不等式的证明分析法

2022-08-02

第一篇:不等式的证明分析法

不等式的证明典型例题分析

例1 已知,求证:.

证明 ∵

∴,当且仅当时等号成立.

点评 在利用差值比较法证明不等式时,常采用配方的恒等变形,以利用实数的性质例2 已知均为正数,求证. .

分析 由于所证不等式两端都是幂和积的形式,且

证明

这时为不等正数,不失一般性,设,. 为正数,可选用商值比较法. ,

.

由指数函数的性质可知

,,

所以

例3 已知

求证:. . , .

分析 不等式的左端是根式,而右端是整式,应设法通过适当的放缩变换将左式各根式的被开方式转化为完全平方式.

证明 ∵

∴, .

即.

两边开方,得.

同理可得三式相加,得.. .

例4 设,求证:

分析 当所证结论在形式上比较繁杂时,一般都可采用分析法.

证明 要证明

只要证

因为, ,

故只要证

由于函数故只要证

即证

只要证

即证

在上是减函数, ,

这是显然成立的,故原不等式成立.

点评 分析法是一种不断探求要证明不等式成立的充分条件的方法,表述证明过程时应予以注意.例5 已知都是正数,求证:

(1)

(2)

分析 用综合法证明.

证明 (1)∵

都是正数,则,

(2)∵

都是正数,则 ,

点评

变形.

例6

证明

点评

用不等式的平均值定理证明不等式时,要注意定理的条件,还要注意为运用定理而作出的适当已知,且, 求证:(1);(2) (1)∵

,∴

(2)

其中的放缩是以给出的条件或已证结果被运用作为思考的目标. 3

第二篇:不等式的证明——比较法、综合法、分析法

不等式的证明—比较法,综合法,分析法 典型问题:

(一)比较法证明不等式

amamam1,求证:1.已知a,b,m,nR,且bnbn bn

2.a,b,m,nR

3. ab,求证:abmnbmn1a2abab1b2mnnm 21a20,求证:()21b2()a

3322ab0ababab4.已知,求证:

(二)综合法证明不等式

a,b,cR1.设,

3332222222(abc)abacbabccacb6abc. 求证:

a,b,cR2.已知,且abc1,求证: 1119 (1)abc

12418(2)abc

1b)(1c)(3)(1a)(8abc111(1)(1)(1)8(4)abc

(三)分析法证明不等式

1.证明:3222722x3y3已知x0,y0xy2.

ab0abab 3.设,求证:

4.若a,b,c三数均大于1,且ab=10,求证:logaclogbc4lgc

41ab. 5.已知a0,b0,ab,且abab,求证:33322

6.实数a,b,c满足a>b>c,且a+b+c=0,求证:

a,bR,2cab,求证: 7.已知bac3a. 2

(1)cab cabaccab. 2(2)c2222(ab)ab(ab)ab8.已知a0,b0,ab 8a28b9.已知a,b,cR,且ab+bc+ca=1,

abc3(abc) 求证:bcacab

第三篇:不等式的证明分析法与综合法习题(共)

2.3不等式的证明(2)——分析法与综合法习题

知能目标锁定

1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式;

2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法;

重点难点透视

1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点.方法指导

1. 分析法

⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”.

⑵分析法证明的逻辑关系是:结论BB1B2BnA (A已确认).

⑶用分析法证题一定要注意书写格式,并保证步步可逆.

⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法.

2. 综合法

⑴综合法的特点是:由因导果.其逻辑关系是:已知条件AB1B2BnB(结论),后一步是前一步的必要条件.

⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式.

一.夯实双基

1.若a>2,b>2,则ab与a+b的大小关系是ab()a+b

A.=B. D.不能确定

2.设ba0,则下列不等式中正确的是() A.lgab0B.babaC.a

1a1a

2aD.bab

1a1

3.若a,b,cR,且a+b+c=1,那么

1a

1b

1c

有最小值()

A.6B.9C.4D.

