碰撞与动量守恒知识点

2024-04-10

碰撞与动量守恒知识点(精选10篇)

篇1:碰撞与动量守恒知识点

《碰撞与动量守恒》教学反思

我体会到,教材只是多种教学资源中的一种,从教材演变为实际的教学行为,必须赋与教师的创造性劳动。教师永远是教学的创造者,这是教师的职业光荣。在新课程形势下要求:一个称职的高中物理教师,决不能“教书匠”式地“照本宣科”,要在教学中不断反思,不断学习,与时共进。新课程提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯。可是,如果物理教师对于教学不做任何反思,既不注意及时吸收他们的研究成果,自己对教学又不做认真思考,“上课时,只是就事论事地将基本的知识传授给学生,下课后要他们死记,而不鼓励他们思考分析”,那么,又怎能转变学生被动接受、死记硬背的学习方式,拓展学生学习和探究物理问题的空间呢?那么,教师首先要在教学中不断反思。

在动量与冲量这一节,讲述概念,不是直接给出,而是在分析大量事例的基础上概括、归纳出来的。对概念的理解,不是简单记忆,停留在表面上。注重概念的形成过程,包括为什么引入,如何引入,如何理解,都体现在教学中,如动量概念的得出。精选了典型的例题、典型的生活事例,达到了举一反三的效果。充分利用教具形象性的特点,激发学生的学习兴趣。教师的教学角色和学生的学习方式与传统相比发生了变化,教师主要组织、引导学生发现问题,学生主动参与,乐于探究,课堂气氛较活跃,学生学习热情较高,师生互动较好。

在动量定理这一节,在本节课的设计过程中,本人尝试建立了新的教学模式,即“激趣――探究――体验――内化――应用”。教师不再是满堂灌,而是精心设计物理情景,再进行适当的思维点拔,让学生主动参与,体验和感悟科学探究的过程与方法。本节内容与日常生活联系紧密。先是用“落蛋实验”引起学生的极大兴趣;“两种方式下跳”对动量定理的`理解有了体验;“亲口说说”即训练了学生的口头表达能力,又活化了对定理的理解;“亲手做做”和“创新实践”,让学生知道学习的最高境界是应用,物理学习从生活开始,最后又走向社会。

在动量守恒定律这一节课的成败主要在于实验的成功与否,本人首先通过实验来引导学生发现规律,然后用理论推导得出定律,所以上课前一定要调整好实验器材,如果误差大,可以多测几组数据进行规律的总结。如果条件容许,将此演示实验改成学生实验效果会更好。

在动量守恒定律的应用这节,这是一节集知识点、技巧、分析能力等综合性较高的习题课。重点要培养学生把握知识内在联系的能力、规律的提取能力以及各方面综合分析问题的能力。从教学方法上,大胆对力学中两大重要守恒定律进行了归纳教学,如果能借助多媒体动态模拟,展现题目中相应的物理情景,引导学生自述、讨论、归纳、总结规律就会更好。

后面的几节主要体现动量守恒定律在生活中的应用,在设计中主要结合生活中的实例展示,碰撞是生活中的一个常见现象,本节课以研究碰撞为主题,向学生展示了一个基本的现象研究的思维过程,即为“观察生活→提出疑问→分析推理→提炼规律→应用”。在实验观察时,用对一个经典的演示实验的分析揭示了常见现象中的不寻常之处,激发了学生进一步探究的兴趣。本节课的主体内容无疑是对碰撞的理论分析和实验验证,这个过程的基本步骤为“提出假设→理论推理→实验检验→提炼规律”。在分析过程中,以问题为纽带,逐步引导学生的思维,直至最终推理得出规律。在反冲运动这节,设计中主要结合生活中的实例展示,反击式水轮机、喷气式飞机、火箭都是反冲的重要应用,从而更好的理解反冲运动。

不足之处,在知识的深度、广度与时间的协调上,依然不能驾驭这三者。

启示:在平常教育教学中,必须具备全心的教育理念,认真学习新课改精神,使自己具有先进、科学的教育思想,将每节课按高标准要求,不断创新,提高课堂教学效益。这也是对我校实施的高效课堂教学的一次有益尝试。对教学设计表现为:不思则无,深思则远,远思则宽。

