高数竞赛

2024-05-03

高数竞赛(精选10篇)

篇1:高数竞赛

高数

说明:请用A4纸大小的本来做下面的题目(阴影部分要学完积分之后才能做)

第一章 函数与极限

一、本章主要知识点概述

1、本章重点是函数、极限和连续性概念;函数是高等数学研究的主要对象,而极限是高等数学研究问题、解决问题的主要工具和方法。高等数学中的一些的重要概念,如连续、导数、定积分等,不外乎是不同形式的极限,作为一种思想方法,极限方法贯穿于高等数学的始终。

然而,极限又是一个难学、难懂、难用的概念,究其原因在于,极限集现代数学的两大矛盾于一身。(1)、动与静的矛盾:极限描述的是一个动态的过程,而人的认识能力本质上具有静态的特征。(2)无穷与有穷的矛盾:极限是一个无穷运算,而人的运算能力本质上具有有穷的特征。极限就是在这两大矛盾的运动中产生,这也是极限难学、难懂、难用之所在。

连续性是高等数学研究对象的一个基本性质,又往往作为讨论函数问题的一个先决条件,且与函数的可导性、可积性存在着不可分割的逻辑关系。

2、从2001年第一届天津市大学数学竞赛至今共八届竞赛试题分析,函数极限及其连续性在有的年份占了比较大的比重,连续性、极限与导数、积分等综合的题目也要引起足够的重视;从最近几年的考题也可以看出,有个别题目是研究生入学考试题目的原题,如2004年竞赛试题二为1997年研究生入学考试题目;2006年竞赛试题一为2002年研究生入学考试试题;2005年竞赛试题一为1997年研究生入学考试试题等,这也从侧面反映了部分试题难度系数。

二、证明极限存在及求极限的常用方法

1、用定义证明极限;

2、利用极限的四则运算法则;

3、利用数学公式及其变形求极限;(如分子或分母有理化等)

4、利用极限的夹逼准则求极限;

5、利用等价无穷小的代换求极限;

6、利用变量代换与两个重要极限求极限(也常结合幂指函数极限运算公式求极限);(2)利用洛必达法则求极限;

7、利用中值定理(主要包括泰勒公式)求极限;

8、利用函数的连续性求极限;

9、利用导数的定义求极限;

10、利用定积分的定义求某些和式的极限;11先证明数列极限的存在(常用到“单调有界数列必有极限”的准则,再利用递归关系求极限)

12、数列极限转化为函数极限等。当然,这些方法之间也不是孤立的,如在利用洛必达法则时经常用到变量代换与等价无穷小的代换,这大大简化计算。

对于定积分的定义,要熟悉其定义形式,如

(二)高数

极限的运算

要灵活运用极限的运算方法,如初等变形,不仅是求极限的基本方法之一,也是微分、积分运算中经常使用的方法,常用的有分子或分母有理化、分式通分、三角变换、求和等。

高数

高数

高数

(四)连续函数的性质及有关的证明、极限与导数、积分等结合的综合性题目。

16、(2006年数学一)

(五)无穷小的比较与无穷小的阶的确定常用工具——洛必达法则与泰勒公式。

高数

(六)由极限值确定函数式中的参数

求极限式中的常数,主要根据极限存在这一前提条件,利用初等数学变形、等价无穷小、必

达法则、泰勒公式等来求解。

高数

四、练习题

高数

高数

高数

高数

五、历届竞赛试题

2001年天津市理工类大学数学竞赛

2002年天津市理工类大学数学竞赛

2003年天津市理工类大学数学竞赛

高数

高数

2004年天津市理工类大学数学竞赛

2005年天津市理工类大学数学竞赛

高数

2007年天津市理工类大学数学竞赛

高数

2010年天津市大学数学竞赛一元函数微分学部分试题

一、填空

注:本题为第十届(1998年)北京市大学数学竞赛试题

二、选择

三、计算

四、证明

高数

首届中国大学生数学竞赛赛区赛(初赛)试题2009年

一、填空

二、计算

篇2:高数竞赛

2011级“高等数学”竞赛策划书

大学的荣誉,不在于它的校舍和人数,而在于它一代又

一代人的质量。我想这句话真正的注解了一个学校的内涵,今天我们是一个学院人,以我们学院的荣誉为骄傲。而明天,我们应该让学院因曾经有过我们而感到欣慰。我院决定面向2011级全体学生进行开展“高等数学竞赛”活动。具体策划方案如下:

一、主题

“高等数学”竞赛

二、主办单位

材料学院

三、目的和意义

1.通过竞赛可以激发广大学生学习高等数学的兴趣和热情。

2.我院多数专业的专业课程中涉及较多的数学知识,对学生

更好的学习专业知识有很大的帮助。

3.通过竞赛,使学生加深学习数学知识和数学思想,有利于

学生提高逻辑思维能力,提升解决实际问题的素质。

4.通过学院竞赛,可以宣传与扩大我院在学校中的知名度。

四、竞赛方式与创新点

1.竞赛以考试的形式进行。

2.本次竞赛将增加学生以专业为背景,为以后设计数学建模

并解决问题题奠定基础。

五、竞赛工作安排

1.张贴宣传海报

张贴时间:4月15日

2.场地申请

3.邀请老师配合出题

4.试卷批改

学习委员监考并批阅

批阅时间4月26日(周四)下午5:40

5.赛后卫生打扫

六、竞赛办法

1.竞赛对象

材料学院2011级学生,每班5—10名

2.竞赛报名

各班学生报名到班级学习委员,然后上报年级学习委员

3.竞赛内容

高等数学第六版上册1/3,下册2/3。(难易适中)

