用放缩法证明数列求和中的不等式

2024-04-09

用放缩法证明数列求和中的不等式(通用8篇)

篇1:用放缩法证明数列求和中的不等式

用放缩法证明数列求和中的不等式

近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放缩度,并能自我调整,因此应加强此类题目的训练。

高考题展示:

(2006年全国卷I)设数列an的前n项的和

Sn412an2n1,n1,2,3, 333

n32n

,证明:Ti(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn,n1,2,3,2Sni1

nn解:易求an42(其中n为正整数)

4124122Snan2n14n2n2n12n112n13333333

nn232311Tnn1Sn2212n122n12n11

所以:

T22ii1n3113112n112(2006年福建卷)已知数列an满足a11,an12an1(nN*).(I)求数列an的通项公式;(II)证明:an1a1a2n...n(nN*).23a2a3an12解:(I)易求an221(nN*).ak2k12k11k1,k1,2,...,n,(II)证明:ak1212(2k1)22aaan12...n.a2a3an12ak2k11111111k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232kaaan1111n11n112...n(2...n)(1n), a2a3an12322223223an1aan12...n(nN*).23a2a3an12

111115S,证明:nn2122232n23点评:两个高考题向我们说明了数列求和中不等关系证明的两种方法:1.每一项转化为两项差,求和后消去中间项(裂项法)与放缩法的结合;2.用放缩法转化为等比数列求和。题1.已知数列an中an

放缩一:1111(n2)2nn(n1)n1n

***()()222222222123n123455667n1n***238924005111.=136400n36400360036003Sn

点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节? 放缩二:111111(),(n2)n2n21(n1)(n1)2n1n1

***()()122232n2122222435n2nn1n***5()().4223nn142233Sn

点评:此种方法放大幅度较

(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近原式? 放缩三:1111111()2(),(n1)211111n2n12n1n2(n)(n)nn42222

Sn111111111111512()12()122232n235572n12n132n13本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。

n2n

题2.已知数列an中ann,求证:ai(ai1)3.21i1

2i12i2i111方法一:ai(ai1)i.iiiii1i1i2121(21)(22)(21)(21)2121

ai(ai1)

i1n

211111111()()()33.121223n1nn(21)21212121212121

方法二:

2i1111ai(ai1)i.(i2)(21)22i22i22i2i22i1

2i22

11111ai(ai1)22n12(1n1)3n13.22222i1

点评:方法一用的是放缩法后用裂项法求和;方法二是通过放缩转化为等比数列求和,从数值上看方法二较方法一最后结果的精确度高(3

明的结果3。

同类题训练:

1.已知数列a

n中an,Sn是数列的前n

项和,证明:1)Sn n113),但都没超过要证nn12122.点列P(2n,23n)到直线系ln:22nxy2n0中相应直线的距离为dn,求证:d1d2dn1.

篇2:用放缩法证明数列求和中的不等式

湖北省天门中学薛德斌

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.

一.先求和后放缩

例1.正数数列an的前n项的和Sn,满足2Snan1,试求:

(1)数列an的通项公式;

(2)设bn11,数列bn的前n项的和为Bn,求证:Bn 2anan

1解:(1)由已知得4Sn(an1)2,n2时,4Sn1(an11)2,作差得:

22所以(anan1)(anan12)0,又因为an为正数数4anan2anan12an1,列,所以anan12,即an是公差为2的等差数列,由2S1a11,得a11,所以an2n1

(2)bn11111(),所以 anan1(2n1)(2n1)22n12n1

Bn111111111(1) 23352n12n122(2n1)

2注:一般先分析数列的通项公式.如果此数列的前n项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{an}满足条件an1anfn)求和或者利用分组、裂项、倒序相加等方法来求和.

二.先放缩再求和

1.放缩后成等差数列,再求和

例2.已知各项均为正数的数列{an}的前n项和为Sn,且anan2Sn.2an2an12(1)求证:Sn;

4(2)



解:(1)在条件中,令n1,得a1a12S12a1,a10a11,又由条件

22anan2Sn有an1an12Sn1,上述两式相减,注意到an1Sn1Sn得

(an1an)(an1an1)0an0an1an0∴an1an

1所以,an11(n1)n,Sn

n(n1)

n(n1)1n2(n1)2anan1

所以Sn 

2224

(2)因为n

n(n1)n1,所以

n2

n(n1)n1,所以 

S1S2Snn23n22

Sn112

1223n(n1)23n1

 

222222

S2Sn

1222

n2n(n1)22

Sn2



;S1

2.放缩后成等比数列,再求和

例3.(1)设a,n∈N*,a≥2,证明:a2n(a)n(a1)an;

(2)等比数列{an}中,a1,前n项的和为An,且A7,A9,A8成等差数列.设

a1bnn,数列{bn}前n项的和为Bn,证明:Bn<.