34.设a

2,b73,c6

2,那么a,b,c的大小关系是()

A.abcB.acbC.bacD.bca

5.若x>y>1,则下列4个选项中最小的是() A.

xy2

B.

2xyxy

C.xyD. (

2x

111y

)

二.循序厚积

6.已知两个变量x,y满足x+y=4,则使不等式围是________;

7.已知 a,b为正数,且a+b=1则a2b2的最大值为_________; 8.若a,b,cR,且a+b+c=1,则abc的最大值是__________;

1x

4y

m

恒成立的实数m的取值范

9.若xy+yz+zx=1,则x2y2z2与1的关系是__________; 10. 若ab0,m

a

b,n

ab

,则m与n的大小关系是______.

三、提升能力

11. a、b、c、d是不全相等的正数,求证:(ab+cd)(ac+bd)>abcd

12.设x>0,y>0,求证:

x2

y

xy2

13.已知a,b R,且a+b=1,求证:(a

1a

)(b

1b

)

252

.

14.设a,b,c是不全相等的正数, 求证:lg

ab2

lg

bc2

lg

ac2

lgalgblgc.

15.如果直角三角形的周长为2,则它的最大面积是多少?

易错点:乱用均值不等式;误用分析法,把”逆求”作为”逆推”,以证” pq为例,这时的推理过程就是:qq1q2qnp.证明的结果是证明了逆命题”qp”.而正确的推证过程是:qq1q2qnp. 易忽视点:均值不等式中能否取道”=”的条件分析易被忽视导致出错. 解题规律:用定理,抓步骤,重格式.

第四篇:数学分析中证明不等式的若干方法

耿杰

(安徽师范大学

数学与应用数学专业

0707046)

摘要:本文主要应用数学分析中的单调性,微分中值定理,Taylor公式,凸函数的定义,极值,极限以及积分等的相关知识来证明不等式,同时也通过应用一些著名的不等式证明不等式。通过以上方法的应用使我们对不等式证明的相关知识有更加深刻系统的理解,从而为数学中许多其他内容的学习提供了一个重要工具。

关键词:数学分析

不等式

证明

方法

The mathematical analysis of several methods to testify

inequality

Gengjie (Anhui normal university mathematics and applied mathematics

professional 0707046)

Abstract: In this paper, Monotonicity, differential mid-value theorem, Taylor formula, convex function is defined, extremum, limit and integral related knowledge to testify inequality,also through the application of some famous inequation inequality. Through the above application of this method to make the inequation relevant knowledge more profound understanding of the system,thus for mathematics in many other content of study provides an important tool.

Key words:Mathematical analysis

Inequation

Method

1.引言

不等式是数学分析的基本内容之一,它是研究许多数学分支的重要工具。在数学领域中占有重要的地位,也是各个时期的数学教材的重要组成部分,在各种考试和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,方法也较多。通过不等式的证明,不仅可以检验基本的数学知识的掌握程度,而且也是衡量数学水平的一个重要标志。因此,掌握一些基本的证明不等式的方法是十分重要也是十分必要的。下面将对不等式的证明方法进行总结。

2.利用单调性证明不等式

利用函数的单调性证明不等式是一种较为重要的方法,同时又是一种行之有效的方法。

要点:若f(x)0(或f(x)0),则当x1x2时,有f(x1)f(x1)f(x2))。反之,若f(x)0(或f(x)0),则当x1x2f(x1)f(x2)(或f(x1)f(x2))。由此便可获得不等式。

f(x2)(或

时,有

ab例2.1 证明:

