证明不等式的教学计划

2024-05-06

证明不等式的教学计划(共6篇)

篇1:证明不等式的教学计划

凤凰高中数学教学参考书配套教学软件_教学设计

3.4.1 基本不等式的证明

南京师范大学附属中学 季人杰

教学目标:

1.探索并了解基本不等式的证明;

2.体会证明不等式的基本思想方法;

3.能应用基本不等式解决简单的不等式证明问题.

教学重点:

基本不等式的证明.

教学难点:

基本不等式的证明.

教学过程:

一、问题情境,导入新课

口述:有一个珠宝商人,很多人到他那里买的东西回家一称发现分量都有问题,于是向工商局投诉,工商局派人去调查,商人承认他用的天平左右的杆长有问题,向人们提出一个调解方案,放左边称变重对人们不公平,放右边称变轻商人要亏本,那么用两次称重的平均值作为物品的实际重量,如果你是购买者,你接受他的方案吗?

问题1 你能不能把这个问题转化成一个数学问题?

珠宝放左边称砝码显示重量为a,放右边称砝码显示重量为b,假设天平的左杠杆长为l1,右杠杆长l2,那么这个珠宝的实际重量是多少?(会算吗?用什么原理来算?你认为珠宝商的方案合理吗,那也就是

问题2 abab 哪个大?)2abab 哪个大?(你估计一下哪个大?)(如果回答取值代,2那么可以追问取一正一负行吗?如果回答作差,可以追问你估计一下哪个大?)

二、学生活动

aba0,b0)呢?

2请2个同学上黑板(巡视,有不同的解法让他上黑板写一下). 问题

3如何证明

证法一(比较法)

:ab1

122

=20,222

ab时,取“=”.

证法二:要证

ab,2

只要证

a,b

只要证

0ab,只要证

02)

因为最后一个不等式成立,所以

时,取“=”.

证法三:对于正数a,b,有),0ab成立,即ab2

ab0,ab

 ab 2

先让学生谈一谈证的对不对,他这个证明方法有什么特点?

点评:回顾我们上面的证明过程,我们来看一下各种证法的特点:

证法一是比较法,比较法常用的就是作差将差值与零去比较;

证法二是分析法,分析法的特点是盯住我们要的目标,寻找结论成立的条件; 证法三是综合法,它们都是证明不等式的基本方法.

(看来珠宝商还是多赚钱的,只有a=b时才是一个守法的商人啊.)

三、建构数学

定理:如果a,b是实数且(a0,b0),那么

取“=”).

问题:对于这个定理你怎么认识它?(结构有什么特点啊?成立的条件是什么?什么叫当且仅当啊?)(上式中ab称为a,b

a,b的几何平均数,两个正2abab(当且仅当ab时

2数的算术平均数大于等于它们的几何平均数,有的时候我们也把这个定理写成.要用这个定理首先两个数必须都是非负数. ab2ab)

当ab时,取“=”,并且只有当ab时,取“=”,我们把这种等号成立的情况称之为当且仅当.

四、数学运用

例1 设a,b是正数,证明下列不等式成立:

ba1(1)2(2)a2 aba

(3)a2b22ab

(先让学生点评,对不对,关注格式与条件,他用什么方法来证明的?还有什么别的思路?)

点评:我们证明不等式通常有比较法,分析法,现在有了这个定理,也可以应用它来证明

什么时候取等号?

师:我们现在已经对这个不等式有了一定的认识了,你能不能从图形的角度来认识一下它呢?

有线段AB长为a,线段BC长为b,你能找到

讲完了可以让另一个学生再解释一下)

a

b

2B

1,(x0),求此函数的最小值. x例2(1)已知函数yx点评:什么是最小值,最小值就是大于等于一个数,你说大于等于2,那也大于等于1嘛,我能说最小值就是1吗?

(2)已知函数yx

(3)已知函数y2x

1,(x0),求此函数的最大值; x1,(x1),求此函数的最小值. x

1五、回顾小结

回顾本节课,你对基本不等式有哪些认识?

篇2:证明不等式的教学计划

《3.4.1 基本不等式的证明》评课

南京师范大学附属中学 仇炳生

本节课的主要目标是探索并证明基本不等式

abab(a0,b0).在探2索基本不等式的过程中,执教老师依据教材给出的问题,改编为核查一个珠宝商是否违法的故事,创设了一个生动有趣的问题情景.在运用科学推理揭露不法珠宝商违法事实时,由寻找“判断珠宝商是否违法的依据”,提出两个问题:“如何计算珠宝的真实重量?”及“比较

ab(珠宝商提供的珠宝重量)与ab(珠2宝的真实重量)的大小?”.通过实例展示基本不等式探索过程的教学设计,既使探索过程中思维活动十分流畅,也表现出数学发展的趣味性.