31an

解:(1)当n为奇数时,an≥a,于是,a

2n

(a)nan(an1)(a1)an.

当n为偶数时,a-1≥1,且an≥a2,于是

a2n(a)nan(an1)(a21)an(a1)(a1)an(a1)an.

(2)∵A9A7a8a9,A8A9a9,a8a9a9,∴公比q

a91

.a82

∴an(). bn

n

1n11()n

.nnn

4(2)32

(12)

11111(11)1.∴Bnb1b2bn

1323223332n32n12

3.放缩后为差比数列,再求和

例4.已知数列{an}满足:a11,an1(1

n)an(n1,2,3).求证: 2n

an1an3

n1

n1

n)an,所以an1与an同号,又因为a110,所以an0,n2

证明:因为an1(1即an1an

n

an0,即an1an.所以数列{an}为递增数列,所以ana11,2nnn12n1

即an1annann,累加得:ana12n1.

22222

12n1112n1

令Sn2n1,所以Sn23n,两式相减得:

2222222

11111n1n1n1Sn23n1n,所以Sn2n1,所以an3n1,22222222

n1

故得an1an3n1.

4.放缩后为裂项相消,再求和

例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m时Pi>Pj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n1)n(n1)321的逆序数为an,如排列21的逆序数a11,排列321的逆序数

a36.

(1)求a4、a5,并写出an的表达式;(2)令bn

ana

n1,证明2nb1b2bn2n3,n=1,2,….an1an

n(n1)

.2解(1)由已知得a410,a515,ann(n1)21

(2)因为bn

anann2nn2

n122,n1,2,,an1ann2nn2n

所以b1b2bn2n.nn2222,n1,2,,n2nnn2

11111

1)] 所以b1b2bn2n2[()()(

1324nn2

222n3.=2n3

n1n2

又因为bn

综上,2nb1b2bn2n3,n1,2,.注:常用放缩的结论:(1)

1111111

2(k2)kk1k(k1)kk(k1)k1k

2kk1

1k

2kk1

2(1k1

1k)(k2)

(2).2(1k

1k1)

在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论

n23n22、n(n1)22

为等差数列求和结果的类型,则把通项放缩为等差数

11)为等比数列求和结果的类型,则把通n

n1

项放缩为等比数列,再求和即可;如例4要证明的结论3n1为差比数列求和结果的类

22型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论2n3为n1n2

列,再求和即可;如例3要证明的结论(1

裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.

虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.

篇3:放缩法证明数列不等式常用技巧

例1(2014年广东高考文)设各项均为正数的数列{an}的前n项和为Sn,且Sn满足S2n-(n2+n-3)Sn-3(n2+n-3)Sn-3(n2+n)=0,n∈N*.

(1)求a1的值;

(2)求数列{an}的通项公式;

分析:在证明“a1+a2+a3+…+an<f(n)(或>f(n)”数列不等式时,如果左边不易直接求和,可以适当放缩为可以裂项求和或直接求和的式子进行求解.

二、等比放缩

例2(2014年全国新课标2理)已知数列{an}满足a1=1,an+1=3an+1.

三、加减放缩

点评:用放缩法证明不等式常常在等式的基础上通过对其中一边加减一个数或可判断正负的式子,达到放大或缩小的目的.

四、凑项放缩

点评:观察不等式左右两边的结构特点,再作适当配凑(分拆重组)发现规律,再与结论对照合理放缩,“凑”是达到证明目标的重要手段.

五、分类放缩

点评:要证不等式当变量取不同的值不等式也不一样时,要分类运用放缩法,最后还需合并说明.

六、基本不等式放缩

点评:基本不等式本身具有放缩的作用,若要证不等式具有基本不等式的特征时可考虑用不等式法进行放缩.

