不等式的性质及应用

2022-08-02

第一篇:不等式的性质及应用

八下不等式的基本性质教学设计及反思

第八章

一元一次不等式

不等式的基本性质2

一、学生知识状况分析

本章是在学生学习了一元一次方程、二元一次方程组等的基础上,开始研究简单的不等关系。通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。学习时可以类比七年级上册学习的等式的基本性质。

二、教学任务分析

不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。 本节课教学目标:

(1)知识与技能目标: ①掌握不等式的基本性质。

②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

(2)过程与方法目标:

①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。

②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。 (3)情感与态度目标:

①尊重学生的个体差异,关注学生的学习情感和自信心的建立。 ②关注学生对问题的实质性认识与理解。

三、教学过程分析

本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:

1 布置作业。

第一环节:情景引入,提出问题

活动内容:利用班上同学站在不同的位置上比高矮。请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。问题1:怎样比才公平?

活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。

活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。

第二环节:活动探究,验证明确结论

活动内容: 参照教材与多媒体课件提出问题: (1) 还记得等式的基本性质吗?

(2) 等式的基本性质1用字母可以表示为:ab,acbc,那么不等式的基本性质1是什么?先猜一猜。

(3) 如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举几例试一试,并与同伴交流。

(4) 不等式的基本性质与等式的基本性质类似,对于等式的基本性质2,用字母可以表示为:ab,acbc,acbc,其中c0。对应的大家能不能归纳出不等式的基本性质2是什么呢?

(5) 例如:如果比高度的两个人不是同时增加或减少相同的高度,而是成倍的增加(或缩小)自身的高度,结果又会怎样?

(6) 例如:商场A种服装的标价高于B种服装的标价,如果都打八折出售,那么还是A种服装价格高。通过这些例子,你发现了什么?能得到一个什么类似的结论?

(7) 如果乘以(或除以)同一个负数呢?

(8) 通过实际的计算、观察、与同伴交流,得出什么类似的结论?

活动目的:通过等式的基本性质对比不等式的基本性质,由数学情境转化成数学问

2 题,由特殊的数值到字母代表数,从中归纳出一般性结论。进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

活动实际效果:以问题串的形式引导学生一步步从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。这时,学生对于由自己推导出性质定理感到非常兴奋。

第三环节:例题讲解及运用巩固

活动内容:

1、在上一节课中,我们猜想,无论绳长l取何值,圆的面积总大于正方l2l2。你相信这个结论吗?你能利用不等式的基本性质解释这一结论形的面积,即416吗?

2、将下列不等式化成“xa”或“xa”的形式: (1)x51 (2)2x3

3、将下列不等式化成“xa”或“xa”的形式: (1)x12 (2)x51 (3)x3 6

24、已知xy,下列不等式一定成立吗?

3x3y 2x2y 2x12y1 (1)x6y6 (2)(3)(4)活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。

活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。

第四环节:课堂小结

活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。

3 活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。

活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。

第五环节:布置作业

习题8.1

四、教学反思

对于不等式的基本性质的引入,生活中不相等的量有很多,具体教学时可以根据实际情况列举不同的例子。

本节课是以比高矮这个贴近生活的例子引入,充分的调动学生积极性。教学中问题串的设置均与等式的基本性质相联系,引导学生一步步从类比中自己先猜想不等式基本性质的雏形、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,全班同学思维活跃,踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。

在整个教学教程中,学生均处于主导地位,教师只是从旁引,学生对于由自己推导出性质定理感到非常兴奋。

再教设计:在探索及运用不等式的基本性质时,应该让学生多举一些生活中的不等关系,更加容易加深学生的理解。

第二篇:积分不等式的证明及应用

衡阳师范学院

毕业论文(设计)

题 目:积分不等式的证明及应用

所 在 系: 数学与计算科学系

专 业: 数学与应用数学

学 号: 08090233 作者姓名: 盛军宇 指导教师: 肖娟

2012年 4 月 27 日

积分不等式的证明及应用

数学与计算科学系 数学与应用数学专业 学号:08090233 姓名:盛军宇 指导老师:肖娟

摘要

本文主要研究了如何利用积分中值定理、辅助函数、以及一些特殊积分不等式等方法证明积分不等式,并通过若干实例总结有关积分不等式的证明方法及规律,讨论了一些特殊积分不等式的应用. 关键词 积分不等式;中值定理;函数

0. 引言

积分不等式是微积分学中的一类重要不等式,在数学分析中有着广泛的应用,且在考研试卷中会经常出现.对积分不等式证明方法的介绍,不仅解决了一些积分不等式的证明,而且可以把初等数学的知识与高等数学的知识结合起来,拓宽我们的视野,提高我们的发散思维能力和创新能力.目前国内外对该课题的研究比较普遍,主要研究了如何利用微积分相关知识来解决一些比较复杂的积分不等式的证明.积分不等式的常用证法有: 定积分的定义、定积分的性质、泰勒公式、分部积分法、线性变换等.本文主要从以下几个方面讨论和归纳了一系列积分不等式的证明方法:利用积分中值定理来证积分不等式、利用Schwarz不等式来证积分不等式、利用微分中值定理来证积分不等式、利用积分中值定理来证积分不等式、利用二重积分来证积分不等式等. 1. 积分不等式的证明方法