在证明基本不等式的过程中,由于基本不等式的证明方法比较多且难度不大,执教老师放手让学生自我研究证明方法.从学生在黑板上的板书中,反映出学生的学习习惯比较好.除条件a0,b0在证法中没有交代以外,证明过程书写是比较规范的.必修教材中关于不等式证明的内容比较少,执教老师在学生证明的基础上,对比较法和分析法作简要的说明,是十分必要的.在教学中,教师指出分析法的基本思路是“执果索因”,即瞄准结论,寻找结论成立的(充分)条件,同时还通过分析法的书写模式,强化基本思路.谨防学生认为分析法就是“从结论倒推”的错误.比较法在学习函数的单调性时曾经接触过,比较法实际上也可以看作是分析法的特例,即要证AB,只要证AB0.(或者将对命题AB的证明,化归为对它的等价命题AB0的证明).比较法研究不等关系的优越性在于,它有利于对未知不等关系的探索和证明.

形(几何图形)和数(数量关系)是中学数学研究的基本对象,它们是同一事物的两种不同的表现形式.形和数各具特点,又互相支撑.一般地,形——生动、形象、整体性好,数——严谨、精确、逻辑性强.形与数结合有利于开拓思

abab(a0,b0).启发学生探索基2ab本不等式的几何形式的关键在于,给定线段a,b,如何构造线段和ab.由

2维能力.基本不等式的代数形式为于学生初中数学内容中没有射影定理,对于一般学生探索基本不等式的几何形式有一定的难度.基本不等式的几何解释不是本节内容的重点,是否作为本节课的凤凰高中数学教学参考书配套教学软件_评课

教学内容可视学生的具体情况确定.

在理解和运用基本不等式的阶段中,执教老师重视定理教学的常规方式,首先要求学生分析不等式的特征,不等式成立的条件以及对定理中关键词语的理解,然后再进行练习.这是很好的学习习惯,应该予以肯定.关于运用基本不等式求函数的最值问题,可以作为下节课的主要内容重点进行处理.

纵观本节课,教学设计合理,学生的参与度高.但在教学中,也有一些不足之处:对练习中学生的错误不仅及时指出,还应该及时给出正确的解答;对一些语病没能及时校正,如将“开方”说成“开根号”,将“

篇3:“基本不等式的证明”教学案例

1. 问题情境, 导入新课

投影:有一个珠宝商人, 很多人到他那里买的东西回家一称发现分量都有问题, 于是向工商局投诉, 工商局派人去调查, 商人承认他用的天平左右的杆长有问题, 向人们提出一个调解方案, 放左边称变重对人们不公平, 放右边称变轻商人要亏本, 那么用两次称重的平均值作为物品的实际重量, 如果你是购买者, 你接受他的方案吗?

问题1:判别公平不公平的依据是什么?答找出实际重量

问题2:如何找出实际重量?你能不能把这个问题转化成一个数学问题?

珠宝放左边称砝码显示重量为a, 放右边称砝码显示重量为b, 假设天平的左杠杆长为l1, 右杠杆长l2, 那么这个珠宝的实际重量是多少? (会算吗?用什么原理来算?用物理的杠杆原理求解出实际重量 )

2. 学生活动

请两名同学上黑板 (巡视, 有不同的解法让他上黑板写一下, 这样可以收集不同的证明方法) .

先让学生谈一谈证的对不对, 他这个证明方法有什么特点?

3. 建构数学

问题:对于这个定理你怎么认识它? (结构有什么特点啊?成立的条件是什么?什么叫当且仅当?)

当a=b时, 取“=”, 并且只有当a=b时, 取“=”, 我们把这种等号成立的情况称之为当且仅当.

猜想:n个正数的算术平均数大于等于它们的几何平均数是否成立?如果成立条件是什么.

二、教学反思

篇4:不等式证明的基本方法

一、 比较法

例1 设a、b是非负实数,求证:a3+b3≥ab(a2+b2).

简解: a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)

=(a-b)[(a)5-(b)5]

当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;

当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]

<0

所以a3+b3≥ab(a2+b2).