七、二项式放缩

八、构造函数放缩

例8已知n∈N*,求证:en>1+n.

证明:构造函数g(n)=en-n-1,则g'(n)=en-1.当n≥1时g'(n)>0,g(n)在[1,+∞)上是增函数,所以g(n)>g(1)=e-2>0,即en>1+n.

点评:如果把所证不等式两侧相减的结果构造成一个函数,这个函数容易求导,求导后也容易判断正负,就可以直接构造函数.另外例7也可以构造函数来解决,有兴趣的读者可以试一试.

参考文献

篇4:用放缩法证明数列求和中的不等式

关键词:数列型不等式;放缩法;策略

证明数列型不等式最重要的方法为放缩法. 放缩法的本质是基于最初等的四则运算,利用不等式的传递性,对照着目标进行合情合理的放缩. 但放缩程度很难把握,裂项技巧性又太强,常常因找不到放缩、裂项的途径而导致证明的失败. 如何找到放缩、裂项的一般途径呢?放缩过程中最难处理的是减小放缩的误差,这又如何处理呢?

对通项进行化简,先求和再放缩

例1 已知数列an=,设数列{an}的前n项和为Sn,求证:Sn<.

分析:对于这道题,思考的问题是先放缩还是先求和,看看条件中{an}的通项公式,分母中有递推式:n2,(n+2)2,那么,就可以改写成“递推相减”的形式,所以,此题应采用先求和后放缩.

这里的变量r、i与q称为控制变量,作为误差调整的手段,还要兼顾从第几项开始实施放缩. 对于前三种的处理方法,显然第三种处理方法要烦一点,从前面的分析中,我们要学会如果来选择变量控制误差,以及变量取什么值. 从目标入手,目标驱动想法,这种分析问题的意识很重要.

想法二:放缩成“裂项相消型”,如何恰到好处地放缩成“裂项相消型”,思维着力点:把原式放缩成一个具有递推关系的结构,通常是将分式结构中的分母放缩成递推式,然后裂成“递推相减”的形式.

在问题研究的过程中,放缩的方向就是朝着“可求和”数列进行放缩,在“裂项相消型”的放缩中,问题的关键是将分母朝着“递推式”进行放缩. 在控制误差方面,一方面可以考虑延后放缩,另一方面可以考虑待定系数引入参数控制误差,而引入参数的方法不唯一,所以此类问题处理也比较灵活.

构造递推不等式(等差型,等比型)

我们前面研究的“数列和”不等式的题型,条件中的通项都是给出的. 如果条件给出的是递推公式,研究“数列和”不等式,那么我们首先要考虑的是,能否将数列的通项公式求出,如果通项公式求不出,那么我们常见的想法就是从目标入手,对题目中的目标进行研究,将递推公式朝着等差数列进行放缩,或者朝着等比数列进行放缩,总之,也是朝着“可求和”的数列进行放缩. 如果是朝着等差数列进行放缩,通过对目标的研究,得到放缩的公差是多少,假设公差为d,也就是说,我们放缩成类似于:an+1≥an+d形式,那么,由递推关系,便得到:an≥a1+(n-1)d,且Sn≥na1+d. 如果是朝着等比数列进行放缩,也是通过对目标的研究,得到放缩的公比是多少,假设公比为q(q>0),也就是说,将递推公式放缩成类似于:an+1≥an·q形式,那么,同样由递推关系,我们便得到:an≥a1·qn-1,且Sn≥(1-qn). 下面举例说明.

从上述例题,看出递推放缩的数列与不等式的综合题,解决的关键在于放缩,放缩是一种不等变形,没有目标的指向,很难有效放缩,如果我们将其放缩成等差数列、等比数列,再从目标研究,放缩的公差、公比是多少,那么放缩的指向性明显加强,从而降低了此类问题的解决难度. 此外,根据对目标的分析,确定放缩的目标,可以利用比较法(作差或作商)来解决,在思维上也降低了难度.