4.竞赛时间

2012年4月26日(周四)下午3:00---5:00

5.竞赛地点

开元校区教学楼五区416

6.竞赛奖励

一等奖1名:德育分30分+50元奖品+奖状

二等奖3名:德育分20分+30元奖品+奖状

三等奖6名:德育分10分+20元奖品+奖状 赛后公示

以板报或院报的形式公布

七、竞赛要求

遵守考试秩序,诚信答卷,杜绝作弊。

材料学院

篇3:高数竞赛

1 大一新生高数学学习困难外因分析

1.1 教学内容衔接问题

高学和中学的数学内容虽然有一些重叠部分, 但是高等数学较之中学数学, 其内容更具抽象性。中学数学的内容主要是常量数学, 它研究的对象基本上是常量关系以及平面、空间的直线与简单的曲线、曲面等, 其概念直观、简单, 容易被接受和理解。而高等数学的内容是变量数学, 其研究对象是非常现实的材料, 是客观世界中更为广泛、抽象的空间形式与数量关系, 是数和形的抽象与一般化。概念的产生是对各种运动现象的提炼与加工, 具有辩证性、客观性、抽象性等特点, 难以形象表述, 逻辑推理的语言和辩证的方法造成学生认知上的困难。教学内容强调知识的系统性、理论性, 对学生的知识迁移能力要求较高, 只有在深入理解和正确理解基本概念的基础上才能进行广泛的应用, 对于刚入学的大学新生而言, 出现不适应是难免的。

调查了高中数学与高等数学教学内容知识点的衔接, 调查结果表明大一学生对于反三角函数 (67.14%) 、导数微分的理解 (56.43%) 及积分的计算 (51.43%) 存在的问题最为突出, 对于数学归纳法 (34.29%) 、极坐标 (33.57%) 、反证法 (22.14%) 、参数方程 (15.00%) 等知识的掌握也不熟练。究其原因归为三类: (1) 技术类, 包括反三角函数、极坐标、参数方程, 学生对这些知识点掌握不好的原因大多是在高中时期没有接触过, 这是由于中学数学教学的功利性较强, 迎接高考成为许多中学的主要目标, 高考教学大纲之外的内容作为选学或干脆不教, 由此造成部分内容与高等数学脱节, 学生知识结构不完整。 (2) 理解类, 包括极限、导数、微分与积分的理解和应用, 由于高数概念基本上是抽象的产物, 大都以运动的面貌出现, 具有辩证性、客观性、合理性等特点, 难以形象表述。对学生在思维方式上的转变有很高的要求, 学生理解上的障碍直接影响了高数学习的效果。 (3) 应用类, 包括数学归纳法、反证法等, 高数将这类知识作为一种方法、技巧, 强调灵活运用, 主要用于对性质定理结论的证明, 而高中数学仅把它当作一个知识点简单讲授, 对于应用能力并不重视, 不可避免的导致了学生实际应用能力的缺乏, 在理解定理和做题过程中会显得力不从心。

针对知识点衔接的问题, 26.43%的学生认为对自己学习高数影响很大, 57.14%学生认为有一点影响, 只有16.43%的学生认为对自己没什么影响。可见这种知识层面的衔接问题对初入校的大一新生来讲是一个难点, 挫伤了他们的学习积极性, 甚至造成了一些心理压力。

1.2 教学方式的转变

中学阶段, 许多学生习惯于被动学习, 学校和教师几乎安排好了学生每天的学习进程, 学生没有必要也不可能自主安排自己的学习, 总结题型、归纳解题方法及解题技巧等主要由教师通过课堂教学来完成, 有了这些准备工作, 学生课后基本不用研读教材便可直接完成作业。同时, 中学数学课堂的容量较小, 训练巩固的时间相对充裕, 各知识点可能涉及到的题型, 教师基本上都能讲到, 学生大多是模仿练习, 为了迎接高考, 学生进行大量的题型训练, 围绕某个知识点反复做题加以巩固, 单元测试、章节测试、期中考试、期末考试更是枚不胜举, 造成学生被动接受知识, 主动精神缺乏, 没有真正培养学生的认知能力和思维能力。而高等数学更多的需要学生自主学习, 由于知识的深度以及学时限制等原因, 数学课的教学已不再像中学那样面面俱到, 大学课堂重视定理、概念教学, 重视定理之间的逻辑演绎、论证, 而较少对学生进行题型训练, 留给学生自主学习思考, 支配的时间比较多, 对于依赖反复训练才能掌握知识的大一新生, 明显不能适应, 不能全面掌握所学知识, 课后花大量时间仔细研读教材和认真思考已成为学习重要环节。

在问卷中, 33.57%的学生认为能适应高数老师的讲课方式, 50.00%认为不是很适应, 16.43%感到十分不适应, 可见有半数的学生在高数课程的学习中没有适应大学老师的授课方式, 课堂是学生获取知识、分析解决问题能力的最重要环节, 也是学生巩固知识、深化所学知识, 独立发展能力的一个起点, 这种不适应直接影响着学习的积极性和学习效果。