1.1 利用积分第一中值定理证明积分不等式

积分第一中值定理(定理1) 若fx在a,b上连续, 则至少存在一点a,b,

使得fxdxfba. ab积分第一中值定理在证明积分不等式中有着举足轻重的作用. 例1 设fx在0,1上可微,而且对于任意x0,1,有|fx|M, 求证:对任意正整数n有

10fxdx1nn1ni1Mifnnn,其中M是一个与x无关的常数. 分析 由于目标式中一个式子为

i11if,另一个式子为fxdx0n,故把fxdx按

01区间可加性写成一些定积分的和,并应用积分第一中值定理加以证明. 证 由定积分的性质及积分中值定理,有

10fxdxnini1ni1fxdxni1fi1,,i1,2,,n. ,innni1i又因为fx在0,1上可微,所以由微分中值定理可知,存在ii,,使得, niiffifii,i1,2,,n.nni

因此10fxdx1nni11ifnnni1fi1nni1ifn

1n1n1n1nni1niffiniffinifiinM1nMn

i1n.

i1ni1在抽象函数fx的积分不等式中,若出现和号、幂函数、对数函数等,一般可以利用定积分的定义或区间可加性,将区间a,bn等分,点i也可采用特殊的取法. 1.2 利用拉格朗日中值定理证明积分不等式

拉格朗日中值定理(定理2) 若函数f满足如下条件:

if在a,b上连续;iif在a,b内可导, 则在a,b内至少存在一点,使得

ffbfaba. 利用拉格朗日中值定理的关键是根据题意选取适当的函数f(x)和区间a,b,使它们满足拉格朗日定理条件,然后运用拉格朗日公式或等价形式来运算得出所要的结论. 例2 设fx在a,b上连续.证明:若fafb0,则

fxdxabba24M,MMaxfx.

xa,b分析 由条件fafb0,及fx与fx,故想到利用拉格朗日中值定理. 证 由拉格朗日中值定理得: 对任意的xa,ab, 2fxfxfaf1xa,a1x. ,b, 对任意的x2abfxfxfbf2xb,x2b.

ababfxMxa,xa,,fxMbx,x,b22,

fxdxabab2afxdxbab2fxdx

ab2afxdxbab2fxdx

ab2aMxadxbab2Mbxdxba24M. 注意到M是fx在a,b上的最大值,所以解题的关键是如何使fx与fx联系起来,因而不难想到拉格朗日中值定理来证明. 1.3 构造变上限函数证明积分不等式

作辅助函数,将结论的积分上限或下限换成x,式中相同的字母也换成x,移项,使

得不等式的一端为零,则另一端为所作的辅助函数,这种方法在证明一些特定类型积分不等式时有重要作用.

1例3 设函数fx在0,1上连续,证明不等式fxdx0210f2xdx.

x分析 此例若令Fxftdt02x0f2tdt,则Fx的正负不易判断,需进一步的改进. 证 由待证的积分不等式构造变上限定积分的辅助函数,令

xxFxftdtxf0022tdt显然,F00,且Fx可导,有

f2Fx2fxxftdt02xx0tdtxf2t

fxftdt0,

0则Fx在x0时单调减小,即有FxF00,x0,

1特别地,F10,即证得不等式fxdx0210f2xdx. 例4 设函数fx在0,1上可微,且当x0,1时,0fx1,f00, 1试证 fxdx0210f3xdx.

2131证 问题在于证明fxdx00fxdx0, x令Fxftdt02x0fx3tdt,因为F00, Fx2fxftdt0f3xfx2x0ftdtf2x,

x0已知f00,0fx1,故当x0,1时,fx0, 记gx2ftdtf2x, 则g00,gx2fx2fxfx=2fx1fx0,x0,1, 于是gx2ftdtf2xg00,x0,1,故Fx0,x0,1, 0x4

1所以F1F00,即fxdx0210f3xdx. 通过上述两例,我们知道了构造变上限函数证明积分不等式,遇到特殊情况,不能按常规直接作辅助函数需要稍微变化一下,有时甚至要在一个题中构造两个辅助函数,以便判断所作函数的单调性. 1.4 利用二重积分证明积分不等式

在积分不等式的证明中利用定积分与积分变量形式无关的这一性质,将定积分的平方项或者定积分之间的乘积转化为积分变量形式不同的定积分之积,把定积分化为二重积分,可以达到有效的作用.