本文对数列与不等式的综合题的处理方法作了分析与研究,数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其他多种数学思想方法. 处理数列型不等式最重要的方法就是放缩法. 放缩过程中,我们需要考虑是先求和还是先放缩,如果通项能求和,这样问题还是容易处理,如果通项不能求和,就需要先放缩再求和,朝着“可求和”的数列进行放缩,常见的是朝“等比型”和“裂项相消型”进行放缩,在放缩过程中经常会出现放缩过大,那么需要减少误差,在两种减小误差的方法中,相对而言引入恰当参数控制误差方便一些. 当然,我们也可以根据数列的特征,构造函数,利用函数的单调性等方法进行放缩. 对于条件给出的是递推公式的数列不等式,我们应该朝着等差数列或等比数列进行放缩,但如果我们能对目标进行恰当的分析,找到需要放缩的目标,直接采用比较法将问题解决,相当方便一些. 只有正确把握了放缩法的方法思路和规律特征,我们在证明数列型不等式的压轴题时,就会豁然开朗,快速找到突破口.

篇5:浅谈用放缩法证明不等式

山东省 许 晔

不等式的证明是中学数学教学的重点,也是学生接受时感到头痛的难点。不等式的证明方法很多。如:比较法(比差商法)、分析法、综合法、数学归纳法、反证法和放缩法等。限于篇幅,下面仅就用放缩法证明不等式的问题加以证明。

所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,似达到证明结果的方法。但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。比如:证a<b,可先证a<h1,成立,而h1<b又是可证的,故命题得证。

利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。做到放大或缩小恰到好处,才有利于问题的解决。现举例说明用放缩法证明不等式的几种常用方法。

一、运用基本不等式来证明

①求证:lg8·lg12<

1证明:∵lg8>0,lg12>0,而 lg96<lg100=2 ∴lg8·lg12<1.说明:本题应用对数函数的单调性利用不等式平均值,不等式两次放大,使不等式获证。

说明:本题采用了与基本不等式结合进行放缩的有关解题技巧。

解:

∵a2b2≥2ab(当且仅当a=b时,等号成立)同理a2+c2≥2ac(当且仅当a=c时,等号成立)b2+c2≥2bc(当且仅当b=c时,等号成立)

∴a2+b2+c2≥ab+bc+ac(当且仅当a=b=c时,等号成立)∵由已知可得a2+b2+c2=ab+bc+ac,说明:此题完全使用了不等式的基本性质便可解此题。

二、运用放大、缩小分母或分子的办法来达到放缩的目的证明:

说明:本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。

证明:

本题说明采用了分别把各项的分母换成最大的2m或最小的m+1的技巧。③求证:

证明:

本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。

④求证:

证明:

本题说明,此题采用了通项放缩,使放缩后能拆项相消的技巧。⑤若a、b、c为不全相等的非实数 求证:

证明:

∵a、c、b不全为零,上述三式不能全取等号,相加得

说明:本题考虑到是齐次对称式,应用不舍弃非负项缩小的技巧。⑥求证:

证明:

当a+b=0时,不等式显然成立。

当a+b≠0时,∵0<|a+b|≤|a|+|b|,即:左边≤右边.说明:本题是运用了放大分母而缩小一个正分数的技巧。

三、放缩法在数学归纳法和数列中的应用

证明:当n=k+1时,则得

本题采用放缩法和数学归纳法相结合的解题方法。

证明:由递推公式有:

∴x100>45.本题采用了数列的递增和放缩法相结合的解题技巧。

篇6:放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列

满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列

.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。

即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且

. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.

【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在

(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.

(),使

成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与

矛盾;,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析

当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)

.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

篇7:用放缩法证明数列求和中的不等式

广外外校姜海涛

放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从而向结论转化,其难度在于放缩的合理和适度。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧从而充满思考性和挑战性。为了帮助更多的学生突破这一难点,我们从以下几个方面对放缩法证明数列不等式的基本策略进行分析。

一、常见的放缩方法

常见的放缩方法法有:

1.“添舍”放缩:对不等式一边添项或舍项以达到放大和缩小的效果;

2.分式放缩:分别放缩分子、分母或者同时放缩分子分母以达到放缩的效果;

3.利用重要的不等式或结论放缩:把欲证不等式变形构造,然后利用已知的公式或恒不等式进行放缩,例如均值不等式、柯西不等式、绝对值不等式、二项式定理、贝努力公式、真分数性质等。

4.单调性放缩:挖掘不等式的结构特征和函数内涵来构造单调数列或单调函数,利用单调性、值域产生的不等关系进行放缩。

二、常见的放缩控制

当我们选择了正确的放缩方法后,却往往会在放缩的过程中不知不觉间失控,导致放缩的过大或过小,达不到欲证的目标。那么如何控制好放缩的尺度呢?

