导数法证明不等式

2022-06-27

第一篇:导数法证明不等式

导数压轴题 导数与数列不等式的证明

导数与数列不等式的证明

例1.已知函数f(x)alnxax3aR (1)讨论函数f(x)的单调性; (2)证明:112131nln(n1)(nN*) (3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5lnn1n122324252n22nn2,nN* (5)证明:ln24ln34ln44ln54lnn4(n1)224344454n44nn2,nN* ln22ln32(6)求证:lnn2n12n12232...n22n1n2,nN (7)求证:122114211182...1122nenN

例2.已知函数f(x)lnxx1。 (1)求f(x)的最大值; nnn(2)证明不等式:12nennne1nN*

例3.已知函数fxx2lnx1

(1)当x0时,求证:fxx3;

(2)当nN时,求证:nf1111151 k1k2333...n342nn1

例4.设函数f(x)x2mln(x1)m0

(1)若m12,求f(x)的单调区间; (2)如果函数f(x)在定义域内既有极大值又有极小值,求实数m的取值范围; (3)求证:对任意的nN*,不等式lnn1nn1n3恒成立。

例5.已知函数f(x)ln(x1)k(x1)1(kR), (1)求函数f(x)的单调区间; (2)若f(x)0恒成立,试确定实数k的取值范围; (3)证明:ln23ln34lnnn1n(n1)4nN,n1.

导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 1 / 2 例6.已知函数f(x)axbc(a0)的图像在点(1,f(1))处的切线方程为yx1。 x(1)用a表示出b,c;

(2)若f(x)lnx在[1,)上恒成立,求a的取值范围; (3)证明:1

例7.已知函数f(x)2alnxx21。

(1)当a1时,求函数f(x)的单调区间及f(x)的最大值; (2)令g(x)f(x)x,若g(x)在定义域上是单调函数,求a的取值范围; 111nln(n1)(n1). 23n2(n1)3n2n222222(3)对于任意的n2,nN,试比较与的ln2ln3ln4ln5lnnn(n1)*大小并证明你的结论。

1ln(x1)(x0) x(1)函数f(x)在区间(0,)上是增函数还是减函数?证明你的结论。

k(2)当x0时,f(x)恒成立,求整数k的最大值; x1(3)试证明:(112)(123)(134)(1n(n1))e2n3(nN*). 例8.已知函数f(x)

例9.已知函数fxxalnxa0 (1)若a1,求fx的单调区间及fx的最小值; (2)若a0,求fx的单调区间; ln22ln32lnn2n12n1(3)试比较22...2与n2,nN的大小,并证明。 23n2n1

例10.已知函数fxlnx,gxxaaR, x(1)若x1时,fxgx恒成立,求实数a的取值范围。 (2)求证:

例11.已知函数fxlnxxax

2ln2ln3lnn1n2,nN 34n1n(1)若函数fx在其定义域上为增函数,求a的取值范围; (2)设an1

例12.设各项为正的数列an满足a11,an1lnanan2,nN.求证:an2n1. 122Lanlnn12n nN,求证:3a1a2...ana12a2n导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 2 / 2

第二篇:构造函数,利用导数证明不等式

湖北省天门中学薛德斌2010年10月

1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).

2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.

求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).

3、已知m、nN,且mn,求证:(1m)(1n).

nm

4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例

5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x

1、x2,且

2x1x2,证明:fx2

12In2.

4a0,b0,例

6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x

11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例

7、(1)已知x0,求证:

第三篇:用导数证明函数不等式的四种常用方法

本文将介绍用导数证明函数不等式的四种常用方法.

()x0). 例

1证明不等式:xln(x1证明

设f(x)xln(x1)(x0),可得欲证结论即f(x)f(0)(x0),所以只需证明函数f(x)是增函数. 而这用导数易证:

f(x)1所以欲证结论成立.

10(x0) x1注

欲证函数不等式f(x)g(x)(xa)(或f(x)g(x)(xa)),只需证明f(x)g(x)0(xa)(或f(x)g(x)0(xa)). 设h(x)f(x)g(x)(xa)(或h(x)f(x)g(x)(xa)),即证h(x)0(xa)(或h(x)0(xa)). 若h(a)0,则即证h(x)h(a)(xa)(或h(x)h(a)(xa)). 接下来,若能证得函数h(x)是增函数即可,这往往用导数容易解决. 例

2证明不等式:xln(x1). 证明

设f(x)xln(x1)(x1),可得欲证结论即f(x)0(x1). 显然,本题不能用例1的单调性法来证,但可以这样证明:即证f(x)xln(x1)(x1)的最小值是0,而这用导数易证:

f(x)11x(x1) x1x1

所以函数f(x)在(1,0],[0,)上分别是减函数、增函数,进而可得

f(x)minf(1)0(x1)

所以欲证结论成立. 注

欲证函数不等式f(x)()g(x)(xI,I是区间),只需证明f(x)g(x)()0x. (I设h(x)f(x)g(x)(xI),即证h(x)()0(xI),也即证h(x)min()0(xI)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.

bex1例3

(2014年高考课标全国卷I理科第21题)设函数f(x)aelnx,曲线

xxyf(x)在点(1,f(1))处的切线为ye(x1)2.