篇2:碰撞与动量守恒知识点

1. 关于牛顿运动定律和动量守恒定律的适用范围,下列说法正确的是()A.牛顿运动定律也适用于解决高速运动的问题 B.牛顿运动定律也适用于解决微观粒子的运动问题 C.动量守恒定律既适用于低速,也适用于高速运动的问题 D.动量守恒定律适用于宏观物体,不适用于微观粒子

2. 在做“碰撞中的动量守恒”实验中,以下操作正确的是。A.在安装斜槽轨道时,必须使斜槽末端的切线保持水平B.入射小球沿斜槽下滑过程中,受到与斜槽的摩擦力会影响实验

C.白纸铺到地面上后,实验时整个过程都不能移动,但复写纸不必固定在白纸上 D.复写纸必须要将整张白纸覆盖

3. 甲、乙两个质量都是M的小车静置在光滑水平地面上.质量为m的人站在甲车上并以速度v(对地)跳上乙车,接着仍以对地的速率v反跳回甲车.对于这一过程,下列说法中正确的是()

A.最后甲、乙两车的速率相等

B.最后甲、乙两车的速率之比v甲:v乙=M:(m+M)C.人从甲车跳到乙车时对甲的冲量I1,从乙车跳回甲车时对乙车的冲量I2,应是I1=I2 D.选择C.中的结论应是I1<I2

4. 在光滑水平面上,动能为E0、动量为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量大小分别记为E1、p1,球2 的动能和动量的大小分别记为E2、p2,则必有()A.E1E0 D.p2>p0

5. 甲、乙各站在船的两端,甲在左,乙在右,原来甲、乙和船都静止,为了能使船向右移动,以下情况符合要求的是(不计水的阻力)()A.甲单独向乙走动

B.甲乙相向走动,只要乙的速度大于甲 C.甲乙相向走,只要乙的质量大于甲 D.甲乙相向走动,乙的动量大于甲

6. A、B两球在光滑水平面上相向运动,已知mA>mB,当两球相碰后,其中一球停下来,则可以判定()

A.碰前A球动量大于B球动量 B.碰前A球动量等于B球动量

C.若碰后A球速度为零,则碰前A球动量大于B球动量 D.若碰后B球速度为零,则碰前A球动量大于B球动量

7. 质量分别为60kg和70kg的甲.乙二人,分别同时从原来静止的在光滑水平面上的小车两端,以3m/s的 水平初速度沿相反方向跳到地面上.若小车的质量为20kg,则当二人跳离小车后,小车的运动速度为()

A. 19.5m/s,方向与甲的初速度方向相同 B. 19.5m/s,方向与乙的初速度方向相同 C. 1.5m/s,方向与甲的初速度方向相同 D. 1.5m/s,方向与乙的初速度方向相同

8. 在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=12kg.m/s、pB=13kg.m/s,碰后它们动量的变化分别为△pA、△pB.下列数值可能正确的是()

A.△pA=﹣3kg.m/s、△pB=3kg.m/s C.△pA=﹣24kg.m/s、△pB=24kg.m/s

B.△pA=3kg.m/s、△pB=﹣3kg.m/s D.△pA=24kg.m/s、△pB=﹣24kg.m/s 9. 对同一质点,下面说法中正确的是()

A.匀速圆周运动中,动量是不变的

B.匀速圆周运动中,在相等的时间内,动量的改变量相等

C.平抛运动、竖直上抛运动,在相等的时间内,动量的改变量相等

D.只要质点的速度大小不变,则它的动量就一定不变

10. 三个完全相同的小球a、b、c以相同的速度分别与另外三个不同的都是静止的小球相碰后,小球a被反向弹回,小球b与被碰球粘合在一起仍沿原方向运动,小球c恰好碰后静止。那么,三种情况比较以下说法中正确的是()A.b球损失的动能最多 B.被碰球对a球的冲量最大 C.c球克服阻力做功最多

D.三种碰撞过程,系统的机械能都守恒

参考答案: 1. 答案: C 解析: 牛顿运动定律只适用于低速宏观的物体,动量守恒定律适用于物理学研究的各个领域.