例5 若函数fx,px,gx在a,b上连续,px是正值函数,fx,gx是单调增加函数,则pxfxdxpxgxdxaabbpxdxpxfxgxdx.该不等式称为切贝谢

aabb夫不等式. 分析 只要证bapxdxpxfxgxdxabbbapxfxdxpxgxdx0

abb即可,而上述式子又可视为累次积分,从而化为二重积分. 证 因定积分的值与积分变量无关,故pxdxpydy,

aapxgxdxpygydy.

aabbbapydypxfxgxdxabbapxfxdxpygydy

abpypxfxgxpxpyfxgydxdyD

pxpyfxgxgydxdyD 1

其中,积分区域Daxb;ayb.因为定积分与积分变量的形式无关, 所以交换x与y的位置,得到

pypxfygygxdxdyD 2

将1式与2式相加,得12pxpyfxfygxgydxdy,由已知,

D可知px是正值函数,fx,gx是单调增加函数,从而fxfy与gxgy同号,

于是在D上pxpyfxfygxgy0,从而,0. 即pxfxdxpxgxdxaabbpxdxpxfxgxdx.

aa101bb例6 若函数fx在0,1上不恒为零且连续增加,则

ff3xdxxdx101xfxf3xdxxdx.

2200证 由于在0,1上,结论式中的分母均为正值,所以结论等价于

10f2xdx10xff23xdx10xf10f3xdx10xf2xdx0, 而   10fff2xdx210xf3xdx130xdx2xdx

Dxyf3ydxdyDfxxf3ydxdy

D2xf3yyxdxdy 3

其中,积分区域D0x1;0y1因定积分的值与积分变量的形式无关,故又有

Df2yf3xxydxdy 4

22将3式与4式相加,得1xyfyfxfxfydxdy, 2D由已知,函数fx在0,1上连续增加,从而对任意的x,y0,1,有

xyfyfxfxfy0,故22101ff3xdxxdx101xfxf3xdxxdx.

2200从以上的积分不等式证明中,可知把定积分化为重积分能巧妙地解决一些积分不等式的证明问题. 1.5 借助于判别式来证明积分不等式

引入适当的参数,构造合适的函数,讨论参数的判别式,以便证明所求证的积分不等式. 例7 设fx0,且在a,b上连续,试证fxdxabbdxfxaba.

2分析 可构造多项式,利用多项式的性质来证明积分不等式.

证 由题设对任意的,考察函数fx,因为fxfx0,有 fx2ba2bdxb2,即fx2dx02dxaafxfxfxdxab0, 不等式的左端可以看成的二次三项式,且对任意的上述不等式均成立, 故判别式2abdx4a2bdxfxbafxdx0,即fxdxabbdxfxaba.

2用判别式解题的关键是要有一个函数值恒定(大于或小于零、大于或等于零、小于或等于零)的一元二次方程gx,而g2x0,于是我们构造g2xdx0这样一个方程,

ab再结合这种情况下的判别式也是一个不等式,便可证明此题. 1.6 利用对称性证明积分不等式

命题1 当积分区域关于直线yx对称时,被积函数的两个变量交换位置后,二重积分的值不变. 这一条规律有助于解决一些特定类型的积分不等式的证明. 例8 函数fx在a,b上取正值且fx在a,b上连续试证:

fyhfxdxdyba,ha,b;a,b.

2证 因为ha,b;a,b关于直线yx对称,从而Ifxfyhfxdxdyfxdxdyhfy, 所以Ifyhdxdy12hfxfydxdyfxfy1dxdybah2. 由上例可知,在积分不等式的证明过程中,我们可以应用基本不等式,它可能起到重要作用. 1.7 利用积分第二中值定理的推论证明积分不等式

积分第二中值定理的推论:设函数f在a,b上可积.若g为单调函数,则存在a,b,使得fxgxdxgafxdxgbfxdx. aabb应用这个推论可以较容易地解决某些恒等式与某些不等式的证明.

babb例9 设函数fx在a,b上单调递增连续,则xfxdxfxdx.

a2a证 假设函数gxxab2,显然gx在a,b上可积,又函数fx在a,b上递增连续,根据积分第二中值定理的推论知存在a,b,使得

fxgxdxababfagxdxfbgxdx 

ab且式又可变为fxgxdxfagxdxfbgxdx.由定积分的几何意义

ab知gxdxbgxdx,abaa,b,同时,fafb,于是,

bfxgxdxfbfagxdx即xab0, bababb,故fxdx0xfxdxfxdxa22a. 2. 一些特殊积分不等式的应用

2.1 Chebyshew不等式及其应用

Chebyshew不等式 设fx,gx同为单调递减或当调递增函数,则有

bafxdxgxdxbafxgxdx.

aabb若fx,gx中一个是增函数,另一个为减函数,则不等式变为

Chebyshewbafxdxgxdxbafxgxdx.

aabb不等式有广泛应用,特别在证明一类积分不等式中发挥重要作用. 例10 设gx是1,1上的下凸函数,fx为1,1上的偶函数且在0,1上递增,则, 1fxdx1gxdx112fxgxdx.

11分析 从所证的不等式看,它有点类似于Chebyshew不等式,如果能够构造出一个单调函数满足Chebyshew不等式的条件,问题就容易解决了,为此构造辅助函数,令xgxgx.