例1.求证:11117 122232n2

4分析1:不等式左边不能直接求和,我们希望通过合适的放缩后可以求和。1111 (n2)”的方法向右端放大,n2n(n1)(n1)n

111111171111()()()22 则左边11223n1nn41223(n1)n若采取“

很明显,放得有点大了,导致传递性失败,不等式链中断,放缩失败。那怎么办呢?

1.调整放缩的“量”的大小

分析2:分析1中“放”的有点过大,因为11,放大了1111,所以可以22212432318

通过调整放大的“量”来控制放缩的效果。在减少1,即11分母减少了n,我们可以把分母只n2n(n1)11111()n2),这样放的量就少了。22nn12n1n

***17)=1+(1)<1+(1)= 证明:左边<1()()()+(2132435n1n122nn1224

2.调整放缩的“项”的起点

分析3:分析1中从第二项开始放缩,放的最终有点大。可以调整放缩的项数,从第三项开始放缩。证明:左边1111117171111()() 423n1n4n4423(n1)n

由此可见,调整成功。显然从第三项开始放缩所得的结果比从第二项开始放缩所得的结果又更小些。以此类推,当放缩的项数越少,放缩后的结果就会越来越精细,越来越逼近目标。

除此之外,还可以调整放缩的次数,通过多次放缩的调整来达到效果;有时也可以根据欲证式子的结构特点,把相邻的项分组捆绑后进行放缩,也可以达到控制放缩合理和尺度的效果。

三、常见的问题类型

数列型不等式的一边常与求和有关,所以可以通过放缩后求和(或求和后放缩)来达到欲证的目标。一.放缩与“公式法求和”

选择恰当的放缩方法,通过“通项”的适度放缩使之转化为等差或等比数列,从而利用求和达到简化....证题的目的。

n(n1)(n1)

2sn例2

.设Sn 22

分析:此数列通项为ak因为kk

n

k(k1),k1,2,n.k(k1)

1,kk(k1)k 22

k(k1)

n

n(n1)(n1)21

snkSn(k),即 222k1k1

例3.求证:

1111

2 1!2!3!n!

k1,k1,2,,n.k!2

分析:通项k!k(k1)2122212k1,

11()n

111111112(1)n12012k1

11!2!3!n!22222

12

例4.已知an2n1,证明:

an1a1a2n

n 23a2a3an12

n

aakn2k12k11

分析:通项k1k1,k,不等式右边得证。

ak121222k1ak12

akak1

n

11

2111111111 k1kkkk

112232(22)232023221

2(2k)4(2k)

k

2k

n

ak11n1111n11n1

()()(1),不等式左边得证。k12nn

a2232323322222k1k1k1

二.放缩与“裂项法求和”

在例1中,不等式的左边无法求和,但通过放缩产生裂项相消的求和效果后,使问题解决。例2的右

边也是利用放缩产生了裂项的效果,然后求和。下面我们再通过几道例题的证明体会裂项求和效果的运用。例5.求证:2(n11)

1

3

1n

2n

分析:

n

1k

2kk

2kk1

2(kk1),(k2)



k1

1k

12[(2)(32)(nn1)]12(1n)2n12n 2kk

2kk1

2(k1k)

1k

n



k1

1k

2[(2)(2)(n1n)]2(1n1)2(n11)

n

1n111

例6.已知an(),bn,证明:bk2n

31an1an13k1

分析:bn

111n

1

3n3n13n113n11111nn1nn12nn1 1313131313131

3n1

113n3n1

n

111111111

bk2n[(12)(23)(nn1)]2n(n1)2n

333333333k1bn2

例7.已知f(1)2,f(n1)f(n)f(n),求证:

k1

n

f(k)12

分析:f(n1)f(n)[f(n)1],

1111

,f(n1)f(n)[f(n)1]f(n)f(n)1

111,

f(n)1f(n)f(n1)

n



k1

111111111

[][][]

f(k)1f(1)f(2)f(2)f(3)f(n)f(n1)f(1)f(n1)