二、 分析法

例2 已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.

简解:要证c-c2-ab<a<c+c2-ab,只需证,-c2-ab<a-c<c2-ab

只需证,|a-c|<c2-ab即证,(a-c)2<c2-ab

即证a2-2ac<-ab,∵ a>0,只需证,a-2c<-b

即证a+b<2c,这为已知.故原不等式成立.

点评:分析法是执果索因,其步骤为未知→需知→已知,在操作中“要证”,“只需证”,“即证”这些词语是不可缺少的.

三、 综合法

例3设函数f(x)=2x(1-ln2x),

求证:对任意a、b∈R+,均有f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.

简解:

f′(x)=-2ln2x,f′(a)+f′(b)2=-ln4ab,

f′a+b2=-ln(a+b)2≤-ln4ab,

f′2aba+b=-2ln2•2aba+b≥-2ln4ab2ab=-ln4ab,

∴ f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.

点评:综合法是由因导果,其步骤为:从已知条件出发,利用有关定理、公理、公式、概念等推导出结论不等式.

四、 基本不等式法

例4 已知a、b、c均为正数,证明:a2+b2+c2+1a+1b+1c2≥63,并确定a、b、c为何值时,等号成立.

简解:因为a、b、c均为正数,由基本不等式得:

a2+b2≥2ab

b2+2≥2bc

c2+a2≥2ac

所以a2+b2+c2≥ab+bc+ac①

同理1a2+1b2+1c2≥1ab+1bc+1ac②

故a2+b2+c2+1a+1b+1c2

≥ab+bc+ac+31ab+31bc+31ac③

≥63

所以原不等式成立.

当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立,

即当且仅当a=b=c=314时,原式等号成立.

点评:利用基本不等式必须注意:“一正,二定,三相等.”

五、 反证法

例5 已知p3+q3=2,求证:p+q≤2.

分析:本题由已知条件直接证明结论,佷难找到证明的方法,正难则反,可以利用反证法.

简解:假设p+q>2,则p>2-q,p3>(2-q)3,

∴ p3+q3>q3+(2-q)3=q3+8-12q+6q2-q3=6q2-12q+8=6(q-1)2+2≥2

∴ p3+q3>2与p3+q3=2矛盾,∴ p+q≤2.

点评:正难则反,使用反证法,从否定结论出发,经过逻辑推理,导出矛盾,证明结论的否定是错误的,从而肯定原结论是正确的.

六、 放缩法

例6 设数列{an}满足a1=0且11-an+1-11-an=1.

(1) 求{an}的通项公式;

(2)设bn=1-an+1n记Sn=∑nk=1bn,证明:Sn<1.

分析:要证Sn<1,先求出{bn}的通项公式,再求{bn}的前n项的和Sn,最后利用放缩法.

简解:(1)an=1-1n;

(2)bn=1-an+1n=n+1-nn+1•n=1n-1n+1,

Sn=∑nk=1bn=∑nk=11k-1k+1=1-1n+1<1.

点评:放缩法是利用不等式的传递性,按题意及目标,作适当的放大或缩小,常用的放缩技巧有:

(1) 舍掉(或加进)一些项;(2)在分式中放大或缩小分子(或分母);

七、 柯西不等式法

例7 若n是不小于2的正整数,求证:47<1-12+13-14+…+12n-1-12n<22.

分析:从所要证明的不等式结构可转化为柯西不等式来证.

简解:1-12+13-14+…+12n-1-12n=1+12+13+…+12n-212+14+…+12n=1n+1+1n+2+…+12n

所以求证式等价于47<1n+1+1n+2+…+12n<22

由柯西不等式有1n+1+1n+2+…+12n[(n+1)+(n+2)+…+2n]>n2于是:1n+1+1n+2+…+12n>n2(n+1)+(n+2)+…+2n=2n3n+1=23+1n≥47

又由柯西不等式有

1n+1+1n+2+…+12n<

(12+22+…+n2)1(n+1)2+1(n+2)2+…+1(2n)2<

n1n(n+1)+1(n+1)(n+2)+…+1(2n-1)(2n)=

n1n-12n=22

八、 构造法

例8 已知a、b∈R,求证:|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.

分析:本题若从绝对值不等式方面入手比较难,但观察不等式两边的结构,可看出是函数f(x)=x1+x(x≥0)自变量x分别取|a+b|、|a|、|b|的函数值,从而可构造函数求解.