证 令xgxgx,显然x也为1,1上的偶函数,由于gx是1,1上的下凸函数,故当0x1x21,

gx1gx2x1x2gx1gx2x1x2, 即gx1gx2gx2gx1,即x1x2,所以fx,x在0,1上为增函数, 由Chebyshew不等式知, 110fxdxxdx011101fxxdx21211fxdxxdx111211fxxdx, 可得fxdxgxdx2fxgxdx. 1112.2 利用Schwarz不等式证明积分不等式

Schwarz不等式 若fx,gx在a,b上可积,则

Schwarzbafxgxdx2baf2xg2xdx. 不等式是一个形式简单,使用方便的积分不等式,在证明某些含有乘积及

b平方项的积分不等式时颇为有效. 例11 已知fx0,在a,b上连续,fxdx1, k为任意实数,求证:

a abfxcoskxdxabfxsinkxdx1 5

22证 5式左端第一项应用Schwarz不等式得

bafxcoskxdx2abfxfxcoskxdxb2

2 同理afxsinkxdxb2fxdxfxcosaabkxdxfxcosab2kxdx6

bafxsin2kxdx 7

67即得5式. 此题证明的关键在将fx写成2.3 Jensen不等式

fxfx的形式,以便应用Schwarz不等式.

定理3 设fx在a,b上连续,且mfxM,又t是m,M上的连续凸函数(指下凸函数),则有积分不等式

ba1ba1fxdxbafxdx 8

ab注 若t是m,M上的连续凹函数,则8式中的不等式号反向. 定理4 设fx,px在a,b上连续,且mfxM,px0axb,t是

m,M上的连续凸函数,则有bapxfxdxbapxdxpxfxdx 9

pxdxabab注 当t是m,M上的连续凹函数时,9式中的不等号反向. 例12 设fx在a,b上连续,且fx0,则对任意的自然数n,有

1nlnbaba1fxdxba1t2banlnfxdx. 证 令tnlnt,那么tn,tnt10,故t为凹函数, 显然fx在t的定义域内有意义,故由定理3知,结论成立. 例13 设fx,px是a,b上的正值连续函数,则对任意的自然数n,有

banpxlnfxdxpxdxabnlnbapxfxdxbapxdx. 证 令tnlnt由上例知t为凹函数,故由定理4知结论成立. 2.4 Young不等式的应用

Young不等式 设fx是单调递增的,连续于0,a上,f00,a,b0,f1x表示fx的反函数,则abYounga0fxdxb0f1ydy,其中等号成立当且仅当fab. 不等式是一个非常重要的不等式,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解.

例14 证明:a,b1时,不等式abea1blnb成立. 证 设fxex1,则fx单调并连续,f等式有,

a1b11yln1y,因为a,b1,由Young不a1b10故abea1blnb. 2.5 Steffensen不等式

Steffensenfxdx0f1ydyea1blnbab1, 不等式 设在区间a,b上,g1x ,g2x连续,fx一阶可导,任给

xaxa,b,成立不等式g1tdtxag2tdt,且g1xdxabbag2xdx.若fx在a,b上单调递减,则fxg1xdxabfxgxdx;若fx在上单调递增上述不等式变号.

a2b例15 证明20sinx1x2dx20cosx1x2dx. 证 对任意的x0,22,因为cosx1sinx,所以有sintdt0xx0costdt;此外,显然有2sinxdx00cosxdx1且函数

在0,上单调递减,从而根据Steffensen不21x21等式,知20sinx1x2dx20cosx1x2dx. 结论

总之,以上讨论的积分不等式的主要证明方法都离不开积分的性质,主要是通过函数的可微性和函数的可积性,利用二重积分、拉格朗日中值定理和积分中值定理来证积分不等式;以及巧妙的利用Schwarz不等式和Jensen不等式等,在实际应用中需要结合各方面灵活使用题中条件或不等式,才会使问题得以正确解决. 参考文献

[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001:223. [2]宋海涛.几个定积分不等式的证明[J].高等数学研究,2003,6(4):34-35. [3]陈兴荣,杜家安.关于积分不等式的证明[J].工科数学,1993,9(2):77. [4]孙清华,孙昊.数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社,2003.

[5]张瑞.定积分不等式证明方法的研究[J].内江科技,2001,(5):102. [6]丰刚.几个积分不等式及其应用[J].牡丹江大学报,2010,19(7):88-89. [7]刘玉记.再谈Young’s不等式的证明[J].齐齐哈尔师范高等专科学校学报,2009,(4):108. [8]舒阳春.高等数学中的若干问题解析[M].北京:科学出版社,2005:108-109. [9]杨和稳.积分不等式证明技巧解析[J].高等数学研究,2009,12(6):38. [10]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993. The proof and application of integral inequality Department of Mathematics and Computational Science

Mathematics and Application Mathematics specialty Number:08090233

Name:ShengJunyu

Instructor:XiaoJuan

Abstract: This paper studied to use the integral mean value theorem、the auxiliary function、 some special integral inequality and other methods to prove integral inequality, and summarized some examples about proof methods and rules of integral inequality, and discussed the application of some special integral inequality.