由已知可得f(n)0, 

三.放缩与“并项法求和” 例8.已知an

k1

n



f(k)1f(1)2

2n21117[2(1)n1],n1,证明:对任意整数m4,有 3a4a5am8

n1

分析:通项中含有(1),把

整体捆绑同时结合奇偶性进行适度放缩。anan1

1131132n12n232n12n2

证明:当n为奇数时,[]

anan122n212n11222n32n12n21222n3

即当n为奇数时,当m为偶数且m>4时:

11311(n2n1),且a42, anan1222

11111111131111()()(34m3m2)a4a5ama4a5a6am1am222222

=

13111317

(1m4) 22422482

当m为奇数且m>4时:m1为偶数,11111117

 a4a5ama4a5amam18

综上可知,对于任意整数m>4,都有

1117

 a4a5am8

例9.求证1

11111n

nn1(n2,nN)2342212

分析:寻求合适的处理手法,可以通过分组“捆绑”进行放缩。左边=1

11111111111111()()()(n1nn)***1212

1

=1

11111111111111()()()(nnn)***222

11111n(共n个)1 222222

四.利用递推关系式放缩

利用递推关系式产生的不等关系,在很多题目中可以起到很好的放缩效果。例10.已知a13,ak2ak11(k2),求证:

1111

 1a11a21an2

分析:根据欲证不等式的结构特点,通过递推关系式构造关于1ak的不等式

ak2ak11,ak12(ak11)且a114ak1

ak1ak-11a111k1

()2(a11)22242k1

ak12ak-11ak-21a11

12131n1111

左边()()()1-n)

222222

例11.已知an2n1,证明:

1112

 a2a3an13

分析:an2n12n22(2n11)2an1,

an

2(n2)且a11,a23, an1

n3时,an

左边

anan1a113a22n23,3()n2

an2an1an2a2

1111212

[1()2()n1](1n) 3222332

五.构造和数列后进行放缩

如果数列不等式没有直接的求和的形式,很多时候可以间接的构造和数列,然后进行放缩处理。例12.已知

nan11111

[log2n],正数列an满足a1b0,an(n2)23n2nan1

2b

(n2)

2b[log2n]的递推关系式,然后利用“累加法”把欲证的不等式转化为和数列的形式 an

证明:an

分析:根据已知构造关于

0an

nan1111111,,(n2)

anan1nanan1nnan1

111111111111

n2()()()

ananan1an1an2a2a1a1nn12b

2b1112b[log2n]

[log2n]0,an

2b[lo2gn]an2b2b

1*

nN,定义数列:,,{x}x0xf(x)n1n1n2

x2

例13.已知函数f(x)

若0xk

11(k2,3,4,),证明:对任意mN*都有:xmkxk.k123

4分析:利用递推式构造关于xk1xk的不等式,利用“绝对值不等式”把xmkxk放缩为和数列的形式

由x10得x2

114, x3,当k2时,0xk,229

xkxk1xkxk1xkxk1xk2xk2111

22∴xk1xk2 2

44xk2xk12(xk2)(xk12)

∴xk1xk

*

xk1xk

xkxk1xk1xk2

xkxk1



x3x2()k2x3x2()k2

x3x24418

x4x3

对mN,xmkxk(xmkxmk1)(xmk1xmk2)(xk1xk)

xmkxmk1xmk1xmk2xk1xk 

1111

mk3mk4k218444

()k2(1m)18(1)k1118(1)k11(1)k11mk1

***3414

上面介绍的数列不等式主要与“求和”的形式有关。如果不等式的一边与求和没有直接的关系,也可以辨析题目的结构特征选择合适的方法进行处理,譬如“构造单调数列”放缩;构造“二项展开式”放缩;

对不等式的局部换元,然后再谋求放缩等。限于篇幅所限,本文就不做阐述了。

篇8:用放缩法证明数列求和中的不等式

高中数列与不等式通常是指包含有an,sn或者是带有n前缀的式子,数列不等式的命题在高考知识点中发挥着关键作用,也必定是热点考察知识的重要体现. 但是,数列与不等式是一项综合性的知识链接,应用的范围和要求基础较高,也具有相当灵活的变换特点,因此就具备了一定的学习难度. 在数列与不等式的学习过程中,利用放缩法去解决应用问题既是便捷途径,却也是困难途径,诸多学生在实际的学习处理过程中感到吃力,对解题思路和放缩法的理解不到位.