简解:构造函数f(x)=x1+x(x≥0),首先判断其单调性,设0≤x1<x2,因为f(x1)-f(x2)=x11+1-x21+x2=x1-x2(1+x1)(1+x2)<0,所以f(x1)<f(x2),所以f(x)在[0,+∞]上是增函数,取x1=|a+b|,x2=|a|+|b|,显然满足0≤x1≤x2,所以f(|a+b|)≤f(|a|+|b|),

即|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|.

点评: 抓住不等式的结构和特点,转化为函数思想求解是解决此题的关键.

篇5:证明不等式的教学计划

摘要

不等式,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。而不等式的证明,方法灵活多样,还和很多内容结合,它既是中学数学教学中的难点,也是数学竞赛培训的难点,近年也演变为竞赛命题的热点,因其证明不仅蕴涵了丰富的逻辑推理、非常讲究的恒等和不等变形技巧,而且证明过程千姿百态,极易出错,因此,有必要对不等式的证明方法和技巧进行总结归纳并与大家一起分享交流。本文通过对不等式的进一步研究,同时在前人的基础上对不等式的证明方法进行再探讨,得出了几点新方法,再有就是对于一些题目,很多人都是用一些常用的方法来解决,而笔者则是通过另外的一种方法来解,并且解题过程相对简单,在正文的例题当中,我用方法二给出了我的证明过程,以飨读者。

关键词:不等式;证明方法;证明技巧;换元法;微分法

证明不等式的方法灵活多样,内容丰富、技巧性较强要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.

通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.

1、比较法

比较法是证明不等式的一种最基本的方法,也是最常用的的方法,基本不等式就是用比较法证明的。其难点在第二步的“变形”上,变形的目的是有利于第三步判断,求差比较法变形的方向主要是分解因式、配方。1)作差比较法的理论依据有:

abab0,abab0,abab0.2)作商比较法的理论依据有:

ab0,ab1.b3)作差(商)比较法的步骤:

作差(商)变形判断符号(与1的大小)例1:求证:12x42x3x2 证明:法一:(12x4)(2x3x2)

2x3(x1)(x1)(x1)(x1)(2x3x1)(x1)(2x32xx1)

(x1)2(2x22x1)11(x1)2[2(x)2]02212x42x3x2

法二:12x4(2x3x2)

x42x3x2x42x2

1(x2x)2(x21)2012x42x3x2

说明:法一的变形主要是因式分解,其难点在于分解2x3x1的因式,判断2x22x1的符号除用配方法外,还可用判别式法(此法我们后面再述)。证法二的变形主要是配方法,难点在于拆项,此法笔者又将其归纳为裂项法。通过本例,可以了解求差比较法的全貌,以及关键的第二步变形。

例2:已知a1,0,求证:loga(a)log(a)(a2)证明:log(a)(a2)loga(a)log(a)(a2)log(a)a

[log(a)(a2)log(a)a2log(a)(a22a)2]2[][2log(a)a(a2)2]21] [log(a)(a)22又loga(a)0,log(a)(a2)loga(a).说明:观察不等式的特点,a充当了真数和底,联想到logaN1,进而用了logNa作商比较法,作商比较法的变形主要是利用某些运算性质和性质,如函数的单调性等,我们再看:

例3:若abc0,求证:(1)aabbbaab

(2)a2ab2bc2cabcbaccab

aabba证明:(1)abc0,ab()ab

bba

又ab0,a1,ab0 baabaabb()1,即ba1,又abba0

babaabbabba(2)由(1)的结果,有

aabbabba0,bbccbccb0,ccaacaac0

两边分别相乘得

aabbbbccccaaabbabccbcaacabc2a2b2cabcbaccab

2、综合法

利用某些证明过的不等式作为基础,再运用不等式的性质,推导出所求证的不等式,这种证明方法叫做综合法,综合法的思考路线是“由因导果”。例4:(1)已知a,b,c为不全相等的正数,求证:

bcacababcabc3

(2)已知a,b,c为不相等正数,且abc1,求证:abc1a1b1c 证明:(1)证法一:左式(bacbacab)(bc)(ca)3

a,b,c为不全相等的正数

baab2baab2 同理:cbbc2,caac

2且上面三个等号不能同时成立,(baab)(cbbc)(acca)3633证法二:左式(abcabcaba2)(b2)(cc2)