2. 答案: AC 3. 答案: BD 4. 答案: ABD 解析: 两个钢球组成的系统在碰撞过程中动量守恒,设钢球1初动量的方向为正方向,又由动量守恒定律得:p0=p2-p1,可见p2>p0,故选项D正确。单从动量方面分析,p1可以大于p0,若如此必有碰后系统的动能增加,但对于碰撞问题碰撞后系统的动能不可能大于碰前系统的动能,因此E1+E2≤E0,必有E1解析: 要使船向右运动,则船需要有向右运动的速度,甲乙在船上运动时,甲乙船整体不受外力,动量守恒.设向右为正,则

A.若甲单独向乙走动,则甲的速度方向向右,根据动量守恒定律得此时船的速度方向与甲的速度方向相反,向左运动,故A错误; B.若甲乙相向走动,乙的速度大于甲,根据动量守恒定律得:m甲v甲+m船v船+m乙v乙=0,因为不知道甲乙质量的关系,不能判断船速度的正负,及不能判断船的运动方向,故B错误; C.同理可以得到,由于不知道甲乙速度的大小,不能判断船速度的正负,及不能判断船的运动方向,故C错误;

D.若甲乙相向走动,根据动量守恒定律得:m甲v甲+m船v船+m乙v乙=0,因为乙的动量大于甲的动量,所以船的速度方向与乙的速度方向相反,向右运动,故D正确; 故选D. 6. 答案: C 7. 答案: C 8. 答案: A 解析: 考点: 动量守恒定律.

分析: 当A球追上B球时发生碰撞,遵守动量守恒.由动量守恒定律和碰撞过程总动能不增加,进行选择.

解答: 解:B、由题,碰撞后,两球的动量方向都与原来方向相同,A的动量不可能沿原方向增大.故碰后它们动量的变化分别为△pA<0,故B、D错误. A.根据碰撞过程动量守恒定律,如果△pA=﹣3kg.m/s、△pB=3kg.m/s,所以碰后两球的动量分别为p′A=9kg.m/s、p′B=16kg.m/s,根据碰撞过程总动能不增加,故A正确.

C.根据碰撞过程动量守恒定律,如果△pA=﹣24kg.m/s、△pB=24kg.m/s,所以碰后两球的动量分别为p′A=﹣12kg.m/s、p′B=37kg.m/s,可以看出,碰撞后A的动能不变,而B的动能增大,违反了能量守恒定律.故C错误. 故选A.

点评: 对于碰撞过程要遵守三大规律:

1、是动量守恒定律;

2、总动能不增加;

3、符合物体的实际运动情况 9. 答案: C 解析: 考点:动量守恒定律.分析:物体质量与速度的乘积是物体的动量,动量是矢量,既有大小又有方向;根据动量的定义式与动量定理分析答题.

解答:解:A、在匀速圆周运动中,速度的大小不变,速度的方向不断变化,物体的动量大小不变,方向时刻改变,物体的动量不断变化,故A错误;

B.在匀速圆周运动中,物体所受合外力提供向心力,向心力始终指向圆心,方向不断改变,在相等时间内,力与时间的乘积,即力的冲量反向不同,冲量不同,由动量定理可知,匀速圆周运动中,在相等的时间内,动量的改变量不同,故B错误;

C.平抛运动、竖直上抛运动,物体受到的合外力是重力mg,在相等的时间t内,合外力的冲量:I=mgt相等,由动量定理可知,动量的该变量相等,故C正确;

D.物体动量p=mv,质点速度大小不变,如果速度方向发生变化,则物体的动量发生变化,故D错误; 故选:C.

篇3:碰撞与动量守恒知识点

针对此问题, 笔者在教学过程中引导学生做如下分析, 让学生真正弄清楚三个落点为什么会出现这样的位置关系, 便于学生理解和记忆。

在该实验中, 两小球的碰撞可以视为弹性碰撞, 在碰撞过程中满足动量守恒和机械能守恒, 可以得到如下表达式:

分析以上两个结果可以得到, 本实验中必须要求入射小球A的质量比被碰小球B的质量大, 从 (3) 式中可以看出, 碰撞后入射小球A的速度小于碰撞前, 因此碰撞后的落点M在P点左侧;对 (4) 式, 由于mA>mB, 所以2mA>mA+mB, Vb>V0。因此碰撞后B的落点在P点右侧。

篇4:碰撞与动量守恒知识点

针对此问题,笔者在教学过程中引导学生做如下分析,让学生真正弄清楚三个落点为什么会出现这样的位置关系,便于学生理解和记忆。

以上分析对多数学生来讲并不困难,在教学过程中,教师应该引导学生发现问题,培养学生提出问题的能力,并能利用相关的物理知识解决问题,让学生在学习过程中多观察,多思考,能主动地去思考物理问题,而不是老师怎么教,学生就怎么学,这样才有利于学生的能力培养。