Key word: integral inequality; theorem of mean; function

第三篇:不等式的几种证明方法及简单应用

本科毕业论文(设计)

题目:不等式的几种证明方法及简单应用

学生:孙振学号: 200940520131学院:数学与计算科学学院专业: 信息与计算专业

入学时间: 2009年9月10日 指导教师: 荆科职称:学士完成日期:年月日

(空一行)

论文题目(格式:居中,三号黑体,加粗,标题不超过20字,不用非公知公用的缩写、化学式等)

(空一行)

——副标题(格式:居中,小三号黑体,加粗)

摘要(五号黑体,加粗):□□□□五号楷体□□□□□□□□□□□□□□□□□□□□□□(五号楷体,行距16磅)关键词(五号黑体,加粗):词1;词2;......词5(五号楷体)

(空一行)

Title(格式:居中,四号Time New Roman字加粗,行间距20磅,句首字母和专有名词首字母大写)

(空一行)

Abstract: □□□□□□□□□□□□□□。(五号Time New Roman体,行距16磅)

Key words: word1;word2;......word5(一一对应)(格式:五号Time New Roman体)

(空一行)

目录(格式:黑体四号字,字间空出4个半角字符,加粗,居中)

1(第1章)引言(绪论)................1 1.1 (第1章第1节)题名............1 1.1 (第1章第2节)题名............2 2 (第2章)题名..........2 2.1 (第2章第1节)题名............5 2.2 (第2章第2节)题名............6 2.2.1(第2章第2节第1目)题名.............7 2.2.2(第2章第2节第2目)题名............. ......8

......5 (第5章)结论(结束语)..............25 参考文献.................26 附录A ...........28 附录B ...........32......

致谢 .............36

(格式:宋体小四号,加粗,分散对齐,行间距20磅,

一、

二、三级标题序号与题名间均空出1个半角字符)

(空一行)

1一级标题(格式:宋体小四号,加粗,左对齐,标题序号与题名间空出2个半角字符)□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。(格式:宋体小四号,首行缩进4个半角字符,行距20磅) 1.1二级标题(格式:宋体小四号,左对齐,标题序号与题名间空出2个半角字符)□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。 1.2二级标题

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。

1.2.1三级标题(格式:宋体小四号,左对齐,标题序号与题名间空出2个半角字符)

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。

1.2.2.1四级标题(格式:宋体小四号,左对齐,标题序号与题名间空出2个半角字符)□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。 2一级标题

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。

......5结论(结束语)

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。

参考文献:(格式:宋体四号字,加粗,左对齐,左缩进4个半角字符)

(文献按正文部分标注的序号依次列出)(格式:宋体五号字,左对齐,左缩进4个半角字符,行距16磅)

示例:

[1] 廖荣宝,朱云,吴佳,等.对高校化学教材中杂化轨道理论的一点认识[J].阜阳师范学

院学报(自然科学版),2009,26(4):69-72.(期刊:主要责任者.文献题名[J].刊名,出

版年,卷数(期数):起止页码.作者项3个人内全部写出,第4个人及其后著为“,等”)

[2] 周公度,段连运.结构化学[M].4版.北京:北京大学出版社,2007:164-164.(专著:

主要责任者.文献题名[M].译者.版本(第1版不著录).出版地:出版者,出版年:起止页码.作者项同上)

[3] 王兆骞,陈欣,马琨,等.红壤坡地水土流失的监控方法研究[C]//李萍萍.生态学

研究进展——王兆骞教授农业生态学学术思想研讨会文集.镇江:江苏大学出版社,2011:59-67.(论文集:析出文献主要责任者.文献题名[C]//论文集编者名.论文集名.出版地:

出版者,出版年:起止页码.作者项同上)

[4] 石秦.高等教育校园中具有地域特色的空间营造——以西安建筑科技大学草堂校区为

例[D].西安:西安建筑科技大学建筑学院,2008.(学位论文:作者名.题名[D].保存地点:

保存单位(高校标注到学院或系),年份.)

[5]李国云.本地化服务才是高校信息系统的死角[EB/OL].[2008-05-12].

. (电子文献:网址加http://;网址前加日期,先发布日期,

用圆括号;后下载日期,用中括号;给出的年-月-日,年为4位,月、日为2位;网址后加点)

[6] GB/T 6532-86,原油及其产品的盐含量测定法[S].(技术标准:标准编号,标准名称[S].) [7] 姜锡洲.一种温热外敷药制备方案:中国,88105607.3[P].1989-07-26.(专利:专利申请

者或所有者.专利题名:专利国别,专利编号[P].公告日期或公布日期.)

[8] 冯西桥.核反应堆压力管道与压力容器的LBB分析[R].北京:清华大学核能技术设计

研究院,1997.(报告:主要责任者.文献题名[R].出版地:出版者,出版年.)

[9] 谢希德.创造学习的新思路[N].人民日报,1998-12-25(10).(报纸:主要责任者.文献题

名[N].报纸名,出版日期(版次).)

[10] Katharine A F, Stefan W K, Craig A C, ea al. Simulating the hydrological response to

predicted climate change on a watershed in southern Alberta, Canada [J]. Climatic Change, 2011, 105(3-4): 555-576. 对于汉语拼音著者,姓与名全写,名不缩写,名的首字母大写、其余小写,双名连写、不加连字符.作者项3人内全部写出,第4人及其后著为“, et al”.期刊名称标明全称,不缩写.)