(1)求a,b;

(2)证明:f(x)1.

x解

(1)f(x)aelnxaxbx1bx1e2ee. xxx题设即f(1)2,f(1)e,可求得a1,b2.

x(2)即证xlnxxe21(x0),而这用导数可证(请注意1): ee设g(x)xlnx(x0),得g(x)ming. 设h(x)xex1e1e12(x0),得h(x)maxh(1).

ee注

i)欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),而这用导数往往可以解决. 欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),或证明f(x)ming(x)max(xI)且两个最值点不相等,而这用导数往往也可以解决. ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学

(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:

已知函数f(x)xlnx,g(x)xax3. (1)求函数f(x)在[t,t2](t0)上的最小值;

(2)对一切x(0,),2f(x)g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,),都有lnx212成立. xeexln x例4 (2013年高考北京卷理科第18题)设L为曲线C:y=在点(1,0)处的切线.

x(1)求L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方. 解 (1)(过程略)L的方程为y=x-1. lnxx1(当且仅当x1时取等号). xx2-1+ln xlnx(x0). 设g(x)x1,得g′(x)=

x2x(2)即证当01时,x2-1>0,ln x>0,所以g′(x)>0,得g(x)单调递增.

所以g(x)ming(1)0,得欲证结论成立. (2)的另解 即证仅当x1时取等号). 设g(x)xxlnx,可得g(x)2lnxx1(当且仅当x1时取等号),也即证x2xlnx0(当且x2x1(x1)(x0). x进而可得g(x)ming(1)0,所以欲证结论成立. (2)的再解 即证lnxx1(当且仅当x1时取等号),也即证lnxx2x(当且仅当xx1时取等号).

2如图1所示,可求得曲线ylnx与yxx(x0)在公共点(1,0)处的切线是yx1,所以接下来只需证明

lnxx1,x1x2x(x0)(均当且仅当x1时取等号)

前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.

图1

例5

(2013年高考新课标全国卷II理21(2)的等价问题)求证:eln(x2). 分析

用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法. 设f(x)e(x2),g(x)ln(x2)(x2),我们想办法寻找出一个函数h(x),使得f(x)h(x)g(x)(x2)且两个等号不是同时取到. 当然,函数h(x)越简洁越好. 但h(x)不可能是常数(因为函数g(x)ln(x2)(x2)的值域是R),所以我们可尝试h(x)能否为一次函数,当然应当考虑切线. 如图2所示,可求得函数f(x)e(x2)在点A(0,1)处的切线是yx1,进而可得f(x)h(x)(x2);还可求得函数g(x)ln(x2)(x2)在点B(1,0)处的切线也是yx1,进而可得h(x)g(x)(x2).

xxx

图2 进而可用导数证得f(x)h(x)g(x)(x2)且两个等号不是同时取到,所以欲证结论成立. 当然,用例2的方法,也可给出该题的证明(设而不求):

x设f(x)eln(x2),得f(x)ex1(x2). x2可得f(x)是增函数(两个增函数之和是增函数),且1fe20,f(1)e10,所以函数g(x)存在唯一的零点x0(得2(x02)ex01,x02ex0,ex01),再由均值不等式可得 x02f(x)minf(x0)ex0ln(x02)11lnex0x0220x02x02

(因为可证x01)所以欲证结论成立. x例6 求证:elnx2.

x证法1

(例5的证法)用导数可证得ex1(当且仅当x0时取等号),x1lnx2(当且仅当x1时取等号),所以欲证结论成立.

x证法2

(例2的证法)设f(x)elnx,得f(x)ex1(x0). x可得f(x)是增函数且g11110,g(0)0,所以函数g(x)存在唯2e1.52一的零点x0(得ex01,x0ex0),再由均值不等式可得 x011lnex0x02(因为可证x01)x0x0 f(x)minf(x0)ex0lnx0所以欲证结论成立. 注

欲证函数不等式f(x)g(x)(xI,I是区间),只需寻找一个函数h(x)(可以考虑曲线yh(x)是函数yf(x),yg(x)的公切线)使得f(x)h(x)g(x)(x2)且两个等号不是同时取到,而这用导数往往容易解决. 下面再给出例5和例6的联系.

对于两个常用不等式exx1,lnxx1,笔者发现yex与ylnx互为反函数,yx1与yx1也互为反函数,进而得到了本文的几个结论.

定理

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x)是增函数,f(s)g(s)恒成立,则f1(t)g1(t)恒成立;

11(2)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(3)若f(x)是增函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(4)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立. 证明

下面只证明(1),(4);(2),(3)同理可证. (1)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),gt. ()0由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是增函数,得

f1(x)也是增函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. (4)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),t. ()0g由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是减函数,得

f1(x)也是减函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. 推论1

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x),g(x)都是增函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立; (2)若f(x),g(x)都是减函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立. 证明

(1)由定理(1)知“”成立.下证“”:

因为g(x)是增函数,g1(t)f1(t)恒成立,g1(x),f1(x)的反函数分别是g(x),f(x),所以由“”的结论得g(s)f(s)恒成立,即f(s)g(s)恒成立. (2)同(1)可证.