1.3 学业自主性状况

大学与中学学习最大的不同在于大学学习更加强调自主性, 学业上的自主性直接影响到学习行为的发生, 进而影响到学习结果。

调查结果显示, 将近半数 (48.76%) 的学生并没有付出太多努力, 这反映出从高中到大学学习态度的明显转变, 其成原因是值得深思的。对大多数高中生而言, 考取大学是最具诱惑力的行为归因, 但进入大学后, 这一因素就不复存在了, 大一新生基本上处于如释重负的解脱状态。不少学生学习懈怠, 缺乏主动进取的精神, 学习目标不明确, 学习动机不强烈。

1.4 学习氛围的影响

大学与高中学习氛围的一个主要差别在于学习环境的变化, 高中学习环境相对单纯封闭, 主要限于教室和家庭, 较少受到外部因素的干扰。进入大学之后, 学习生活环境发生了较大变化, 大学的教育管理模式相对宽松, 大量的时间由学生自由支配, 由于习惯了中学被动的学习生活方式, 许多学生感觉无所适从, 有的忙于各类社团活动, 有的沉迷网络或游戏, 学习目的不明确, 思想松懈, 造成学业困难。

调查显示, 选择在宿舍学习和图书馆及自习室学习的学生各占半数, 对于在宿舍学习的效果, 只有22.14%学生认为在宿舍学习氛围好。选择在宿舍学习的学生人数很多, 但认为在宿舍学习效率高的人确却比较低, 有50%的学生选择学习效率比较低的宿舍, 从侧面反应大一学生学习学习氛围令人担忧, 这种负面影响直接导致了学生在学业上的“低兴奋度”, 影响着学生的学习行为。

2 几点措施与建议

2.1 加强教学内容衔接

高等数学在知识上是中学数学的继续和提高, 在思想方法上是中学数学的沿袭和扩张, 在观念上是中学数学的深化和发展。因此, 在教学中应特别注重与中学数学知识点的衔接问题, 首先通过高数教材与中学教材的比对, 找到它们在内容上的差异, 做到心中有数, 教学中有的放矢量;其次, 查漏补缺, 高中数学实施新的课标后, 高数中有些必备的基础知识被删除, 主要包括三角函数中的正切函数余切函数、反三角函数、极坐标、数学归纳法、参数方程等, 教师在高数教学课程中涉及到这些内容时要进行恰当的补充, 不能一带而过。个人认为制作成“微课”是一种很好的弥补办法, 既解决了高数课时不足的问题, 又给学生提供了丰富生动的课外学习资料。最后要注意引申提高, 高中数学实施新的课标后, 将高数中的极限和导数下放到了中学教材中, 中学在处理这些内容时无论是视角还是方法都比较浅显, 所以在高数的教学过程中, 教师对这些内容要深入挖掘它们的内涵, 引申它们的意义和作用, 让学生再次接触到这些内容时, 有全新的感觉, 从而激发他们的学习热情。

2.2 关注差异

这里的“差异”体现在两方面: (1) 纵向表现为学生在高中阶段被动学习和大学要求的主动学习能力的差异。大一新生处于适应阶段的初期, 教师不应忽略其在学习能力上的不足, 应当注重能力、思维的培养而不是简单的教授课程, 了解学生的需要, 利用良好的师生关系来进行激励和监督, 人际交往过程中, 情感相容者交往频繁, 关系密切;情感不合者难于沟通, 甚至于互相排斥。因此, 教师要善于用情感来赢得学生的信任, 打造和谐的师生关系。 (2) 横向表现为学生的理论基础、思维方式和能力的差异。如文理科、不同生源地等会形成学生间不可避免的差异, 根据“木桶原理”, 要想提升学生整体学业水平, 对于基础较差学生的关注尤为重要, 而我校统一的授课方式忽略了这一点, 因此, 可以考虑根据学生所学专业要求的不同而分级教学, 因材施教更好地实现教学目标。

2.3 自我管理

大一新生要清楚的认识到, 大学阶段的学习和生活与中学阶段是截然不同的, 进入大学后, 学习更多靠自己, 要努力培养自己的自觉学习能力和独立学习能力。一方面要及时发现自己对于知识掌握的不足, 查漏补缺, 增强自学能力, 主动获取知识, 充分利用身边资源, 有问题多向老师请教, 主动的探索适合自己的学习方法;另一方面, 要调整思维方式以适应从高中到大学学习思维的转变, 主动思考, 深入挖掘, 对知识的理解不能浮于表面, 培养自己灵活应用的能力。最后思想意识上要明确学习目标, 端正学习态度, 加强自我监督和管理的意识, 经常性给予自己激励, 培养信心、耐心和决心。

2.4 营造氛围

大学教育不同于高中的应试教育, 大学教育更加注重培养人的思维和能力, 因此应营造良好的学术氛围, 注重学生数学学习兴趣的培养和启发, 引导学生自主学习和研究, 而不是为了应付考试而被动的学习和功利的学习。氛围环境的影响对于价值观正在形成的大学生来说渗透在生活的方方面面, 因此, 希望有更多的人来关注大一新生高数学习困难这一问题。

总之, 高等教育大众化的今天, 大一新生学习困难的问题已经成为人才培养和学生成才的严重问题, 高校教师及管理人员要多方面协调配合, 齐抓共管并形成合力, 积极开展形式多样的教学方式及人性化的管理模式, 调动学生学习的主动性, 解决大一新生高数学习困难, 确保每一个学生不掉队, 确保和提高教育教学质量。

摘要:高等数学是财经类院校多数专业普遍开设的必修基础课, 其重要性不言而喻。然而, 近年来, 随着高等教育大众化, 进入大学的学生基础参差不齐, 初学高数的新生学习困难的人数逐渐增多, 已经影响到正常的教学秩序。如何改善这一状况, 提高教学质量, 已经成为一个必须解决的重要课题。

关键词:高等数学大一新生,教学质量原因剖析,现状调查

参考文献

[1]胡克娟.大学新生高等数学学习困难的原因剖析[J].数学教学与研究, 2011 (54) :76-77.