(作者单位:云南师大附中)

在实验《验证碰撞中的动量守恒》中,笔者在教学过程中发现,学生对不碰撞时入射球的落点P、碰撞后入射球A的落点M以及碰撞后被碰球的落点N三者的位置关系不太容易理解和接受,多数学生认为,既然碰撞后A、B两球的动量之和等于碰撞前A球的动量,那么碰撞后A、B两球的落点都应该比不碰撞时的落点更近一些,即下图中的M、N两点都应该在P点左侧。

针对此问题,笔者在教学过程中引导学生做如下分析,让学生真正弄清楚三个落点为什么会出现这样的位置关系,便于学生理解和记忆。

以上分析对多数学生来讲并不困难,在教学过程中,教师应该引导学生发现问题,培养学生提出问题的能力,并能利用相关的物理知识解决问题,让学生在学习过程中多观察,多思考,能主动地去思考物理问题,而不是老师怎么教,学生就怎么学,这样才有利于学生的能力培养。

(作者单位:云南师大附中)

在实验《验证碰撞中的动量守恒》中,笔者在教学过程中发现,学生对不碰撞时入射球的落点P、碰撞后入射球A的落点M以及碰撞后被碰球的落点N三者的位置关系不太容易理解和接受,多数学生认为,既然碰撞后A、B两球的动量之和等于碰撞前A球的动量,那么碰撞后A、B两球的落点都应该比不碰撞时的落点更近一些,即下图中的M、N两点都应该在P点左侧。

针对此问题,笔者在教学过程中引导学生做如下分析,让学生真正弄清楚三个落点为什么会出现这样的位置关系,便于学生理解和记忆。

以上分析对多数学生来讲并不困难,在教学过程中,教师应该引导学生发现问题,培养学生提出问题的能力,并能利用相关的物理知识解决问题,让学生在学习过程中多观察,多思考,能主动地去思考物理问题,而不是老师怎么教,学生就怎么学,这样才有利于学生的能力培养。

篇5:碰撞与动量守恒知识点

一、动量守恒定律的适用范围

所谓动量守恒定律, 就是指如果质点系所受到的矢量和为零, 即ΣF?? (28) 0, 质点系的总动量并不随时间变化。简单地说, 质点系动量守恒的充分必要条件就是质点系所受外力的矢量和为零。在物理学中, 动量守恒定律主要反映的是相互作用物体之间的规律, 它的适用范围非常广泛, 从大的宇宙天体到小的微观颗粒, 不仅可以方便快捷地处理低速问题, 而且还能解决一些运动问题, 在宏观低速、微观高速以及各种的变力、恒力方面发挥着重要作用。我们知道, 动量守恒的条件是ΣF?? (28) 0, 但是在实际的应用中, 情况往往比较复杂, 具体来说, 我们需要注意以下几点。第一, 在研究系统中, 如果相互作用的内力比外力大, 这时也满足适用于能量守恒定律。比如, 碰撞和爆炸问题。第二, 对于一个系统, ΣF??≠0, 但是在某一个方向上外力的投影的代数和为零, 在这一方向上质点系动量的分量保持恒定, 也属于动量守恒。第三, 如果研究系统是刚体时, 所有外力的作用就等于一个合力和合力矩, 如果合力矩不等于零, 只要满足合力等于零, 同样符合动量守恒定律。第四, 还要注意动量守恒定律中的矢量性, 因为我们所说的质点系的总动量就是指系统中所有质点动量的矢量和。总之, 正确理解和把握动量守恒定律的适用条件和范围是我们灵活处理实际问题的前提条件。下面, 我们就结合具体例子, 对动量守恒定律在解决物理学问题中的具体运用进行说明。

例1:一辆武汉―北京的火车正在匀速前进, 其中一节车厢突然脱节。如果火车的总质量为M, 脱节车厢的重量为m, 匀速前进时的速度为v, 在牵引力不变的情况下, 如果阻力与质量成正比关系。当脱节车厢停止的时候, 请问此时火车的速度是多少?

