大学高数学习方法

2022-06-27

第一篇:大学高数学习方法

高数学习方法

我的高数的学习方法

其实我觉得大学数学的学习方法跟高中没什么大的区别,只是高中有老师带着,大学高我们自己。我自身感觉我在大学中被动的听课效果不大,因为我上高数二节课下来,不做题根本掌握不到这节课的精妙之处。所以课前要预习,我的观点是既然预习了,还不如自己认真的把这节内容自学了,上课听重点,听自己不懂的地方,就我自身而言,因为我也没有别的什么事,既不是学生会的,也不是班干部,时间较空余,所以我的自学通常要比老师快一个单元,从高中起,我就认为一个观点非常对,数学不做题,根本掌握不住。所以,我同学问我数学怎么学,我就经常说做题,做一定量的习题。这就是我自身的学习经验。可能别人很反对做题的说法,反正我不做题,只听讲根本学不好数学。

高数难点在微积分,对于微积分,有人说过不做几百到题,学不好微积分。对于刚接触积分的我们,积分确实有点抽象,跟导数完全倒着来,很不习惯。经过我自身的学习,我觉得要学好积分,一.基础公式及课本上习题补充的公式一定要熟练,甚至记住。如果记不住,自己一定要会推算。二.要多归纳总结同一类型的题目,比如说,三角函数的积分,无理函数的积分等分别是一大块。他们都有自己独特的解题方法。三.要及时复习习题。对于第一遍做下来,我们可能感觉到很吃力,当我们再次做的时候,就会感觉到很轻松,印象也跟深刻。对于其中的方法也更加熟练了。还有定积分的求法是以不定积分求法为基础的,实质上定积分要转化为不定积分。所以我们要重视不定积分的学习。

对于大学的我们,因为老师是多媒体授课,讲的比较快,所以我们要提前预习一下,如果不预习我们可能就不知道老师在说什么。还有一点因为我们不是数学系的学生,所以课本上的概念不必研究的太深,自己要掌握的是能够灵活运用它就可以了,也就是结论要记住。

对于极限的学习,要知道求极限有多种方法。一.利用重要极限求极限。二.夹逼定理。(用的不多)。三.非常重要—等价无穷下替代求极限.它贯穿整个极限的求法。四。非常重要—洛必达法则求极限。前面的很多公式都能够用它来解释。

对于导数,因为我们高中已经研究的非常深了,所以重点在高阶导数,隐函数,参数导数,以及第四章的应用。概念不抽象,所以较容易掌握课本上的内容,做一定量的习题即可。

大学准备一个习题本很有必要的,对于期末考试我们就知道它的重要性了,因为数学你复习,看课本没有多大效果,主要是基本的习题及解题思路。

第二篇:高数的学习方法

献给在高数种迷茫的兄弟姐妹们,学习高等数学要有一种精神,用大数学家华罗庚的话来说,就是要有“学思契而不舍”的精神。由于高等数学自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法,分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,契而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,介绍一点学习高等数学的做法,供同学们参考。

第一,“学思习”是学习高等数学大的模式。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考,从厚到薄的学习数学的方法,值得我们借鉴。所谓习,就高等数学而言,就是做练习。这一点数学有自身的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函求导法及积分法关系到今后个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一步一个脚印,扎扎实实地学和练,成功的大门一定会向你开放。

第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其他参考书就会迎刃而解了。

第五,注意学习效率。数学的方法和理论的掌握,就实践经验表明常常需要频率大于4否则做不到熟能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”温故而知新”都有是指学习要经过反复多次。高等数学的记忆,必建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,可是“学习有险阻,苦战能过关“。”人生能有几回搏?“人生总能搏几回!”每个学子应当而且能与高等数学“搏一搏”。

第三篇:高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种

极限定义法 泰勒展开法。 洛必达法则。

等价无穷小和等价无穷大。

极限的求法 1. 直接代入法

适用于分子、分母的极限不同时为零或不同时为

例 1. 求

1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的,

是一般极限的一种)

2解决极限的方法如下

1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。

(x趋近无穷的时候还原成无穷小)

2落笔他 法则

首先他的使用有严格的使用前提!!!!!!