[2]高秋菊.关于从中学数学到大学数学学习方法转变的策略[J].赤峰学院学报, 2010, 26 (8) :205-206.

篇4:谈高数情怀之极限

【关键词】高数情怀;极限;无限接近

谈到高数情怀,这是一种什么情怀,也许是高数里那些智慧结晶的一种赞叹,也许是对数学家用生命研究数学的一种感恩,也许是高数渗透的那些经典的哲理的一种吸引,也许是高数让我们看到生活真谛的一种沉静.不知道你们也有我这样的情怀吗?在过去教学一度时间中,我总是在问自己,老师到底在高数课堂上要教学生什么,我一直在寻找答案,每次上完课都总感觉不尽兴,总感觉学生不应该这么学习高数。就在一次备课“极限”内容,突然让我找到了答案,我为什么不把我这种高数情怀也让学生知道呢?我为什么不把这种高数情怀贯穿到我的课堂上呢?从现在开始我就要在我高数课堂上的谈高数情怀,从极限开始。

一、极限的争议

例1:阿基米德追乌龟。

这是由古希腊哲人芝诺提出的一个经典悖论。假设乌龟在阿基米德前面100米的地方,乌龟的速度1米/s,阿基米德的速度是10米/s,阿基米德跑完100米的时候,乌龟又跑了10米,阿基米德再跑那10米,乌龟又跑了1米,阿基米德跑完1米,该死的乌龟又跑了0.1米……按这个推理,好像阿基米德永远也追不上乌龟,乌龟始终都领先阿基米德一点点。这个问题大家普遍是这么回答的,因为乌龟跑10米要10s,跑1米要1s,0.1米是0.1s,0.01米是0.01s……这样把时间加起来10+1+0.1+0.01+0.001+……这样一直加下去是一个无限的数列,但是这个数列的值是可以求出来,等比数列求和即 s,时间在 s的时候阿基米德就追上了乌龟。但是人们又开始疑惑另一个问题,极限的概念告诉我们:极限是无限的接近但是不到达,就算加起来是确定的时间值,但是按极限概念确是达不到啊,还是没追上不是?于是就又出来类似问题,例如例2的问题。

例2:。

0.9到底和1相等吗?按照极限的概念,0.9应该是无限接近,但是没有达到,所以不等于1.但是还是有一些人不死心,一直在追究0.9到底等不等于1,如果不相等,那例1中的阿基米德不就永远追不上乌龟了吗?

二、极限的“坚持”

针对以上的两个例子,让我反思的不是例子的答案是什么?而是为什么极限的学习总有一些人在思考类似的这些问题。思考过后,这些问题就算有了答案,你得到了什么呢?你是一个学生?还是老师?你是数学业余爱好者,还是专业数学家?即使你是专业数学家,这样的问题更没有意义,何况前三种人。为什么没有意义,简单的说,极限定义就是“无限接近”注意是“无限”接近,至于达到没达到,我可以说这不归极限管。极限就是用来解决无限接近的。你们有那么多精力放在不归极限管的领域里面,怎么不用心来感受下极限真正的价值所在。“极限”的定义能把“无限接近”这么浅显易懂,但是你用汉语又解释不清的一个概念用纯粹的数学符号翻译成如此严密思维和逻辑。“ε-N”定义,“ε-X”定义,“ε-δ”定义,如此惊叹的数学语言的翻译,难道这不应该赞叹一下吗?赞叹“极限”这种非凡的能力——“无限接近”,它不仅可以看到你用肉眼看不到的地方——“领域”,它还可以一直坚持做一件永远做不完的事情,这是何等的超能力,这是多么的值得学习的地方。接下来我们来看例3。

例3:这个数列的极限是两个重要的极限之一,利用准则Ⅱ单调有界数列必收敛已经证明了这个极限值一定存在,那这个值是多少?很多学生认为当 n→∞的时候, , 所以1∞=1,所以,显然这个答案是错的,应该是e。你可以把n=1.n=2,n=3,……n=16,……带入此式计算出Xn,观察下Xn无限接近e,所以这个极限的正确答案应该是,这个极限告诉我们什么:首先你看这个,答案就是1,这两个极限的区别是什么?我这个时候再来解释下,如果你起点开始拥有的资本是1,如果你每天做一点点点点(+ ),次方100意思就是做了100天,结果你的资本还是1,但是如果你做了n→∞天,那你的资本就变成了e≈2.7… 翻了2倍多,这是多么惊叹!原因其实就是n→∞,这时候n其实不在叫n,而应该叫“坚持”,而又是谁让你看到这坚持以后带来的巨大改变,它就是“极限”,这就是极限的意义,这就是我从高数里感受的情怀,坚持是多么的厉害! 于是趁热打铁赶紧问等于多少,也就是你每天少做一点点点点,结果,你原来1资本变成了 这个损失何其大啊!这不正是人生真谛吗?——贵在坚持!