(abc)(111abc)6

a,b,c为不全等正数

(abc)(1111abc)633abc33abc696

3得证。

(2)证法一:a,b,c为不等正数,且abc1

abcbc11caab111111

cb2ca2ab1112abc证法二:a,b,c为不正数,且abc1

得证;

111abacabbcacbcbcacababc222

a2bcab2cab2cabc

得证。

说明:(1)题两种方法的差别主要在于对不等式左边施行不同的恒等变形,其目的都是为了有效地利用基本不等式,灵活地运用均值不等式,这也是综合法证明不等式的主要技巧之一;

(2)题是条件不等式的证明,要找出条件与结论之间的内在联系,分析已知与求证,不等式左边与右边的差异与联系,去异求存同,找到证题的切入口,本题合理运用条件abc1的不同变形。

3、分析法

从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为判断这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可判定所求证的不等式成立,这种证明方法叫做分析法,分析法的思路是“执果索因”。

111例5:已知函数f(x)lg(1),x(0,),若x1,x2(0,)且x1x2.x22xx1求证:[f(x1)f(x2)]f(12)

22证明:要证原不等式成立,只需证明(事实上,0x1x2(1121)(1)(1)2 x1x2x1x21,x1x2 21121)(1)(1)2x1x2x1x211144x1x2x1x2(x1x2)2x1x(x1x2)2(1x1x2)02x1x2(x1x2)即是(lg[(1121)(1)(1)2x1x2x1x21121)(1)]lg(1)2x1x2x1x2

xx21故[f(x1)f(x2)]f(1)22

得证。

4、换元法

换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元法的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元法的思想与方法来解就很方便,换元法多用于条件不等式的证明中,一般有增量换元、三角换元、和差换元、向量换元、利用对称性换元、借助几何图形换元等几种方法。1)增量换元

对对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量换元,换元的目的是通过换元达到减元,使问题化难为易,化繁为简。

114例6:已知abc,求证:.abbcac分析:考虑到ac(ab)(bc),由此可以令xab0,ybc0,这时问题转114化为“若x,y0,证明”。

xyxy证明:令xab0,ybc0,acxy,下面只要证明:

114即可。

xyxy11yxyxx,y0,()(xy)2224(当且仅当,即xy,2bac取等号)xyxyxy114114,即成立。xyxyabbcac例7:若ab0,求证:2abb2a2b2a.分析:如何利用已知不等式ab0是证明本题的关键,因为ab0ababh(h0)abh(h0),这样可把已知的不等式关系换成相等关系。

证明:ab0,设abh(h0),则2abb2a2b22b(bh)b2(bh)2b b22nhh22bhbha2abb2a2b2a.得证。

2)三角换元

三角换元就是根据已知的一些三角等式、三角代换来解决题目中的某些问题,如,问题中2若2已知x2y2a2(a0,)),可设xaco,ysasin;若已知

x2y2x2y2xy1,可x设rco,ysrsi(rn1);若已知221或221,则条件可

ababxacos,xasec,或设其中的范围取决于x,y的取值范围,等等。

yasin;ytan,acbd1.例8:已知a,b,c,d都是实数,且a2b21,c2d21,求证:分析:由a2b21,c2d21,可以联想到sin2cos21的关系作三角代换。证明:a2b21,c2d21,所以可设asin,bcos,csin,dcos,sincoscoscos(), acbdsin又cos()1,acbd1,即原不等式成立。

3)和差换元

aba2b2a3b3a6b6.例9:对任意实数a,b,求证:2222分析:对于任意实数a与b,都有asabab,t,则有ast,bst。22abababab,令,b2222证明:设ast,bst,下面只需证

s(s2t2)(s33st2)s615s4t215s2t4t6.右边左边11s4t212s2t4t60, s(s2t2)(s33st2)s615s4t215s2t4t6,aba2b2a3b3a6b6即.222

2得证。

4)向量换元

例10:已知a,bR,ab1,求证:2a12b122.分析:将不等式变形为12a112b122a12b1,观察其结构我们可联想到学习两个向量的内积是有这样一个性质:abab及aba1b1a2b2。

证明:设m(1,1),n(2a1,2b1),则有mn2a12b1,m2,n2a12bab1,n2,由性质mnmn,得2a12a122.5)利用对称性换元

例11:设a,b,cR,求证:abc(bca)(cab)(abc).分析:经过观察,我们发现,把a,b,c中的两个互换,不等式不变,则可令xbca,ycab,zabc,则原不等式可化为:(xy)(yz)(zx)8xyz.证明:令xbca,ycab,zabc