必须是 X趋近 而不是N趋近!!!!! 必须是 函数的导数要存在!!!!!!!! 必须是 0比0 无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况

1 0比0 无穷比无穷 时候 直接用

2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了

3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)

E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!!!!!!

看上去复杂处理很简单 !!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法 ,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!!!!

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式。)

第四篇:高数中求极限的16种方法

高数中求极限的16种方法——好东西 首先对极限的总结如下: 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致

一、极限分为一般极限 ,还有数列极限,(区别在于数列极限发散,是一般极限的一种)

二、求极限的方法如下: 1 .等价无穷小的转化, (一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)

2.罗比达法则 (大题目有时候会有暗示,要你使用这个方法)

首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件

还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 注意:罗比达法则分为3种情况

0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3.泰勒公式(含有e的x次方的时候 ,尤其是含有正余弦的加减的时候要特别注意 !!!!)

E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助 4.面对无穷大比上无穷大形式的解决办法 取大头原则,最大项除分子分母!!!!!!!!!!! 5.无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!! 6.夹逼定理(主要对付数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7.等比等差数列公式应用(对付数列极限,q绝对值符号要小于1) 8.各项的拆分相加(来消掉中间的大多数,对付的还是数列极限) 可以使用待定系数法来拆分化简函数

9.求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化

10.两个重要极限的应用。第一个是X趋近0时候的sinx与x比值 。 第二个是趋近无穷大 无穷小都有对有对应的形式(第2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用第2 个重要极限)

11.还有个方法,非常方便的方法,就是当趋近于无穷大,不同函数趋近于无穷的速度不一样!

x的x次方>x!>指数函数>幂数函数>对数函数(画图也能看出速率的快慢) !!!!!! 当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 12. 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13.假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14.还有对付数列极限,走投无路的时候可以考虑转化为定积分。 一般是从0到1的形式 。

15.单调有界的性质

对付递推数列时候使用,证明单调性!!!!!! 16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减个值)加减f(x)的形式,看见了要注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!)

一,求极限的方法横向总结:

1.带根式的分式或简单根式加减法求极限:

1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置上) 2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式(常用到

2.分子分母都是有界变量与无穷大量加和求极限:分子与分母同时除以该无穷大量凑出无穷小量与有界变量的乘积结果还是无穷小量。 3.等差数列与等比数列和求极限:用求和公式。

4.分母是乘积分子是相同常数的n项的和求极限:列项求和

5.分子分母都是未知数的不同次幂求极限:看未知数的幂数,分子大为无穷大,分子小为无穷小或须先通分。 6.运用重要极限求极限(基本)。 7.乘除法中用等价无穷小量求极限。

8.函数在一点处连续时,函数的极限等于极限的函数。 9.常数比0型求极限:先求倒数的极限。 10.根号套根号型:约分,注意别约错了。

11.三角函数的加减求极限:用三角函数公式,将sin化cos 二,求极限的方法纵向总结: 1.未知数趋近于一个常数求极限:分子分母凑出(x-常数)的形式,然后约分(因为x不等于该常数所以可以约分)最后将该常数带入其他式子。 2.未知数趋近于0或无穷:1)将x放在相同的位置 2)用无穷小量与有界变量的乘积 3)2个重要极限

4)分式解法(上述)

第五篇:高数_第1章_极限计算方法总结

极限计算方法总结

一、极限定义、运算法则和一些结果 1.定义:

数列极限、函数极限,课本42页的表格必须认真填写并掌握。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:lim10;lim(3x1)5;limqn0,当q1等。 2x2n(n1)n定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则

定理1 已知 limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在, 且(1)lim[f(x)g(x)]AB(2)limf(x)g(x)AB

(3)limf(x)A,(此时需B0成立)

说明:极限号下面的极限过程是一致的;同g(x)B时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限

sinx(11)xe

1 (2) lim(1x)xe ; lim(1) limxxx0x0x说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。