所以无论是你前面四种的哪一种人,甚至就是一个普通老百姓或妈妈奶奶级别的人,这才是我们要学习和值得去花时间思考和感叹的问题,这也正是我们学生急需从高数课堂里面获得的知识。

三、极限的精神

可能有人要反问我,极限如此厉害,如此有意义,为什么例1和例2解释不了,那么极限的定义都是错的,就别谈它的价值所在了,其实前两问的一个根本原因是n→∞,在实际操作和生活当中∞有吗,或者我反问你,你可以把一个线段给我切成无穷多个点吗?你确定你切完了吗?你真的可以把一把1米的尺子不停的取二分之一吗?你真的可以在阿基米德追乌龟的路上找到∞多个点吗?事实上没有办到!这个时候极限该笑了,你连n→∞都不能给我,你还要我帮你去无限接近,这不是可笑之极!所以我要说的是例1悖论的推翻理由根本就不需要极限登场,哪来的无穷项相加?而同样例二也需要无穷多的9,你有本事给我无穷个9先!再者,你要0.99循环等于1干什么?0.99999999999999999999999的精确度就足够让火箭飞天了。这个时候又会有人反问我那极限的产生就更没意义了?没有意义吗?你难道还没有感受到例3极限的那份坚持?你难道还没没感受到0.9那种永不停息,一直努力地在往自己小数点后面加9的那份执着?你难道不应该感叹极限一直在不停的“无限接近”的这种精神吗?这其实就是“经典数学”。“经典数学”是不用迎合“应用数学”,它不仅可以解释物理现象,它更胜于超越生活的领域。这就是我们学习极限的价值和感受高数情怀的地方!

高数情怀不仅可以在极限体会,它的所有概念,你都应该试着去找找那份情怀的存在,所以我的高数课堂的情怀之路漫漫而道远!希望我能带着越来越多的学生一起走上这条路!

参考文献:

篇5:高数竞赛

1.f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(1)(a,b),使f()g()

(2)(a,b),使f()g()证明:设f(x),g(x)分别在xc,xd处取得最大值M,不妨设cd(此时acdb),作辅助函数F(x)f(x)g(x),往证(a,b),使F()0

令F(x)f(x)g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)F(b)0,① 当cd,由于 F(c)f(c)g(c)Mg(c)0F(d)f(d)g(d)f(d)M0由“闭.连.”零点定理,[c,d](a,b),使f()g()② 当cd,由于F(c)f(c)g(c)f(c)g(d)MM0即(a,b),使f()g()

对F(x)分别在[a,],[,b]上用罗尔定理,1(a,),2(,b),使

在[1,2]上对F(x)在用罗尔定理,F(1)F(2)0,(1,2)(a,b),使F()0,(a,b),使f()g().2.设数列{xn}满足0x1,xn1sinxn,n1,2,

xn存在,并求该极限(1)证明limn

xn1x1n(2)计算lim()nxn

分析:(1)确定{xn}为单调减少有下界即可

1xn,用洛必达法则.(2)利用(1)确定的limn

解:易得0xn1(n2,3,),所以xn1sinxnxn,n(2,3,),即{xn}为

xn存在,并记为limxna,则a[0,1],单调减少有下界的数列,所以 lim nn

对等式xn1sinxnxn,两边令n取极限,得asina,a[0,1],所以

a0,即limxn0.n

lim((2)n



xn1sinxn)lim()

nxnxn

2xn

2xn

令txn

lim(t0

sint)et0t

tlim

ln()t

t

2由于

lim

t0

t

ln(sin)ttsint

ln[1(sin1)]1-1t2sintt洛cost11tt2

limlimlimlimlim t0t0t0t0t03t2t2t2t33t26

xn1xn1

所以lim()e.nxn

3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)0,f(1)1,证明:(1)(0,1),使f()1,(2)存在两个不同点,(0,1),使f()f()1

证:(1)令F(x)f(x)x1,则F(x)在[0,1]上连续,且

F(0)10,F(1)10,由“闭.连.”零点定理,(0,1),使F()0,即f()1

(2)f(x)在[0,],[,1]上都满足拉格朗日中值定理,所以

(0,),(,1),使

f()f(0)f()(0),f(1)f()f()(1),即

f()f()

f()

1

1f()1(1)

111

f()f()

1

1

1

4.设方程xnnx10,其中n为正整数,证明此方程存在唯一的正

实根xn,并证明当1时,级数xn收敛.n1

证:令f(x)xnnx1,则f(x)在(0,)上连续,且

f(0)10,f()()n0

nn

所以由连续函数的零点定理,所给方程在(0,)内有根,又由f(x)n(xn11)0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,)上无根,即所给方程存在唯一的正实根xn.

