不等式的证明导数法

2022-08-02

第一篇:不等式的证明导数法

导数压轴题 导数与数列不等式的证明

导数与数列不等式的证明

例1.已知函数f(x)alnxax3aR (1)讨论函数f(x)的单调性; (2)证明:112131nln(n1)(nN*) (3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5lnn1n122324252n22nn2,nN* (5)证明:ln24ln34ln44ln54lnn4(n1)224344454n44nn2,nN* ln22ln32(6)求证:lnn2n12n12232...n22n1n2,nN (7)求证:122114211182...1122nenN

例2.已知函数f(x)lnxx1。 (1)求f(x)的最大值; nnn(2)证明不等式:12nennne1nN*

例3.已知函数fxx2lnx1

(1)当x0时,求证:fxx3;

(2)当nN时,求证:nf1111151 k1k2333...n342nn1

例4.设函数f(x)x2mln(x1)m0

(1)若m12,求f(x)的单调区间; (2)如果函数f(x)在定义域内既有极大值又有极小值,求实数m的取值范围; (3)求证:对任意的nN*,不等式lnn1nn1n3恒成立。

例5.已知函数f(x)ln(x1)k(x1)1(kR), (1)求函数f(x)的单调区间; (2)若f(x)0恒成立,试确定实数k的取值范围; (3)证明:ln23ln34lnnn1n(n1)4nN,n1.

导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 1 / 2 例6.已知函数f(x)axbc(a0)的图像在点(1,f(1))处的切线方程为yx1。 x(1)用a表示出b,c;

(2)若f(x)lnx在[1,)上恒成立,求a的取值范围; (3)证明:1

例7.已知函数f(x)2alnxx21。

(1)当a1时,求函数f(x)的单调区间及f(x)的最大值; (2)令g(x)f(x)x,若g(x)在定义域上是单调函数,求a的取值范围; 111nln(n1)(n1). 23n2(n1)3n2n222222(3)对于任意的n2,nN,试比较与的ln2ln3ln4ln5lnnn(n1)*大小并证明你的结论。

1ln(x1)(x0) x(1)函数f(x)在区间(0,)上是增函数还是减函数?证明你的结论。

k(2)当x0时,f(x)恒成立,求整数k的最大值; x1(3)试证明:(112)(123)(134)(1n(n1))e2n3(nN*). 例8.已知函数f(x)

例9.已知函数fxxalnxa0 (1)若a1,求fx的单调区间及fx的最小值; (2)若a0,求fx的单调区间; ln22ln32lnn2n12n1(3)试比较22...2与n2,nN的大小,并证明。 23n2n1

例10.已知函数fxlnx,gxxaaR, x(1)若x1时,fxgx恒成立,求实数a的取值范围。 (2)求证:

例11.已知函数fxlnxxax

2ln2ln3lnn1n2,nN 34n1n(1)若函数fx在其定义域上为增函数,求a的取值范围; (2)设an1

例12.设各项为正的数列an满足a11,an1lnanan2,nN.求证:an2n1. 122Lanlnn12n nN,求证:3a1a2...ana12a2n导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 2 / 2

第二篇:用导数证明函数不等式的四种常用方法

本文将介绍用导数证明函数不等式的四种常用方法.

()x0). 例

1证明不等式:xln(x1证明

设f(x)xln(x1)(x0),可得欲证结论即f(x)f(0)(x0),所以只需证明函数f(x)是增函数. 而这用导数易证:

f(x)1所以欲证结论成立.

10(x0) x1注

欲证函数不等式f(x)g(x)(xa)(或f(x)g(x)(xa)),只需证明f(x)g(x)0(xa)(或f(x)g(x)0(xa)). 设h(x)f(x)g(x)(xa)(或h(x)f(x)g(x)(xa)),即证h(x)0(xa)(或h(x)0(xa)). 若h(a)0,则即证h(x)h(a)(xa)(或h(x)h(a)(xa)). 接下来,若能证得函数h(x)是增函数即可,这往往用导数容易解决. 例

2证明不等式:xln(x1). 证明

设f(x)xln(x1)(x1),可得欲证结论即f(x)0(x1). 显然,本题不能用例1的单调性法来证,但可以这样证明:即证f(x)xln(x1)(x1)的最小值是0,而这用导数易证:

f(x)11x(x1) x1x1

所以函数f(x)在(1,0],[0,)上分别是减函数、增函数,进而可得

f(x)minf(1)0(x1)

所以欲证结论成立. 注

欲证函数不等式f(x)()g(x)(xI,I是区间),只需证明f(x)g(x)()0x. (I设h(x)f(x)g(x)(xI),即证h(x)()0(xI),也即证h(x)min()0(xI)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.

bex1例3

(2014年高考课标全国卷I理科第21题)设函数f(x)aelnx,曲线

xxyf(x)在点(1,f(1))处的切线为ye(x1)2.