(2)一定注意两个重要极限成立的条件。

例如:lim1sin3x1,lim(12x)x0x03x12xe,lim(13)e;等等。

xxx34.等价无穷小

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当x0时,下列函数都是无穷小(即极限是0),且相互等价,即有:

x~sinx~tanx~arcsinx~arctanx~ln(1x)~ex1 。

说明:当上面每个函数中的自变量x换成g(x)时(g(x)0),仍有上面的等价 关系成立,例如:当x0时,

定理4 如果函数

e3x1 ~ 3x ;ln(1x2) ~ x2。

f(x),g(x),f1(x),g1(x)都是xx0时的无穷小,且f(x)~f1(x),

f1(x)f1(x)f(x)g(x)~g1(x),则当lim存在时,lim也存在且等于lim。

xx0g(x)xx0g(x)xx0g(x)115.连续性

定理5 一切连续函数在其定义去间内的点处都连续,即如果x0是函数f(x)的定义去间内

的一点,则有limxxf(x)f(x0) 。求极限的一个方法。

06.极限存在准则

定理6(准则1) 单调有界数列必有极限。

定理7(准则2) 已知{xn},{yn},{zn}为三个数列,且满足:

(1) ynxnzn,(n1,2,3,)(2) limyna,limznnan

则极限limxn一定存在,且极限值也是a ,即limxannn。

二、求极限方法举例

1. 用初等方法变形后,再利用极限运算法则求极限

例1 lim3x12x1x1

解:原式=lim(3x1)222x1(x1)(3x12)lim3x3x1(x1)(3x12)34 。 注:本题也可以用洛比达法则。 例2 limnn(n2n1)

n解:原式=limn[(n2)(n1)]分子分母同除以nn2n1lim3n312112nn例3 lim(1)n3nn2n3n

上下同除以3n(1)n1解:原式lim3n1 (2。 3)n12. 利用函数的连续性(定理6)求极限 1例4 limx2exx2

1解:因为x是函数f(x)x2ex02的一个连续点,

1 所以

原式=22e24e 。

3. 利用两个重要极限求极限 例5 lim1cosxx03x2

xx2sin22lim21lim解:原式=x0x0x26 。 3x212()22sin2注:本题也可以用洛比达法则(第三章) 例6

2xlim(13sinx)

x016sinx3sinxx13sinx6sinxx解:原式=lim(13sinx)x0lim[(13sinx)x0]e6 。

例7 lim(nn2n) n1解:原式=lim(1n3)n1n13n3n1lim[(1n3)n1n13]3nn1e3 。

4. 利用定理2求极限

2例8 limxsinx01 x解:原式=0 (定理2的结果)。

5. 利用等价无穷小代换(定理4)求极限

例9 limx0xln(13x)2

arctan(x)22x0

解:x0时,ln(13x)~3x,arctan(x)~x, 原式=limx3x3 。 2xexesinx例10 lim

x0xsinxesinx(exsinx1)esinx(xsinx)lim1 。 解:原式=limx0x0xsinxxsinx注:下面的解法是错误的:

(ex1)(esinx1)xsinxlim1 。

原式=limx0x0xsinxxsinx

正如下面例题解法错误一样:

tanxsinxxxlimlim0 。

33x0x0xx 3

例11

1tan(x2sin)x limx0sinx2xsin解:当x0时,111是无穷小,tan(x2sin)与x2sin等价, xxxx2sin

所以,

原式=limx01xlimxsin10 。

(最后一步用到定理2)

x0xx5. 利用极限存在准则求极限

例20 已知x1xn 2,xn12xn,(n1,2,),求limnn解:易证:数列{xn}单调递增,且有界(0

xn存在,limxna。对已知的递推公式 xn12xnn两边求极限,得:

a2a,解得:a2或a1(不合题意,舍去)

所以 limxn2。

n例21 lim(n1n1n21n21211nn2)

1nn2解: 易见:nn2n12n22nn12

因为 limnnnn21,limnnn11221

1nn2所以由准则2得:lim(n1n12n2)1 。

上面对求第一章极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。另外,求极限还有其它一些方法,如用洛必达、定积分求极限等,后面再作介绍。

上一篇:大学青协工作设想下一篇:大学社联个人简介