0)+ f ′(0) h + (f ″(0) /2)h ²+ ο(| h | ²)

f (2h) = f(0)+ f ′(0)2 h + (f ″(0) /2)(2h)²+ ο(| h | ²) f (3h) = f(0)+ f ′(0)3 h + (f ″(0) /2)(3h)²+ ο(| h | ²) (潜台词:常数因子不影响尾项。) 将各式代入F(h),整理得

F(h) = ( λ1+λ2+λ3一1) f(0)+ ( λ1+2λ2 + 3λ3) f ′(0) h + ( λ1+ 4λ2 + 9λ3) f ″(0) h ²/2 + ο(| h | ²)

要让 h → 0 时,F(h) 是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0 ,这就得到未知量

λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0 ,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式

如果函数 f (x) 二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式

f (x)≥ f(x0)+ f ′(x0)(x-x0) (或≤)

实际上 f(x)= f(x0 )+ f ′(x0)(x-x0)+ (f ″(ξ) /2 ) (x-x0)² ,ξ 在 x 与 x0之间

设 f ″(x)> 0 ,自然有(f ″(ξ) /2 ) (x-x0)² > 0 ,舍掉此项就得到不等式。

*例91 函数 f (x) 在 [-1,1] 上有连续的三阶导数,且 f (-1) = 0 ,f (1) =1,f ′(0) = 0,试证明在区间 内至少有一点 ξ ,使得 f ″′(ξ) = 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式

f(x)= f(0)+(f ″(0) /2)x²+(f ′ ″(η ) / 3!)x³ , η在0与x之间 既然这是 f (x) 的又一个表达式,当然可以代入x = -1 , 1 ,它们分别相应有 ξ 1,ξ 2 0 = f(-1)= f(0)+(f ″(0) /2)(-1)²+(f ′ ″(ξ 1 ) / 3!)(-1)³ , -1<ξ 1<0 1 = f(1)= f(0)+(f ″(0) /2)1² +(f ′ ″(ξ 2) / 3!)1³ , 0 <ξ 2 < 1 到了这一步,仔细观察发现,两式相减,能得到只剩下有关三阶导数值的表达式。 f ′″(ξ 2) + f ′″(ξ 1 ) = 6 或着两个三阶导数值都等于3 ,本题得证。或者它们一大于3 ,一小于3 ,而函数 f ″′(x) 连续,可以应用介值定理完成本题证明。

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【成都大学教案高数】相关文章:

高数大学数学目录07-01

高数11教案范文05-23

高数1班教案06-21

大学高数级数范文05-25

大学高数总结范文05-25

大学高数期末复习06-27

大学高数复习提纲06-27

大学高数学习方法06-27

高数课程教案范文05-26

课程教案高数范文05-28

上一篇:班务工作计划下一篇:初一7班班干部职责