附录A(格式:黑体四号字,加粗,左对齐)

标题(格式:黑体四号字,加粗,居中)

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。(格式:宋体小四号,首行缩进4个半角字符,行距20

磅)

附录B(格式:黑体四号字,加粗,左对齐)

标题(格式:黑体四号字,加粗,居中)

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□。(格式:宋体小四号,首行缩进4个半角字符,行距20

磅)

致谢(格式:黑体四号字,加粗,居中)

□□□□宋体小四号字□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□□□□□□□□□□□□□。(内容一般不超过300字。格式:宋体小四号,首行缩

进4个半角字符,行距20磅)

表例:

表1NanoDrop ND-1000测定RNA质量

实验组 对照组

1.8

51.98

2.05

2.1

4147.84 140.1

220

40

2 956.8 5 604.8

(格式:表中文字五号,中文宋体,英文、数字Time New Roman体)

图例:

图2含二甲氨基查尔酮基团的三硫代碳酸酯在不同溶剂中的荧光光谱图

(格式:图题五号字,中文黑体,英文及数字Time New Roman体)

(格式:图中数字、字母、符号一般为小五号,图例为六号,中文用宋体,英文及数字用Time New Roman

体)

公式:

n

n

wi

n

fw(V1,,Vn)

j

1wiVj[1(1ti),1fi](1)

i1

i1

wi

(格式:图题五号字,中文黑体,英文及数字Time New Roman体)

(用公式编辑器输入,重要公式、多个公式应给出编号,全文按前后顺序连续编号,公式居中。要注意公式与物理量符号及上下角标。)

第四篇:不等式的性质

《不等式的性质》的教学设计与反思

庆阳市西峰区彭原乡彭原初级中学

[教材分析]

《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小不等的关系。正如方程和方程组是讨论等量关系的有利数学工具一样,不等式与不等式组是讨论不等关系的有利数学工具。不等式是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习,有着重要的实际意义。研究不等式在整个初中数学学习中有着承上启下的作用。解决不等式问题对不等关系的研究起着画龙点睛的作用。掌握不等式的性质是顺利解决不等式的重要依据。不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容作理论基础,起到重要的奠基作用。

[学情分析]

1. 授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学;充分调动学生的积极性,注重课堂教学的有效性,在练习设计上要针对学生差异采取分层设计的方法。

2. 本节课主要研究不等式的性质和简单应用。他与前面学过的等式的性质有联系也有区别,为渗透类比、分类讨论的数学思想提供了很好的素材。由于学生的认知结构是建立在等式的知识基础上对不等式进行学习,所以,在学习的过程中学生容易延续的等式性质的理解,产生惯性的思维定势,尤其体现在对不等式性质3的理解与应用。

[教学目标]

1. 经历不等式基本性质的探索过程,掌握不等式的基本性质。

2. 经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同。

3. 通过创设问题情境和实验探究活动,积极引导学生参与解决数学问题,提高学生学习数学的兴趣,增强学习数学的信心,发展学生的符号表达能力、代数变形能力,在自主探索、合作交流中让学生感受学习的乐趣。 [教学重难点]

重点:理解并掌握不等式的性质。

难点:不等式性质的理解应用(特别是性质3的理解应用)。 [教学过程]

一、回顾旧知,类比新知

[问题1]我们学习过等式的相关性质,你能说出等式的性质吗?(性质1„„,性质2„„。)

学生回答问题,教师演示天平实验。(等式)

[问题2]我们学习了不等式,它是否也有类似的性质呢? 教师继续演示天平实验。学生观察老师的操作后思考:①. 天平被调整到什么状况;②. 给不平衡的天平两边同时加入(拿掉)相

2 同质量的砝码,天平会有什么变化?③. 如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?

本环节中,教师应重点关注:

(1). 学生能否准确表达等式的性质; (2). 学生是否积极参与类比的思考之中。

(通过回顾等式的性质,演示等式性质的产生过程,为不等式性质的研究以及不等式的性质的归纳作好铺垫。培养学生善于运用类比、迁移学习方法的良好习惯。)

二、探索新知,归纳结论

[问题3] 用“>”或“<”填空,并总结其中的规律: ①

5>3, 5+2——3+2,

5-2——3-2; ②

-1<3, -1+2____3+2,

-1-3——3-3;

6<2, 6*5——2*5,

6*(-5)——2*(-5); ④

-2<3,

(-2)*6___3*6,

(-2)*(-6)____3*(-6). 学生填空,师生展示正确结果。

(通过对一组练习的延伸探究,培养学生发现、归纳问题的能力)

[问题4]从以上一组练习种你发现了什么?请你把你的发现与合作小组的同学交流。

通过学生小组合作交流,学生把自己的“发现”进行充分讨论,探究不等式的性质。

[问题5]请用你发现的规律填空:

3 当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向——。当不等式两边乘同一个数正数时,不等号的方向——;而乘同一个数负数时,不等号的方向——。

[问题6]请大家换一些其他数,验证这个发现。

教师掌握各小组情况,适当引导,尤其(3)(4)是不等式两边同乘以正数、负数,所得结果截然不同,因此要有针对的区别开。

(通过类比等式性质,引导学生探究不等式的性质,培养学生用类比的方法学习知识。)