分析:当相互作用物体不受外力或者外力为零的时候, 物体系统的动量都守恒。在车厢脱节前, 火车在进行匀速运动, 所以, 列车的合外力为零。当车厢脱节后, 火车做加速运动, 脱节车厢做减速运动, 此时火车和脱节车厢的总阻力还是等于牵引力, 合力等于零。因此, 在发生脱节后, 虽然火车和车厢没有直接发生相互作用, 但是, 他们合力为零, 也同样遵循动量守恒定律。依据动量守恒定律, 我们可以这样解答:

解:设当脱节车厢停止时, 火车的速度为v′。

从上述例子中, 我们可以看到, 只要满足合力为零, 就是符合动量守恒条件, 我们就可以运用动量守恒定律来解决问题。

二、能量守恒定律的适用范围

与动量守恒定律有所不同, 能量守恒定律所侧重于各种运动形式中能量的转化, 即自然界的一切物质都具有能量, 而这种能量既不能被消灭也不能被创造, 只能从一种形式转化或者传递到另一种形式, 在转化和传递的过程中总能量恒定不变。具体来讲, 能量守恒包括的`内容比较广泛, 主要有机械能守恒、机械能与电势能总和守恒以及动能与电势能总和守恒等。而能量守恒成立的条件主要包括两个内容:一方面是指各种形式能量的等量转换;另一方面是总能量的守恒。这里我们主要以机械能守恒定律为例, 对能量守恒定律在物理学中的应用情况进行介绍和说明。机械能守恒的条件是“除重力之外, 没有其他外来对物体做功”, 即 而所谓的“除重力之外, 没有其他外来对物体做功”, 并不是指“只受到重力的作用”。在实际中, 物体也可以受到其他外力的作用, 只要这些外力的代数和为零, 我们就可以认定为“只有重力在做功”, 就是满足机械能守恒的条件。对于机械能是否守恒, 在大多数情况下, 机械能守恒定律的研究都存在一定的系统之中, 如果系统内只有一个物体时, 我们依据是否只有重力在做功从而判断机械能是不是守恒;如果有多个物体, 我们要考虑摩擦和介质阻力因素从而判断机械能是否守恒。下面, 我们就以两个具体实例, 来说明机械能守恒定律的应用。

例2:如下图所示 (图1) , 一个小车停放在光滑的水平面上, 其中一个物块要沿着水平轨道向上面滑去, 当物块到达一定高度后再下来。假设小车的质量为m, 物块的质量为M, 物块滑行的速度为v0, 请问, 物块滑行的最大高度是多少?

分析:由于水平面是光滑的, 所以小车和物块构成的系统中水平方向的动量是守恒的, 又因为这个系统内没有摩擦做功, 所以研究系统内的机械能也是守恒的。根据动量守恒定律和机械能守恒定律, 我们可以这样解题:

解:设物块滑行的最大高度为h, 物块达到最大高度时的速度为v。

则由动量守恒定律可得, mv0 (28) (M (10) m) v (1)

由机械能守恒定律可得,

例3:有两个质点, 质量分别为1m、m 2, 当这两个质点处于静止状态时, 它们之间的距离为l, 由于受万有引力影响而运动, 请问当这两个质点运动到距离为 的时候, 他们的速率各是多少?

解:设两2个质点的速率分别为v 1和v 2。

在两个质点所形成的研究系统中, 系统的动量和能量都守恒。

依据守恒定律可得:

由 (1) 、(2) 可得,

同样地, 动能和电势能总和守恒、机械能和电势能总和守恒也与机械守恒定律类似, 在只有电场力做功的情况下, 动能和电势能总和守恒;在只有重力和电场力做功的情况下, 机械能和电势能总和守恒。

三、结束语

简而言之, 动量守恒定律与能量守恒定律在解决物理力学问题方面发挥着重要作用。与牛顿运动定律相比, 动量守恒定律的使用范围更加广泛, 其适用范围远远超出了经典力学的范围 (低速、宏观的物理过程) , 还被用来解决微观世界中的一些问题。而能量守恒定律则被广泛应用于解决多种运动形式能量转化之间的问题。通过对动量守恒定律与能量守恒定律适用范围的分析和研究, 为我们寻找解决实际问题的方法提供了依据。比如, 如果研究系统处在光滑平面上时, 我们就要考虑动量守恒定律, 如果研究系统内出现摩擦做功, 我们就会想到能量守恒定律, 这样就大大提高了解决问题的效率。

参考文献

[1]刘丙国, 刘笃举, 巩克燕, 贺春元.浅析大学物理中力学守恒定律的应用[J].科技信息, , (3) :12-13.