111(yz),b(xz),c(xy)222 a,b,cR,当xyz0时,有 则a(xy)(yz)(zx)8xyz.当xyz0时,有x,y,zR(否则x,y,z中必有两个不为正值,不妨设x0,y0则c0,这与c0矛盾)

因此:xy2xy0,yz2yz0,zx2zx0 则有:(xy)(yz)(zx)8xyz 综上,恒有(xy)(yz)(zx)8xyz,把x,y,z的值代人上式得:abc(bca)(cab)(abc).得证。6)借助几何图形换元

例12:已知a,b,c是ABC三边的长,求证:a3bb3cc3aa2b2b2c2c2a2.分析:如图,作ABC的内切圆,设D,E,F为切点,令xBD,yCD,zAE.(其中x,y,zR),则原不等式可转化为:

y2z2x2(z)(x)(y)2x2y2z

(1)zxy再利用均值不等式:ab2ab。

证明:设D,E,F为切点,令xBD,yCD,zAE.则原不等式可化为(1)的形式,又

y2z2x2因为x,y,zR,则有,z2y,x2z,y2x.所以(1)式成立,故原不

zxy等式成立。得证。

7)代数换元

例13:已知a,b,cR,且abc1,求证:3a13b13c132.分析:引入参数,配凑成二次方程转化为二次不等式 证明:设3a13b13c1k.则可令3a1kkkt1,3b1t2,3c1t3,其中t1t2t30.333kkk所以3a13b13c1(t1)2(t2)2(t3)2

333k22k2222222k(t1t2t3)t1t2t3(t1t2t3)即6333k2所以6,解得

3k32,即3a13b13c132。得证。

8)分式换元

12例14:设x0,y0,xy1,求证:322

xy分析:因为xy1,x0,y0,所以用分式换元,转化为均值不等式证明。证明:设xab,y(a0,b0),则 abab12ab2(ab)b2a3322,xyabab即12322 xy9)比值换元法

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式即可。

例15:已知x1y2z4,求证:x2y2z210.证明:设x1y2z4k,于是xk1,yk2,zk4

把x,y,z代入x2y2z2得:3k26k133(k22k1)103(k1)21010。得证。

5、放缩法

为了证明不等式,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到证题的目的,这种方法称为放缩法,放缩时主要方法有:

1311)舍去或加上一些项,如:(a)2(a)2.2422)将分子或分母放大(缩小),如:

11111,,22k(k1)kk(k1)kk2kk1,1k2kk1.(kN,k1).n(n1)(n1)2an.例16:设an1223n(n1).(nN).求证:22证明:an1223n(n1)1122nn

n(n1).2k(k1)又kk1,k(k1).(kN).12nan1223n(n1)n22n(n1)222n(n1)(n1)2an。得证。221223n(n1)222

说明:在使用放缩法时,需要注意的是放缩要适度,不能放得过大或太小。

6、反证法

反证法就是从否定结论出发,通过逻辑推理,导出矛盾,从而肯定原命题成立,反证法必须考虑各种与原命题相异的结论,缺少任何一个可能都是不完全的,如,要证不等式AB,先假设AB,根据题设及其他性质推出矛盾,从而肯定AB成立。

1例17:已知f(x)x2axb,求证:f(1),f(2),f(3)不全小于.21111证明:假设f(1),f(2),f(3)全小于,即f(1),f(2),f(3),2222由于f(1)1ab,f(2)42ab,f(3)93ab,f(1)2f(2)f(3)2f(1)2f(2)f(3)2.另一方面:由假设得

f(1)2f(2)f(3)f(1)f(3)2f(2)11122 222显然,22是错误的

1故f(1),f(2),f(3)不全小于。得证。

2说明:对于存在、不都是、至少(多)、不全小(大)、某个(反面:任意的)等问题,通常从正面难寻突破口,可变换角度,巧用反证法往往会见奇效。

7、判别式法

a2x2b2xc2如果所要证明的不等式可转化为形如:y的函数值域(xR),或转化2a1xb1xc1为一元二次方程有实数根等问题,则可用判别式法达到证题目的。

12例18:若x,y,zR,且xyza,用x2y2z2a2(a0)求证x,y,z都是不大于a23的非负数。

1证明:由zaxy,代入x2y2z2a2,可得

22x22(ay)xy2(ay)212a021xR,0,即4(ay)28[y2(ay)2a2]02化简得3y22ay0, a0,0y2a322同理可得:0xa,0za。得证。338、构造法