证明:记f(x)1aba1ab1b

11xx1x,则f(x)1(1x)20,所以f(x)在定义域内单调递增函数。又由于abab1abab可知

ab1aba1abb1aba1ab1b

例2.2 设bae,证明:ab分析:要证abbaba

lnaalnbb,只需证blnaalnb,也即证,则f(x)1lnxx2

证明:记f(x)即f(x)xlnxxlnx,所以当xe时,f(x)0;

lnaalnbb在时是单调减函xe数。又由于bae,所以ba

,即证ab 。

3.利用微分中值定理证明不等式

用微分中值定理来证明不等式要熟记各个中值定理的应用条件,将原不等式通过变形找到一个辅助函数使其满足中值定理条件,证明的关键是处理好点,分析函数或其导数在该点的性质即可证明得到结论。

要点:如果函数f(x)在区间a,b上连续,在开区间a,b内可导,那么在a,b内至少存在一点,使得f(x)(1)当f(a)0,在a,b内f(x)0f(b)f(a)babaf(a)f()(xa)。由此可得0时,有f(x) x(a,b]). (2)在上述条件下,有有f(a)f(),其中ab。因此,若f(x)单调递减,f(b)f(a)f(b)。以上原理在证明不等式时经常采用。

例3.1 设0x1,x2,平,p,q是正整数,pq1,证明:psinx1qsinx2sin(px1qx2)。

证明:当x1x2时,不等式两边都等于sin设x1x2,为确定起见,设x1x2x1,因而等号成立。

,记x3px1qx2,由于pq1,故x3x1q(x2x1)x1。同理x3x2。

将原不等式改写为psinx1qsinx2(pq)sinx3,即q(sinx2sinx3)p(sinx3sinx1)。令f(x)qsinx,g(x)psinx,则f(x)qcosx,g(x)pcosx。根据积分中值定理:

q(sinx2sinx3)qcos1(x2x3)qcos1(xpx1qx2)=pq(x2x1)cos1;

p(sinx3sinx1)pcos2(x3x1)pcos2(px1qx2x1)=pq(x2x1)cos2。其中0x12x31x2cos1cos2。所以原不等式得证。

,因而

4.利用Taylor公式证明不等式

依据f(x)的情形,使其按照Taylor公式展开,然后根据已知条件来进行证明不等式。

要点:若f(x)在a,b上有连续n阶导数,则f(a)f(n1)(a)0,f(n)(x)0(当x(a,b)时)。则f(x)f(n)()n!(xa)0(当x(a,b]时)。利用此原理,可以对一些不等式n进行证明。

例4.1 证明:

tanxxxsinx,x(0,2)

, 证明:原式等价于f(x)sin2xtanxx0,因为f(0)f(0)02f(x)sinx(5secx1)bsin3xsecx0,所以f(x)sinxtanxx0

42(当x(0,2)时)。故tanxxxsinx,x(0,2)。

5.利用凸(或凹)函数的定义来证明不等式

利用函数的凸凹性来对不等式进行证明的方法首要是找到辅助函数f(x),利用辅助函数f(x)在区间a,b上的二阶导数来判定f(x)的凸凹性,然后根据凸函数或凹函数的性质来进行这证明。

要点:若f(x)0,则函数f(x)为凸函数即x1,x2a,b,(0,1),有f(x1(1)x2)f(x1)(1)f(x2)。

若f(x)0,则函数f(x)为凹函数即x1,x2a,b,(0,1),有f(x1(1)x2)f(x1)(1)f(x2)。

例5.1 证明:xlnxylny(xy)lnxy2,(x0,y0,xy)1t0,所以

证明:令f(t)tlnt(t0),f(t)lnt1,f(t)1xy)也即 是严格凸函数。于是[f(x)f(y)]f(f(t)tlnt在(0,)221xyxyxy[f(x)f(y)]ln即xlnxylny(xy)ln故得证。 2222类似的我们也可证明:

ee2xyxye2,(xy)

6.用求极值的方法证明不等式

用求极值的方法来证明不等式最重要的也很就是构造相关函数,然后判断该函数的极值,这是证明不等式的一个最基本的方法。

要点:要证明f(x)g(x),只需求函数F(x)也就是证明minF(x)0。

f(x)g(x)的极值,

例6.1 设n为自然数,试证:

证明:原始可转化为1(1t2et(1tn)nt2ne(当tn时)t。

tn)ett2n。所以只需证明

f(t)n2tn[1(1ttntn))e]0(tn),ntn1f(t)te[(1tn)n1(1)(1tn)]=

ntn[2e(1ttn)n1故我们用]。表示方程

2e(10的根。则极值的可疑点为t0,t,及tn。但[1(1f(0)0,f()2nn)e]=

n2n[12(1n)](1n)2n22(n1)0,

f(n)n10,f(). 由此f(t)min所以问题f(t)f(0)0(tn时)。即得证。

类似的我们也可证明:设aln21为任意常数,试证:x2ax1e(当x0时) 2x

7.利用单调极限证明不等式

利用单调极限来证明不等式主要的是求函数在某一点的极限值,然后根据单调函数的性质来进行判断。

要点:若xb时,f(x)在定义域上是单调增函数(或严格单调增函数),且xb0时f(x)A,则f(x)A(当xb)(或f(x)。A(当xb))反之,对于递减或严格递减的函数,也有类似的的结论。利用该原理可以来证明一些不等式,从而使证明过程简洁易懂。

例7.1 证明:x0,tx时,et(1tx)0。

x

证明:当t0或tx时不等式显然成立。故只需证明t0,tx,t0的情况。为此,我们只需证明当x时,f(x)(1事实上:

(1)当t0,t0,tx时,[lnf(x)][ln(1tx)]x[xln(1xtn)ext即可。

tx)]x=ln(xt)lnxtxt(应用Lagrange公) 式)=

tttxttxttxt

(

0

当0tx时,0xtx.当t0时,0xxt.

tx)xt(2)

f(x)(1tnxxlim(1tx)lim[(1xx]tet. 所以当x时,)et。故原不等式即得证。

8.利用被积函数的不等式证明不等式

利用定积分定义来证明一些不等式是一种十分有效的手段,可以将原来较为复杂的证明转化为较为简洁易懂的证明。下面将利用积分的相关性质来证明不等式。

要点:若f(x)g(x)(或f(x)g(x)),则有baf(x)dxbag(x)dx(或f(x)dxa1bbag(x)dx),(x(a,b))。

1例8.1 证明:0cosx1x2dx1sinx1xcosx1xsinx1x222dx0

证明:令tarcsinx,则

0dx20cos(sint)dt

令tarccosx,则 01dx20sin(cost)dt要证的不等式转化为02cos(sint)dt20sin(cost)dt。所以我们只需证 cos(sint)sin(cost)

(当t(0,2)时)。由已知(0,2)上sinxx,cosx严格递减。所以有sin(cost)costcos(sint)。即证原不等式1cosx1x20dx1sinx1x20dx。

9.在不等式两端取变限积分证明新的不等式

利用在不等式两端取变限积分来证明不等式,此种方法要求较高,技巧性太强,难度较大。但对于一些不易证明的不等式应用此种方法则较为简便。

要点:若f(x)g(x)(或f(x)g(x)),则有baf(x)dxbag(x)dx(或f(x)dxabbag(x)dx),(x(a,b))。

例9.1 证明:x0时,

xx36sinxxx36x5120。

)。在此式两端同证明:已知cosx1 (x0,只有x2n时等号才成立xx时取0,x上的积分,得sin1cosxx2

(x0)。再次取0,x上的积分,得

x32

(x0)。即可得到xxxx36sinx

(x0)。然后继续取0,x上的积分,得sinx36x5120。移项即可得所要证明的不等式:

x6sinxxx36x5120。

10.利用著名的不等式证明其他不等式

利用著名的不等式证明其他不等式要求我们应熟悉掌握数学分析中的一些常用的不等式,掌握了这些不等式我们可以利用他们来直接对其他一些难度较大不等式进行证明。此种方法对学生要求较高,难度也较大,技巧性更强。