由上述知,对n1,2,,有0xn,有0xn

1n

1n1n

1n

1n1,n

此外,由1知,级数

收敛,所以由正项级数比较审敛法,知

n1n

x收敛.nn1

5.求lim(cosx)

x0

1ln(1x)

x0ln(1x)

解:lim(cosx)

x0

1ln(1x)

=e

lim

lncosx,其中limln(1x

x0

lncosx)

lim

x0

ln[1(cosx1)]ln(1x)

lim

x0

x22x



(cosx)所以,limx0

ln(1x)

e

6.f(x)在x0的某邻域内具有一阶连续导数,且f(0)0,f(0)0,若

af(h)bf(2h)f(0)在h0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)

0lim

af(h)bf(2h)f(0)af(h)af(0)af(0)bf(2h)bf(0)bf(0)f(0)

lim

h0h0hhaf(h)af(0)bf(2h)bf(0)[(ab)1]f(0)[(ab)1]f(0)limlimlim(ab)f(0)limh0h0h0h0hhhh

ab1

由f(0)0,f(0)0,得,即a2,b1

a2b0

解2:按解1,只要假定f(x)在x0处可导即可,但在题中“f(x)在x0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim

h0

h0

af(h)bf(2h)f(0)

0得 limaf(h)bf(2h)f(0)=0

h0h

即0limaf(h)bf(2h)f(0)(ab1)f(0),由f(0)0,得ab1(1)

af(h)bf(2h)f(0)洛

limaf(h)2bf(2h)(a2b)f(0)且f(0)0,又由0lim

h0h0h

所以 a2b0(2)

由(1)、(2)得a2,b1.2esinx

.7.求lim4x0x1e

解:

2eesinx2esinx

1 limlim44x0x0xx1ee12esinx2esinx

1 limlim44x0xx01ex1e

所以 原式 = 1

8.求lim

x0

143

xx2

.2

x

解1:(泰勒公式)因

xx2[1

1111

xx2o(x2)][1xx2o(x2)]22828(x0)

x2o(x2)~x2

所以

1x2

xx21limlimx0x0x2x24

解2:(洛必达法则)

xx2洛必达limlimx0x0x22x1xx1

limlim x0xx4x0x

篇6:高数学习经验

基于高等数学的一年学习,我很荣幸能与你们在这里分享学习经验。首先,我要谈的是数学的重要性,在大学的教学计划中,读到的学生都会知道,数学课程是你大学四年的最高点,这是毫不夸张地说,如果不为你的数学成绩获得学分,你的学历就不想去了。一般而言,如果你想挂上一个高,重建或痛苦的。所以我希望你在任何情况下,一定要考好数学。我记得学校当老师告诉我,专业课可以挂,但一定不能高。说这不是说,专业课程并不重要,只是为了说明一个好的考试号码的重要性。

事实上,学生身份证号并不难,但我们需要注意一点,到了大学,你还是不能放松。一切都要有一定程度,所有的发挥必须建立在没有问题的前提下学习,学生不能被推迟,因为玩他们的研究。而且,大学其实并不容易。

下面我介绍一些学习方法(厚学网提供):首先,是平凡的,那就是在课前预习。而且,我认为在大学上课前准备似乎比以往任何时候都重要。因为大学的课程不是一般的过程。我希望我们能保持班上比老师快2,练习快比一个老师。最小的是不落(事实上,这个要求不低,但我们一定不能落下)。

二、利用课堂时间,为预习的地方,注意讲课,并为自己的感觉简单的地方,我们可以做一些相关的练习。我们需要注意的是,不了解一些问题,不及时的方式来询问学生或老师(建议老师,但前提是你一定要有一定的思考问题),经常问老师一些问题,你的好处是伟大的,因为考试是你的老师,所以老师对你的话题会不自觉地给你检查发现一些信息。同时,如果测试时出了状况,一个五十多岁的测试结果,如果老师对你有好印象。她可以把你关。

第三、是你需要做的问题,你可以说只要你能把课本习题和老师在课堂上所有的问题都会,考试是完全没有问题的,其他题目都是完全不必要的,这里不喜欢高中做很多其他的练习,但是大房子要注意,这本书的标题是一定难度的。希望我们认真对待,不要气馁,不要理解问题。这里最小的是课本的例子,练习册,一定不能少。学生要获得高分,我们必须多练习(范围是老师和课本),特别是对奖学金的学生。

第四,希望所有在学习的时间要充分,只有临时抱佛脚的考试,数学是没有办法,除非你是天才。强烈建议我们去自习室,养成自学的习惯。宿舍的学习环境不好,如果你想在宿舍里学习,那么你就必须先清理桌子,这样可以很好的提高你的注意力,你应该意识到的原因。

篇7:0601高数试题

一,求x趋向于正无穷时cos(1/x)的x2次方的极限。

二,数列{x(n)}中,x(1)=10,x(n+1)=根号下:(6+x(n))。证明{x(n)}的极限存在,并求 极限。

三,求[1/(n2+n+1)]+[2/(n2+n+2)]+...+[n/(n2+n+n)]在n趋向于无穷大时的极限。

四,求[ln(x2+e的x次方)-x]/[ln(sinx*sinx+e的2x次方)-2x]在x趋向于0时的极限。

五,已知f(x)为连续函数,f(0)=0,将x=0代入f(x)的一阶导数中得到1。求(对f(2x)dx在 0到x的区间上求积)/x2在x趋向于0时的极限。

六,求当n趋向于无穷大时,(对(sinx*sinx)dx/x2在从n到2n的区间上求积)的极限。七,判断下列反常积分的收敛性:对{1-cos[3x/(x2+1)]}dx在从0到正无穷的区间上求积。

八,已知直线L1过点M(1,2,0)和点N(2,1,1)。求直线L1和直线L2:(x-1)/1=y/2=(z+1)/(-1)之间的距离。

九,求(x2*e的x次方)的2005阶导数。

十,求定积分:对max{x2, 1}dx在从-2到5的区间上求积。

十一,求r=asin(两倍西塔)(0<=西塔<=(派)/2)的面积。

十二,x不为0时,f(x)=(|x|的阿尔法次方)*sin(1/x),f(0)=0。当阿尔法等于何值时,f(x)在x=0处可导?