有些不等式可构造函数利用函数性质,或构造复数利用复数向量有关性质,或构造几何图形利用集合知识,还可以构造数列利用数列相关性质来证明不等式。1)利用函数的单调性

例19:求证:ab1aba1ab1b.分析:由不等号两边形式可归纳为f(x)f(x)x在x0时的单调性。1xx.(x0)的形式,因此可考虑函数1x证明:构造函数f(x)xxx1x2x0,设0x1x2,121x11x2(1x1)(1x2)1xf(x)在x0上是增函数,且abab

令x1ab,x2ab,则有

ab1abab1aba1abb1aba1ab1b.得证。

2)构造复数利用复数向量有关性质

例20:求证:a2b2c2d2(ac)2(bd)2.(a与c,b与d不同时相等)证明:设z1abi,z2cdi,那么z1z2(ac)(bd)i

z2c2d2 由于z1z2z1z2,而z1a2b2,则z1z2(ac)2(bd)2

有(ac)2(bd)2a2b2c2d2.得证。

9、用微分法证明不等式

微分在中学时又称为求导,用微分法其实就是用求导的方法来解决问题。

例21:设函数f(x)a1sinxa2sin2xansinnx,其中a1,a2,,an都为实数,n为正整数。已知对于一切实数x,有f(x)sinx,试证:a12a2nan1.分析:问题中的条件与结论不属于一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:a12a2nanf/(0).于是问题就转化为求证:f/(0)1.证明:因f/(x)a1cosx2a2cos2xnancosnx.则f/(0)a12a2nan.利用导数的定义得:

篇6:不等式的证明

教学目标

1.知识与技能

(1).理解绝对值的几何意义并能用其证明不等式和解绝对值不等式.(2).了解数学归纳法的使用原理.(3).会用数学归纳法证明一些简单问题.(4).了解证明不等式的常用方法.2.过程与方法

通过自主学习、课上讨论、提问、分析点评,让学生更加熟练解决有关不等式证明有关的问题.3.情感、态度和价值观

(1)培养学生分析、探究问题的能力,进一步培养学生学习数学的兴趣及综合运用基本知识解决问题的能力.(2)培养他们合作、交流、创新意识以及数形结合、抽象理解能力,使学生学会数学表达和交流,发展数学应用意识.学法与教具

(1)学法:课下自主复习、课堂上合作探究.(2)教具:教学案、多媒体.一、【知识梳理】

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容.1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:、放缩法、反证法、函数单调性法、、数形结合法等.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.(1)反证法的一般步骤:反设——推理——导出矛盾(得出结论);(2)放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析、多次尝试得出,要注意

放缩的适度。常用的方法是:

131

①添加或舍去一些项,如:a1a,n(n1)n,aa

242

②将分子或分母放大(或缩小)如:

1n

n(n1)n

ab),2

1n(n1)

③真分数的性质:“若0ab,m0,,则

ambm(lg

④利用基本不等式,如:lg3lg5(n(n1)

lg3lg

2)(lg

2)

(lg4)

lg4;

n(n1)

.⑤利用函数的单调性

⑥利用函数的有界性:如:sinA1,AR;2x0,xR.⑦利用常用结论: Ⅰ、1K1K

2K2K1k(k1)1k

K

2K

2K1k

K1K

12(K1K)(kN,k1)

*

K

2(KK1)(kN,k1)

*

Ⅱ、1k



1k

1 ;

1k

1k(k1)

1k1

1k

1k1

(程度大)

Ⅲ、1k

1

(k1)(k1)

2k1

();(程度小)

⑧绝对值不等式:ababab;

nn1n1

⑨应用二项式定理.如:2(11)1CnCn12(n1)(n4)

3构造法:通过构造函数、方程、数列、向量或不等式来证明不等式.二、【范例导航】

例1.设不等式2x11的解集为M.(I)求集合M;(II)若a,b∈M,试比较ab+1与a+b的大小.