要点:Cauchy不等式:设ai,bi为任意实数(i1,,n)则n(aibi)i12ab,其中当且仅当a,b成比例时等号才成立。 22iiiinni1i1 Schwarz不等式:若f(x),g(x)在(a,b)上可积,则(f(x)g(x)dx)ab2baf(x)dxg(x)dxa2b2。若f(x),g(x)在(a,b)上连续,其中等号当且仅当存在常数,使得f(x)g(x)时成立(,不同时为零)。

Holder不等式:设a1,a2,,an及b1,b2,,bn是两个正整数序列,1p1q1,则当p1时,有(ai)(bi)ppqqi1i1n1n1ab当p0时,不等号

iii1n反向。其中当且仅当aip和biq成比例时取等号。

平均不等式:对任意n个实数ai0n(i1,2,,n)恒有ana1a2ana1a2ann。其中当且仅当a1a2b时等号成立。 为任意实数,

例10.1 已知f(x)0,在[a,b]上连续,a求证:(abf(x)dx1,kf(x)coskxdx)(f(x)sinkxdx)1。

22ab证明:所要证明的式子的左端第一项应用 Schwarz不等式

(f(x)coskx)[ab2baf(x)(2f(x)coskx)dx]2

(1)

同理可得 babaf(x)dxf(x)coskxdxa2bbaf(x)coskxdx2(f(x)sinkxdx)baf(x)sinkxdxb2

(2)

2b2a(1)+(2)得:(af(x)coskxdx)(f(x)sinkxdx)1。即得证。

总结

不等式是数学分析中的一个重点也是一个难点,也能为其他数学分支的学习提供一个重要工具。不等式的证明是数学领域的重要内容,也是学习中的一个难点。不等式作为一个系统,其内容较为复杂,其的证明方法也较多,以上只是简要介绍了不等式证明的几种常用方法,并用例题作一讲解,意在抛砖引玉。

参考文献:

[1]裴礼文.数学分析中的典型问题与方法.北京:高等教育出版社.2006. [2]贺彰雄.不等式证明的几种常见方法.湖北教育学报,2007,10(1):10-20.

[3]王晓峰,李静.证明不等式的若干方法.数理医药学杂志.2008.12(1):12-20. [4]张锦来.微分法在不等中的应用.新乡教育学报.2008.10(2):12-20. [5]郭要红,戴普庆.中学数学研究.安徽:安徽教育出版社.

第五篇:09.04.25高二理科数学《2.2 证明不等式的基本方法-综合法与分析法》

2.1 证明不等式的基本方法-综合法与分析法

目的与要求:

要求学生理解掌握用综合法与分析法证明有关不等式

(第一课时)

教学过程:

一、综合法:

例1.已知a、b、c0,且不全相等,求证:a(bc)b(ca)b(ab)6abc. 22222

2归纳:

一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法.综合法又叫顺推证法或由因导果法.例2.已知a,b,c,dR,求证:(abcd)(acbd)4abcd. 

练习:教材P25面

1、2题.

例3.已知a1,a2,,anR,且a1a2an1,求证(1a1)(1a2)(1an)2. n

二、分析法:

例4.求证2736.2a

1b

a1b254例5.求证:若a,bR,则ab. 例6.已知a,bR,且ab1,求证:(a)(b).

练习:教材P26面

3、4题.

(第二课时)

例1.已知a、b、c0,求证:abbcca

abc

mnm222222abc. 例2.已知m,nR,求证:mn

2mn.例3.已知f(x)1x,ab,求证|f(a)f(b)||ab|.

. 2例4.已知0x1,a0,a1,试比较|loga(1x)|与|loga(1x)|的大小,并说明理由

4n2例5.已知n0,求证n3.

例6.已知|a|1,|b|1,求证|1ab||ab|. 课后作业:

《学案》P76面

1、

2、

3、

4、10(1).2

上一篇:百度员工绩效考核表下一篇:办公室安全用电指南