推论2

把定理和推论1中的“,”分别改为“,”后,得到的结论均成立. (证法也是把相应结论中的“,”分别改为“,”.)

在例5与例6这一对姊妹结论“eln(x2),lnxe2”中ye与ylnx互为

x反函数,yln(x2)与ye2也互为反函数,所以推论2中的结论“若f(x),g(x)都11是增函数,则f(s)g(s)恒成立f(t)g(t)恒成立”给出了它们的联系.

xxx

第四篇:赋值法证明不等式

赋值法证明不等式的有关问题

1、 已知函数f(x)=lnx

(1)、求函数g(x)(x1)f(x)2x2(x1)的最小值;

(2)、当0

222a(ba). a2b

22、已知函数f(x)=xlnx, g(x)= axx(aR)

(1)求函数f(x)的单调区间和极值点;

(2)求使f(x)g(x)恒成立的实数a的取值范围;

(3)求证:不等式ln(e1)nn1(nN)恒成立 ne

3、设函数f(x)axn(1x)b (x0),n为正整数,a,b为常数. 曲线yf(x)在(1,f(1)) 处 的切线方程为xy1.(Ⅰ)求a,b的值;

(Ⅱ)求函数f(x)的最大值;

(Ⅲ)证明:f(x)1 ne

4、已知函数f(x)=lnx-x+

1(1)、求函数f(x)的最大值;

111ln(1n),n. 23n

2x

5、已知函数f(x)=alnx1, x1(2)、求证: 1

(1)、若函数f(x)在单调递增,求实数a的取值范围;

12lnx12x4,x2; x

111111(3)、求证:lnn1(nN,n2) . 462n2n1(2)、当a=2时,求证:1

6、已知函数f(x)eax1(a0)

(1)求f(x)得最小值;

(2)若f(x)0对任意的xR恒成立,求a的取值范围; x

e12n1n(3)在(2)的条件下,证明:(其中nN) nnnne1

8、已知函数f(x)=eaxa, xnnnn

(1)、若a0,f(x)0对一切实数x都成立,求实数a的取值范围。

(2)、设g(x)f(x)a,且A(x1,y1),B(x2,y2)(x1x2)是曲线yg(x)上任意两点,xe

若对于任意的a1,直线AB的斜率恒大于常数m,求实数m的取值范围。

(3)、求证:135(2n1)

2、已知函数f(x)(xa)7blnx1,其中a,b是常数,且a0,

(1)若b1时,f(x)在区间上单调递增,求a的取值范围; 2nnnn(2n)n(nN). e

14a

2(2)当b时,讨论f(x)的单调性; 7

(3)设n是正整数,证明ln(1n)(1

5、已知函数f(x)=xlnx-axx(aR)

(1)若函数f(x)在处取得极值,求a的值;

(2)若函数f(x)的图像在直线的图像的下方,求a的取值范围;

(3)求证:ln(234n)n1(nN).

解:(Ⅰ)因为f(1)b,由点(1,b)在xy1上,可得1b1,即b0.

因为f(x)anxn1a(n1)xn,所以f(1)a.

又因为切线xy1的斜率为1,所以a1,即a1. 故a1,b0.

(Ⅱ)由(Ⅰ)知,f(x)xn(1x)xnxn1,f(x)(n1)xn1(

令f(x)0,解得x

在(0,nx).n12n27111111)7(1). 22223n23nnn,即f(x)在(0,)上有唯一零点x0.n1n1n)上,f(x)0,故f(x)单调递增;n1

n,)上,f(x)0,f(x)单调递减.n1而在(

nnnnnn

故f(x)在(0,)上的最大值为f(.)()(1)n1n1n1(n1)n1

111t1(t0),则(t)2=2 (t0).tttt

在(0,1)上,(t)0,故(t)单调递减;

而在(1,)上(t)0,(t)单调递增.(Ⅲ)令(t)lnt1+

故(t)在(0,)上的最小值为(1)0. 所以(t)0(t1),1即lnt1(t1).t

令t11n11n1n1,得ln,即ln()lne,nnn1n

nn1n1n1所以(.)e,即(n1)n1nen

nn1由(Ⅱ)知,f(x),故所证不等式成立.(n1)n1ne

已知函数f(x)alnxax3.(aR)

(1)讨论函数f(x)的单调性;

(2)若函数f(x)在点(2,f(2))处的切线的倾斜角为450,且方程f(x)m至少有一个实根,

求实数m的取值范围;

(3)求证:ln2ln3lnn1(n2,nN). 23nn

第五篇:放缩法证明不等式

放缩法证明不等式不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如

(2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

2.放缩法

欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

上一篇:电视广告播出合同下一篇:读书社与我的故事