一、对放缩法的应用把握

对放缩法的应用把握就是指对放缩力度的大小,以及放缩精细的程度,以达到预定的标准. 通过对题目类型的把握,迅速的找到解题突破口,逐渐培养学生严谨的思考能力和学习兴趣,发现数学中数列不等式的内在魅力,认识到放缩法在解决此类问题中的有效性.

1. 分组的放缩形式

在实际计算中可以通过分组的放缩形式来达到预期结果,例如在使用放缩法处理多项式的过程中,就可以采用分组的放缩形式来进行结果运算.

2. 部分的放缩形式

为了避免在放缩过程中出现超出预期效果的大小范围,就采用了一部分不动,另一部分进行相应变化的部分放缩形式.

3. 逐步放缩的形式

假如面临的是多个不同样式的放缩结果,并且出现了结果之间的互异性,最简便的办法就是对计算逐步进行,这种放缩方式可以最大限度的提升放缩的精度大小.

4. 宏观的放缩形式

宏观放缩主要就是说如果运算过程中存在可以推导得出的等式,或是已经存在的等式,就可以对存在组合性质的元素进行等式重构,并对残留的部分执行放缩过程. 宏观上的放缩形式最大的优势就是对精度的提升,方便解题的准确性和便捷性.

二、单调的函数放缩法形式

参照具体的题目类型和所提供的信息,对等式架构进行重构,得到新的单调函数,并对其进行下一步放缩,从而得到结果. 比如说: 在某例题中为求任何正整数对于等式都成立的问题,就可以对其进行单调函数放缩,因为直接做差,难以找到切入点. 而得到该函数的单调性能却是比较容易的,定义域的范围为正整数范围,排除导数的可能性,通过计算可以找到解题思绪,但是依然困难重重,很难下手.但是,数列有着特殊的函数性质,它呈现的是一种单调状态,就会得到函数存在的单调特点.

三、放缩形式存在的效果

防缩变形在根本上区别于恒等变形,放缩变形无论是在形式上,还是空间上都给人们提供了更多的可能性,可以自由的创造更大空间和添加更多计算的局部内容. 使得放缩后的计算形式达到简化效果,结构明了,具体一定的规律性,从而很好的解决问题,实现放缩形式作用的最大化. 本文以下题为例讲述: { bn} 在符合b1大于等于1,bn + 1= bn的平方减去n - 2的值乘以bn加三,Tn + 3 + 1比b1的值加上3加1比b2的值,一直加到1比3加bn的值,问题是求证tn小于二分之一. 因为bn加三等于bn乘以bn减去n的值,再加上2乘以bn加三的值,又因为bn大于等于n的值,所以得出bn + 1加3大于等于2乘以bn + 3的值,n属于正整数,运用跌乘计算得出bn加三的大于等于2n - 1乘以b1+ 3大于等于2n + 1. 所以1比bn + 3的值小于等于1比2n + 1. n属于正整数,因此得出结论: Tn小于等于1比2的二次的值加上1比二的三次的值,再加上1比2的四次的值,一直加到1比2的N次值之比等于二分之一减去1比2的n + 1次的值,值数小于二分之一. 由此看出,把握题目特征对其进行变形,接着删掉其中一个正项,这种计算手法是放缩在不等式中最常用的技法,假如此题在放缩计算后进行分裂项,进行数学归纳等是无法实现的,这也说明了放缩形式中的很多问题.

四、采用放缩形式的注意事项和计算方法

首先要对放缩的大小方向做到心中有数,无论是放大缩小都必须针对结论而言,针对的大小数值呈现反向动作,也就是计算结果大于标准项则进行缩小,小于标准项则进行扩大. 除此之外,针对放缩的项数可以从第一二三项分别开始,也大可不必是对所有的存在项进行统一放缩. 在放缩法的一般形式与常用技巧中,其一是对于根式的放缩形式,其二是对于分式分子分母的大小缩放,适用的规律一般为真分数分子分母一块减掉同样的正数,呈现变大趋势,假分数的分子分母一块减掉某个正数,呈现的是递减趋势. 其三是在传统不等式的基础上进行放缩操作,其四是对于二项式的定理收缩形式,其五是针对特殊情况采用舍弃添加某些项数.

五、结 语

上一篇:小学形容冬天的诗句下一篇:二(六)班学困生辅导计划