[问题7]你能用自己的语言概括不等式有哪些性质吗?请小组讨论。

性质1::不等式两边加上或减去同一个数(式子)时,不等号的方向不变; 性质2:不等式两边乘(或除以)同一个正数时,不等号的方向不变; 性质3:: 不等式两边乘(或除以)同一个负数时,不等号的方向改变; (学生观察对比、探索发现,清晰地掌握性质2和性质3的区别,有利于正确理解和应用;培养学生的概括能力和数学语言表达能力。)

[问题8]你能用字母表示不等式的性质吗?请小组讨论交流。 (1). 若a>b, 则 : a±c>b±c;

(2). 若a>b,c>0 则 : ac>bc或a/c>b/c;

4 (3). 若a>b,c<0 则 : ac

等式的性质有2条,进行加减乘除运算时相等关系不变;不等式的性质有3条,加减不等关系不变,乘除要分正、负分别讨论,两个结果不同。

学生合作交流,教师深入指导。 本环节中,教师应重点关注:

(1). 交流合作中,学生是否积极参与类比的思考; (2). 学生能否全面地考虑不等式性质2和性质3的区别; (3). 学生能否准确表达不等式的性质;

(4). 学生能否用数学符号语言表达不等式的性质。 (培养学生使用符号语言表达数学现象,培养数学文字与符号语言的相互转化能力,提升数学表达能力。)

三、基础训练,巩固应用

1.如果a>b,判断下列不等式是否正确:

-4+a>-4+b; ( ) a-3b.b ; ( ) -5a>-5b ( ) 2.如果a>b,用用“>”或“<”填空:

a+2__b+2; 3a__3b; -2a__-2b; a-3__b-3; a/2__b/2; a-8__b-8; 2a-5__2b-5;-3.5a__-3.5b;-8.5a+2__-8.5b+2; 若a>0,b<0,c<0 则(a-b)c___0; 若a 0 则ac+c___bc+c.

5 3. ① a>0 x>y则:ax____ay; ② a<0 x

ax___ay. (加深学生对新知识的理解,建立对不等式性质的正确的认识)

四、应用拓展,解决问题

例1:利用不等式的性质解下列不等式:

① x-7>26; ② 3x<2x+1;

③ 2/3x>50;

④ -4x>3. (学生分组讨论,研究上述不等式的解法,并总结其中的规律,要求学生类比解方程,用准确的数学语言表达。特别是移项表述,类比解方程,用准确的数学语言表达。)

教师深入小组,适当点拨指导,帮助学生总结不等式结构特点,有针对性的总结规律。

师生共同展示讨论结果。

教师板书其中一题,统一要求对不等式解题过程的规范书写,解集在数轴上的正确表示,展示数形结合的整体美感。

本环节中,教师应重点关注:

(1). 学生能否抓住不等式的结构特点,合理使用不等式性质解不等式;

(2). 学生能否准确地在数轴上表示不等式的解集;(强调“<”与“≤”在意义上和数轴表示上的区别。)

(3). 学生能否认真参与小组讨论;是否通过讨论掌握不等式解法;

(4). 学生能否通过对比解方程的方法,发现解方程与解不等式的方法的区别与联系。

6 练习:教材第119页练习第1题。

(培养学生积极思考,参与交流合作的习惯,建立良好的合作意识,提高学生运用所学知识解决问题的能力。类比解方程的方法解不等式注意性质3,并类比解法的异同,帮助严谨规范的书写习惯。)

五、归纳小结,收获感悟 谈一谈本节课你有什么收获?

学生归纳总结(1)不等式性质

1、

2、3;(2)简单不等式的解法 本环节中,教师应重点关注:

(1).学生是否积极参与总结归纳,是否养成对知识进行及时归纳整理的习惯;

(2). 学生对本节课所研究的问题的理解程度。 (积累数学经验,加强记忆和应用能力。)

六、作业

习题9.1第

4、5题。 [教学反思]

为创设宽松民主的学习氛围,激发学生思维的主动性,顺利完成教学目标,本节课坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,给学生充分的自主探索时间,引导学生联系已有知识学习新知识,减少学生获取新知识的难度,通过教师的引导,调动学生的积极性,组织学生参与“探究—讨论—交流—总结”的学习过程,让学生在课堂上多活动、多观察,主动参与到了整个教学活动中来,

7 从本节课的设计上看,我自认为知识全面,讲解透彻,条例清晰,系统性强,讲练结合,训练到位,但一节课下来后没有为学生“减负”,忽略了实效性。在今后的教学中我要多问多听、多思多想,真正为学生减轻课业负担,增强教学的实效性。

另外,在今后的教学中要注重学生学习习惯的培养。

者:马

甘肃省庆阳市西峰区彭原乡彭原初级中学教师 通讯地址:甘肃省庆阳市西峰区彭原乡彭原初级中学 邮

编:745000

第五篇:不等式的性质 教案

不等式的性质

教材分析

这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质.这部分内容是不等式变形、化简、证明的理论依据及基础.教材通过具体实例,让学生感受现实生活中存在大量的不等关系.在不等式与实数运算的关系基础上,系统归纳和论证了不等式的一系列性质.