十三,求经过x轴的平面束方程。

十四,当a>ln2-1时,证明:当x>0时,x2-2ax+1

十五,f(x)在[a, b]上连续,在(a, b)上可导,证明:在(a, b)上必存在常数

E,使得3E2[f(b)-f(a)]=(b3-a3)(将E代入f(x)的一阶导数的值)。

篇8:高数学习方法

我的高数的学习方法

其实我觉得大学数学的学习方法跟高中没什么大的区别,只是高中有老师带着,大学高我们自己。我自身感觉我在大学中被动的听课效果不大,因为我上高数二节课下来,不做题根本掌握不到这节课的精妙之处。所以课前要预习,我的观点是既然预习了,还不如自己认真的把这节内容自学了,上课听重点,听自己不懂的地方,就我自身而言,因为我也没有别的什么事,既不是学生会的,也不是班干部,时间较空余,所以我的自学通常要比老师快一个单元,从高中起,我就认为一个观点非常对,数学不做题,根本掌握不住。所以,我同学问我数学怎么学,我就经常说做题,做一定量的习题。这就是我自身的学习经验。可能别人很反对做题的说法,反正我不做题,只听讲根本学不好数学。

高数难点在微积分,对于微积分,有人说过不做几百到题,学不好微积分。对于刚接触积分的我们,积分确实有点抽象,跟导数完全倒着来,很不习惯。经过我自身的学习,我觉得要学好积分,一.基础公式及课本上习题补充的公式一定要熟练,甚至记住。如果记不住,自己一定要会推算。二.要多归纳总结同一类型的题目,比如说,三角函数的积分,无理函数的积分等分别是一大块。他们都有自己独特的解题方法。三.要及时复习习题。对于第一遍做下来,我们可能感觉到很吃力,当我们再次做的时候,就会感觉到很轻松,印象也跟深刻。对于其中的方法也更加熟练了。还有定积分的求法是以不定积分求法为基础的,实质上定积分要转化为不定积分。所以我们要重视不定积分的学习。

对于大学的我们,因为老师是多媒体授课,讲的比较快,所以我们要提前预习一下,如果不预习我们可能就不知道老师在说什么。还有一点因为我们不是数学系的学生,所以课本上的概念不必研究的太深,自己要掌握的是能够灵活运用它就可以了,也就是结论要记住。

对于极限的学习,要知道求极限有多种方法。一.利用重要极限求极限。二.夹逼定理。(用的不多)。三.非常重要—等价无穷下替代求极限.它贯穿整个极限的求法。四。非常重要—洛必达法则求极限。前面的很多公式都能够用它来解释。

对于导数,因为我们高中已经研究的非常深了,所以重点在高阶导数,隐函数,参数导数,以及第四章的应用。概念不抽象,所以较容易掌握课本上的内容,做一定量的习题即可。

篇9:高数学习感想

经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。

我个人认为高数同以前学习的数学的主要差别在于对积分的难易掌握。通过这学期的学习和上学习的积累我也充分体会到了高数的难点。平时的学习积累加上老师对高数的重点说明,我对我个人学习积分部分进行了一段总结如下: 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

(⒈)极限:运用微积分法求极限中利用等价量代换求极限--等价量代换是我们求解极限问题常用的方法 注意无穷小量的代换,熟悉常用的无穷小量代换,能便捷的求出极限注意几个几个常用的无穷小量的代换

X~cosx~sinx~tanx~arcsinx~arctanx~arccosx

X~ln(1+x)例题1:求极限limx01tanx1tanx.xe1解 limx01tanx1tanx

ex1=limx02tanx(e1)(1tanx1tanx)2x(x)x

=limx0(x(x))(1tanx1tanx)2xx(1tanx1tanx)

=limx0

=1.--利用两个重要极限求极限

两个重要极限是:

sinx11(2)lim(1)xe.x0xxxsinxsin1可理解为lim1,而第二种极限其中第一种重要极限limx00x(1)lim11lim(1)xe可以理解为lim(1)e或者lim(1)e.x0x1

12例题2:求lim(cos)n.nn解

211lim[1(cos1)]nlim[1(cos1)]nnnn11n2(cos1)1ncos1n1lim[1(cos1)]nn1111n2[2(2)]12nncos1n

12e1e--利用定积分求极限球极限

--利用微分中值定理求极限 等等多种方法

(⒉)微分学:微分运算法则同积分法则基本相同。在学习运用中微分应用面更广。

dy=y’×dx 微分应用: ①空间曲线的法平面、切线:确定切点(解析几何)、切向(偏导数)②空间曲面的法线、切平面:确定切点(解析几何)、法向(偏导数)③方向导数:方向(单位向量)与梯度的点积 ④极值:用偏导数判断

⑤条件极值:用拉格朗日函数找驻点

其中多元函数微分法包含有:偏导数、全微分、隐函数、方向导数及梯度、多元函数的极值等多项

122xysinx2y2例题3:设函数fx,y0xyxy2222 001)函数在0,0处可微;