(1)求a,b;

(2)证明:f(x)1.

x解

(1)f(x)aelnxaxbx1bx1e2ee. xxx题设即f(1)2,f(1)e,可求得a1,b2.

x(2)即证xlnxxe21(x0),而这用导数可证(请注意1): ee设g(x)xlnx(x0),得g(x)ming. 设h(x)xex1e1e12(x0),得h(x)maxh(1).

ee注

i)欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),而这用导数往往可以解决. 欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),或证明f(x)ming(x)max(xI)且两个最值点不相等,而这用导数往往也可以解决. ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学

(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:

已知函数f(x)xlnx,g(x)xax3. (1)求函数f(x)在[t,t2](t0)上的最小值;

(2)对一切x(0,),2f(x)g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,),都有lnx212成立. xeexln x例4 (2013年高考北京卷理科第18题)设L为曲线C:y=在点(1,0)处的切线.

x(1)求L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方. 解 (1)(过程略)L的方程为y=x-1. lnxx1(当且仅当x1时取等号). xx2-1+ln xlnx(x0). 设g(x)x1,得g′(x)=

x2x(2)即证当01时,x2-1>0,ln x>0,所以g′(x)>0,得g(x)单调递增.

所以g(x)ming(1)0,得欲证结论成立. (2)的另解 即证仅当x1时取等号). 设g(x)xxlnx,可得g(x)2lnxx1(当且仅当x1时取等号),也即证x2xlnx0(当且x2x1(x1)(x0). x进而可得g(x)ming(1)0,所以欲证结论成立. (2)的再解 即证lnxx1(当且仅当x1时取等号),也即证lnxx2x(当且仅当xx1时取等号).

2如图1所示,可求得曲线ylnx与yxx(x0)在公共点(1,0)处的切线是yx1,所以接下来只需证明

lnxx1,x1x2x(x0)(均当且仅当x1时取等号)

前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.

图1

例5

(2013年高考新课标全国卷II理21(2)的等价问题)求证:eln(x2). 分析

用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法. 设f(x)e(x2),g(x)ln(x2)(x2),我们想办法寻找出一个函数h(x),使得f(x)h(x)g(x)(x2)且两个等号不是同时取到. 当然,函数h(x)越简洁越好. 但h(x)不可能是常数(因为函数g(x)ln(x2)(x2)的值域是R),所以我们可尝试h(x)能否为一次函数,当然应当考虑切线. 如图2所示,可求得函数f(x)e(x2)在点A(0,1)处的切线是yx1,进而可得f(x)h(x)(x2);还可求得函数g(x)ln(x2)(x2)在点B(1,0)处的切线也是yx1,进而可得h(x)g(x)(x2).

xxx

图2 进而可用导数证得f(x)h(x)g(x)(x2)且两个等号不是同时取到,所以欲证结论成立. 当然,用例2的方法,也可给出该题的证明(设而不求):

x设f(x)eln(x2),得f(x)ex1(x2). x2可得f(x)是增函数(两个增函数之和是增函数),且1fe20,f(1)e10,所以函数g(x)存在唯一的零点x0(得2(x02)ex01,x02ex0,ex01),再由均值不等式可得 x02f(x)minf(x0)ex0ln(x02)11lnex0x0220x02x02

(因为可证x01)所以欲证结论成立. x例6 求证:elnx2.

x证法1

(例5的证法)用导数可证得ex1(当且仅当x0时取等号),x1lnx2(当且仅当x1时取等号),所以欲证结论成立.

x证法2

(例2的证法)设f(x)elnx,得f(x)ex1(x0). x可得f(x)是增函数且g11110,g(0)0,所以函数g(x)存在唯2e1.52一的零点x0(得ex01,x0ex0),再由均值不等式可得 x011lnex0x02(因为可证x01)x0x0 f(x)minf(x0)ex0lnx0所以欲证结论成立. 注

欲证函数不等式f(x)g(x)(xI,I是区间),只需寻找一个函数h(x)(可以考虑曲线yh(x)是函数yf(x),yg(x)的公切线)使得f(x)h(x)g(x)(x2)且两个等号不是同时取到,而这用导数往往容易解决. 下面再给出例5和例6的联系.

对于两个常用不等式exx1,lnxx1,笔者发现yex与ylnx互为反函数,yx1与yx1也互为反函数,进而得到了本文的几个结论.