教学重点是比较两个实数大小的方法和不等式的性质,教学难点是不等式性质的证明及其应用.

教学目标

1. 通过具体情境,让学生感受现实世界和日常生活中存在着大量的不等关系,理解不等关系与不等式的联系,会用不等式表示不等关系.

2. 理解并掌握比较两个实数大小的方法.

3. 引导学生归纳和总结不等式的性质,并利用比较实数大小的方法论证这些性质,培养学生的合情推理和逻辑论证能力.

任务分析

这节内容从实际问题引入不等关系,进而用不等式来表示不等关系,自然引出不等式的基本性质.为了研究不等式的性质,首先学习比较两实数大小的方法,这是论证不等式性质的基本出发点,故必须让学生明确.在教师的引导下学生基本上可以归纳总结出不等式的一系列性质,但对于这些性质的证明有些学生认为没有必要或对论证过程感到困惑,为此,必须明确论证性质的方法和要点,同时引导学生认识到数学中的定理、法则等,通常要通过论证才予以认可,培养学生的数学理性精神.

教学设计

一、问题情境

教师通过下列三个现实问题创设不等式的情境,并引导学生思考.

1. 公路上限速40km/h的路标,指示司机在前方行驶时,应使汽车的速度v不超过40km/h,用不等式表达即为v≤40km/h. 2. 某种杂志以每本2.5元的价格销售,可以售出8万本.据市场调查,若杂志的单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价改为x元,怎样用不等式表示销售的总收入的不低于20万元?

x·[80000-2000(x-25)]≥200000.

3. 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm的3倍,试写出满足上述所有不等关系的不等式.

设600mm钢管的数量为x,500mm的数量为y,则

通过上述实例,说明现实世界中,不等关系是十分丰富的,为了解决这些问题,须要我们学习不等式及基本性质.

二、建立模型 1. 教师精讲,分析

我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大,用不等式表示为a>b,即a减去b所得的差是一个大于0的数.

一般地,设a,b∈R,则 a>ba=ba0, a-b=0, a-b<0.

由此可见,要比较两个实数的大小,只要考查它们的差就可以了.例如,比较(a+3)(a-5)与(a+2)(a-4)的大小就可以作差变形,然后判断符号.

2. 通过问题或复习,引导学生归纳和总结不等式的性质

(1)对于“甲的年龄大于乙的年龄”,你能换一种不同的叙述方式吗? (2)如果甲的身高比乙高,乙的身高比丙高,你能得出甲与丙哪个高吗? (3)回忆初中已学过的不等式的性质,试用字母把它们表示出来. 用数学符号表示出上面的问题,便可得出不等式的一些性质: 定理1 如果a>b,那么bb. 定理2 如果a>b,且b>c,那么a>c. 定理3 如果a>b,那么a+c>b+c. 定理4 如果a>b,且c>0,那么ac>bc; 如果a>b,且c<0,那么ac

关于定理1~4的证明要注意: (1)定理为什么要证明?

(2)证明定理的主要依据或出发点是什么? (3)定理的证明要规范,每步推理要有根据.

(4)关于定理3的推论,定理4的推论1,可由学生独立完成证明.

4. 考虑定理4的推论2:“如果a>b>0,那么an>bn(n∈N,且n>0)”的逆命题,得出定理5 定理5 如果a>b>0,那么(n∈N,且n>1).

由于直接证明定理5较困难,故可考虑运用反证法.

三、解释应用 [例 题]

1. 已知a>b,cb-d.

证法1:∵a>b,∴a-b>0.又c0. ∴(a-c)-(b-d)=(a-b)+(d-c)>0, ∴a-c>b-d.

证法2:∵c-d.又a>b,∴a-c>b-d.

[练 习]

1. 判断下列命题的真假,并说明理由. (1)如果ac2>bc2,那么a>b.

(2)如果a>b,c>d,那么a-d>b-c.

四、拓展延伸

1. 如果30

2. 如果a1>b1,a2>b2,a3>b3,…,an>bn,那么a1+a2+a3+…+an>b1+b2+b3+…+bn吗?为什么?

3. 如果a>b>0,那么吗?(其中为正有理数)

点 评

这篇案例从实际问题引入不等关系,由如何求非不等关系引入不等式的求法,进而点出教学的主题———不等式性质,由学生熟悉的实数性质,及现实生活中的常识,将语言表达转化为数学符号的一般表示,进而得出不等式的常见性质.通过对不等式的证明,使学生理解对数学定理证明的必要性,增强学生的逻辑推理能力.就整个教学设计的效果看,这种设计是成功的,尤其是由定理的应用,达到了对性质的理解和升华,巩固了教学的重点,效果比较理想.此外,这篇案例也十分关注由学生自主探究去开发其潜在能力,培养其发散思维能力.

总之,这是一篇成功的教学设计案例,美中不足的是,对文初创设的现实情景利用的力度稍欠缺.

上一篇:班干部的选拔与培养下一篇:办公室安全工作计划