2)函数fxx,y在0,0处不连续。解:1)因为

xyfh,0f0,0limhsin 2)fx0,0limh0h0x0y0x0y0limzfx0,0xfy0,0y22limxysin10 h2221xy220

h当x2y20时,fx2xsin12x1cos

x2y2x2y2x2y2111当xy时,limfxlim2xsin2cos2不存在

x0x02xx2xy0所以偏导数fxx,y在0,0处不连续。

微分方程 如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解,还有求特解的情况。

通常需将含高阶的微分方程降阶 化如下微分方程为一阶线性微分方程组:

d2ydyp(x)q(x)y0 例题4:dxdxdy

解:令yy1, y2则

dxdy1d2y1dy2dy2y2 ,2, p(x)y2q(x)y10 dxdxdxdx∴原微分方程化为等价的一阶线性微分方程组:

dy1y2dx dy2p(x)yq(x)y21dx

(⒊)积分学:在这里不多作说明

重积分 关于重积分的求导和应用主要用于曲面面积的求解中 曲面的面积

例题5:设曲面的方程为zfx,y,在xoy面上的投影为Dxy,函数fx,y在D上具有连续偏导数,则曲面的面积为:

ADff221dxdy1fx,yfxyx,ydxyD

22若曲面的方程为xg积为:

2y,z,2在yoz面上的投影为Dyz,则曲面的面ADgg221dydz1fy,zfyzy,zd yzD若曲面的方程为

yhz,x,在zox面上的投影为Dzx,则曲面的面积为:

hh22A1dzdx1fzz,xfxz,xdzxDD

对弧长的曲线积分的计算法

根据对弧长的曲线积分的定义 如果曲线形构件L的线密度为f(x y) 则曲线形构件L的质量为

22Lf(x,y)ds

另一方面 若曲线L的参数方程为

x(t) y(t)(t)

则质量元素为

f(x,y)dsf[(t), (t)]2(t)2(t)dt

曲线的质量为

f[(t), (t)]2(t)2(t)dt

f(x,y)dsf[(t), (t)]2(t)2(t)dt

L

定理 设f(x y)在曲线弧L上有定义且连续 L的参数方程为

x(t) y(t)(t)

其中(t)、(t)在[ ]上具有一阶连续导数 且2(t)2(t)0 则曲线积分Lf(x,y)ds存在 且

通过本次整理高数学习心得相当于我对前段时间的高数学习也进行了一次总结。感受良多获益匪浅。当然,学好高数并非那么简单,但探索其中的奥秘确实非有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数。

Lf(x,y)dsf[(t),(t)]2(t)2(t)dt(<)

篇10:高数学习心得

有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

极限是基础也是学好后面知识的工具,后面的内容大部分都是建立在极限的基础之上,所以要对它掌握的深度就不用多说了吧!对一元积分的理解尤为重要,不要以为会做题就行了,还要进一步掌握其中的奥妙,到了多元积分你就会得心应手触类旁通啦,其实高数不难的,我觉得有高中的理科思维接受起来应该比较容易,不像线代是新的知识,理解起来有点抽象,还有就是你如果是学理工的那就辛苦点吧,多研究研究高数,把它弄通对专业课的积极作用也是不可小视的。

大部分同学都害怕高数,高数学习起来确实是不太轻松。其实,只要有心,高数并不像想象中的那么难。虽然有很多人比我学得更好,但在这里我也谈谈自己关于高数学习的一些拙见吧。

首先,不能有畏难情绪。很多人说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。所以,我觉得要学好高数,一定不能有畏难的情绪。当我们有信心去学好它时,就走好了第一步。

其次,课前预习很重要。每个人的学习习惯可能不同,有些人习惯预习,有些人觉得预习不适合自己。但对我而言,学习高数,预习是必要的。每次上新课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的先自己理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。另外,我一般在预习后会试着做一下课后题,只是试着做一两道简单的题目,找找感觉,虽然可能做不出,但那样会有助于理解。

然后,要把握课堂。我认为,把握好课堂对高数学习是很关键的。课堂上老师讲的每一句话都有可能是很有用的,如果错过了就可能会使自己以后做某些题时要走很多弯路,甚至是死路。老师在上课时会详细地讲解知识点,所以对于我们的理解是很有帮助的,有些知识点,我们课余看一小时,也许还不如听老师讲一分钟理解得快。并且,老师还会讲到一些要注意的但书上没有的东西,所以课堂上最好尽量集中精神听讲,不要错过了某些有价值的东西。

此外,要以教材为中心。虽然说“尽信书不如无书”,但是,就算教材不是完美的,我们还是要以教材为中心去学习高数。教材上包含了我们所要掌握的知识点,而那些知识点是便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。并且,书上很多原理的证明过程体现的数学思想对于我们的思维训练是很有益处的。我觉得,只有将教材上的基础知识融会贯通了,把基础打好了,知识才能稳固。也许,将书上的知识都真正理解透彻了,能够举一反三了,那么不用再看参考书,不用做习题去训练,都能以不变应万变了。当然,做到这一点不容易,我也没有做到。但是,把教材内容尽可能地掌握好,是绝对益处多多的。

最后,坚持做好习题。做题是必要的,但搞题海战术就不必要了。就我的体会而言,如果只是想考试考好,不想去深入研究它的话,做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题就能解决很多同类型的题了。同时,做题不能只是自己一个人冥思苦想,有时候自己的思维走进了死胡同是很难走出来的,当自己做不出来的时候,不妨问问老师或者同学,也许就能豁然开朗了。对于做完的题目,觉得很有价值的,最好是把它摘抄到笔记本上,然后记录一下解题的要点,分析一下题目所体现的思维方式等等,平时有时间就翻看一下,加深一下记忆。

上一篇:工商局计划生育工作汇报下一篇:只待春雷第一声作文