解:(I)由2x11解得0x1.所以Mx0x1(II)由(I)可知aMbM,故0a1,0b1 所以(ab1)(ab)(a1)(b1)0故ab1ab

例2.已知a、b、c∈R+,且abc1求证:(1a)(1b)(1c)8(1a)(1b)(1c).剖析:在条件“abc1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“abc”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证

a,b,cR且abc

1

∴要证原不等式成立,即证

(abc)a(abc)b(abc)c8(abc)a(abc)b(abc)c

也就是证

(ab)(ca)(ab)(cb)(ac)(bc)8(bc)(ca)(ab)1

∵(ab)(bc)2(ab)(bc)0,(ac)(bc)2(ac)(bc)0(ab)(ac)2(ab)(ac)0,三式相乘得①式成立.故原不等式得证.例3.证明不等式1

1213

1n

2n(nN)

证:对任意nN,都有: 1k

2k12k13

2k

k11n

2(kk1),2)2(n

n1)2n.因此122(21)2(3

例4.证明

:(1)(1)(1

112n1)

2n12n1

75

2n12n1

2n1

3

2n1

2证明方法

一、1

(1

13)(1

512n

1

2n2n1)

43

65

(2n1)(2n1)2n12n1



2n2n1

53)(1

5476

2n176

证明方法

二、设B则AB又因为所以A

435465

2n2n

12n1



2n

2n12n,2n1

32n2n1

2n12n

2n1

4,A

2n1

2AB

2n13

例5.已知:a,b,c都是小于1的正数;求证(1a)b,(1b)c,(1c)a中至少有一个不大于.证明:假设(1a)b

14,(1b)c

14,(1c)a

1232,14,则有

12,(1c)a

∵a,b,c都是小于1的正数,(1a)b从而有(1a)b

(1b)c

(1c)a

(1b)c

1bc

1ca

32

但是(1a)b(1b)c(1c)a

1ab

故与上式矛盾,假设不成立,原命题正确.

【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.

三、【解法小结】

1.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.4.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等,在放缩法中一定要注意放缩的尺度问题不能过大也不能过小.四、【布置作业】

必做题:

1.不等式x3x1a3a对任意实数x恒成立,则实数a的取值范围为()

A.,14,2.设an

sin1

2sin22

B.,25,C.1,2D.,12,

sinn2

n

, 则对任意正整数m,n(mn), 都成立的是()

mn2

A.anam

mn2

B.anam C.anam

n

D.anam

n

3.(陕西长安二中2008届高三第一学期第二次月考)设

1ba

()()1,那么()222

A.aaabbaB.aabaabC。abaabaD.abbaaa

4.(2012,四川文)设a,b为正实数,现有下列命题:

① 若a2b21,则;ab1 ②若③若

1b1a

1,则ab1;

ab1,则ab1;

④若a3b31,则ab1.其中的真命题有___________(写出所有正确的题号)必做题答案:

1.A解析:因为x3x1a3a对任意x恒成立,又因为x3x1最大值为4所以 a3a4解得a4或a

sinn12

n

12.C

anam

sinn22

n2



sinm21

m

sin(n1)2

n1

sin(n2)2

n2



sinm2

m

n1

n2



m

n1

n2



m

12

n1

m1

n

m

n

1

故应选C

16.答案C17、①④

选做题:(辽宁2011理21)已知函数f(x)lnxax2(2a)x.(I)讨论f(x)的单调性;(II)设a0,证明:当0x

1x

时,f(1a

x)f(1a

x);

(III)若函数yf(x)的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f(x0)0. 解:(I)f(x)的定义域为(0,), f(x)

1x

2ax(2a)

(2x1)(ax1)

x

)(i)若a0则f(x)0,所以f(x)在(0,单调增加.(ii)若a0则由f(x)0得x

1a

且当x(0,)时,f(x)0,当x

a

11a

时,f(x)0,1单调增加,在(,)单调减少.所以f(x)在(0)a

a

(II)设函数g(x)f(a1ax

1x

1a

x)f(1a

x)则g(x)ln(1ax)ln(1ax)2ax

1a

g(x)

a1ax

2a

1a

2ax

1ax

1a,当0x时,g(x)0,而g(0)0,所以g(x)0.故当0x时,f(x)f(x)

(III)由(I)可得,当a0函数yf(x),的图像与x轴至多有一个交点,11

,且f0不妨设aa

1ax

2故a0,从而f(x)的最大值为f

A(x1,0)B(x20),0x1x2,则0x1

2a

1a

1a

由(II)得f(x1)f(

x1)f(x1)0从而x2

2a

x1,于是x0

x1x2

1a

由(I)知,f(x)0

五、【教后反思】

上一篇:申请担保流程下一篇:计划生育会议记录