定理

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x)是增函数,f(s)g(s)恒成立,则f1(t)g1(t)恒成立;

11(2)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(3)若f(x)是增函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(4)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立. 证明

下面只证明(1),(4);(2),(3)同理可证. (1)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),gt. ()0由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是增函数,得

f1(x)也是增函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. (4)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),t. ()0g由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是减函数,得

f1(x)也是减函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. 推论1

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x),g(x)都是增函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立; (2)若f(x),g(x)都是减函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立. 证明

(1)由定理(1)知“”成立.下证“”:

因为g(x)是增函数,g1(t)f1(t)恒成立,g1(x),f1(x)的反函数分别是g(x),f(x),所以由“”的结论得g(s)f(s)恒成立,即f(s)g(s)恒成立. (2)同(1)可证.

推论2

把定理和推论1中的“,”分别改为“,”后,得到的结论均成立. (证法也是把相应结论中的“,”分别改为“,”.)

在例5与例6这一对姊妹结论“eln(x2),lnxe2”中ye与ylnx互为

x反函数,yln(x2)与ye2也互为反函数,所以推论2中的结论“若f(x),g(x)都11是增函数,则f(s)g(s)恒成立f(t)g(t)恒成立”给出了它们的联系.

xxx

第三篇:构造函数,利用导数证明不等式

湖北省天门中学薛德斌2010年10月

1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).

2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.

求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).

3、已知m、nN,且mn,求证:(1m)(1n).

nm

4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例

5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x

1、x2,且

2x1x2,证明:fx2

12In2.

4a0,b0,例

6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x

11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例

7、(1)已知x0,求证:

第四篇:构造函数法证明不等式的八种方法

利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何

2、移项法构造函数

【例2】已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x x111,从其导数入手即x1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)可证明。 根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

1、从条件特征入手构造函数证明

【例1】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b, 求证:.af(a)>bf(b)

【变式1】若函数y=f(x)在R上可导且满足不等式f(x)>f(x),且yf(x)1为奇函数. 求不等式f(x)

【变式2】若函数y=f(x)是定义在,0上的可导函数且满足不等式2f(x)xf(x)>x2. 求不等式(x2015)2f(x2015)4f(2)0的解集.

3、作差法构造函数证明 【例3】已知函数f(x)12x2lnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)23x3的图象的下方; 分析:函数f(x)图象在函数g(x)的图象的下方不等式f(x)g(x)问题,设F(x)g(x)f(x)

4、换元法构造函数证明

【例4】(2007年,山东卷)证明:对任意的正整数n,不等式ln(1n1)11n2n3 都成立. 分析:本题是山东卷的第(II)问,从所证结构出发,只需令

1nx,则问题转化为:当x0时,恒有ln(x1)x2x3成立,现构造函数h(x)x3x2ln(x1),求导即可达到证明。

第 1 页 共 2 页

5、对数法构造函数(选用于幂指数函数不等式) 【例5】证明当x0时,(1x)11xe1x2

6、构造形似函数

【例6】证明当bae,证明abba

7、构造二阶导数函数证明导数的单调性 【例7】已知函数f(x)aex12x2 (1)若f(x)在R上为增函数,求a的取值范围;(2)若a=1,求证:x>0时,f(x)>1+x

8、主元法构造函数

【例8】(全国)已知函数f(x)ln(1x)x,g(x)xlnx

(1) 求函数f(x)的最大值; (2)设0ab,证明 :0g(a)g(b)2g(ab2)(ba)ln2.

【思维挑战】

1、(2007年,陕西)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a

(A)af (b)≤bf (a)(B)bf (a)≤af (b)(C)af (a)≤f (b) (D)bf (b)≤f (a)

2、(2007年,安徽卷)已知定义在正实数集上的函数f(x)12x22ax,g(x)3a2lnxb,其中a>0,且b52a23a2lna,求证:f(x)g(x)

3、已知函数f(x)ln(1x)x1x,求证:对任意的正数a、b, 恒有lnalnb1ba.

第 2 页 共 2 页

第五篇:对构造函数法证明不等式的再研究

龙源期刊网 http://.cn

对构造函数法证明不等式的再研究

作者:时英雄

来源:《理科考试研究·高中》2013年第10期

某刊一文阐述了构造法证明不等式的九个模型,笔者深受启发,对其中作者介绍的构造函数模型进行了挖掘,着重对构造函数模型,利用函数的有关性质解决不等式问题进行了再研究,以供大家参考。

上一篇:八大员资料员知识点下一篇:表达乐观精神的诗句