[2]冯燕.动量守恒定律与能量守恒定律的综合运用[J].课程教材教学研究 (教育研究版) , , (2) :46-47.

[3]舒建明.以“动能”和“动量”为突破口进行小结――小结“机械能”和“动量守恒定律”[J].成才之路, , (19) :18-19.

[4]宋月丽, 高磊.关于动量守恒定律应用的若干问题讨论[J].平顶山学院学报, 2011, (2) :38-39.

篇6:动量守恒教案

(教案)杜茂文

教学目标:

一、知识目标

1、理解动量守恒定律的确切含义.

2、知道动量守恒定律的适用条件和适用范围.

二、能力目标

1、运用动量定理和牛顿第三定律推导出动量守恒定律.

2、能运用动量守恒定律解释现象.

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).

三、情感目标

1、培养实事求是的科学态度和严谨的推理方法.

2、使学生知道自然科学规律发现的重大现实意义及对社会发展的巨大推动作用. 重点难点:

重点:理解和基本掌握动量守恒定律. 难点:对动量守恒定律条件的掌握. 教学过程:

动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.

(-)系统

为了便于对问题的讨论和分析,我们引入几个概念.

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.

2.内力:系统内各个物体间的相互作用力称为内力.

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.

(二)相互作用的两个物体动量变化之间的关系

【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.

1.实验条件:以A、B为系统,外力很小可忽略不计.

2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0

【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.

(三)动量守恒定律

1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB= mAvA’+mBvB’

(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.

【注意】式中各速度都应相对同一参考系,一般以地面为参考系.

(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算. 3.成立条件

在满足下列条件之一时,系统的动量守恒

(1)不受外力或受外力之和为零,系统的总动量守恒.

(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.

(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.

4.适用范围

动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.

(四)由动量定理和牛顿第三定律可导出动量守恒定律

设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt 内,分别对物体1和2用动量定理得:F21△Vt =△p1;F12△Vt =△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即: △p=△p1+△p2=0或m1v1+m2v2= m1v1’+m2v2’.

【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?

【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.

【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:

(1)作用前后滑块A动量的增量为多少?方向如何?(2)碰撞前后A和B的总动量是否守恒?

【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB= mAvA’+mBvB’(1)vA=SA/t=0.05/0.1=0.5(m/s);

vA′=SA′/t=-0.005/0.1=-0.05(m/s)

△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.

(2)碰撞前总动量p=pA=mAvA=0.14*0.5=0.07(kg·m/s)碰撞后总动量p’=mAvA’+mBvB’

=0.14*(-0.06)+0.22*(0.035/0.1)=0.07(kg·m/s)p=p’,碰撞前后A、B的总动量守恒.

【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?

(1)撞后第1s末两物距0.6m.(2)撞后第1s末两物相距3.4m.

【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒. 设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有: mAvA=mAvA’+mBvB’; vB’t-vA’t=s(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.

(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动.

篇7:碰撞与动量守恒知识点

动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论,但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律,是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。定律特点 矢量性

动量是矢量。动量守恒定律的方程是一个矢量方程。通常规定正方向后,能确定方向的物理量一律将方向表示为“+”或“-”,物理量中只代入大小:不能确定方向的物理量可以用字母表示,若计算结果为“+”,则说明其方向与规定的正方向相同,若计算结果为“-”,则说明其方向与规定的正方向相反。瞬时性

动量是一个瞬时量,动量守恒定律指的是系统任一瞬间的动量和恒定。因此,列出的动量守恒定律表达式m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。只要系统满足动量守恒定律的条件,在相互作用过程的任何一个瞬间,系统的总动量都守恒。在具体问题中,可根据任何两个瞬间系统内各物体的动量,列出动量守恒表达式。相对性

物体的动量与参考系的选择有关。通常,取地面为参考系,因此,作用前后的速度都必须相对于地面。普适性

它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。适用性 适用范围

动量守恒定律是自然界最普遍、最基本的规律之一。不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。小到微观粒子,大到宇宙天体,无论内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。适用条件

1.系统不受外力或者所受合外力为零;

2.系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;

篇8:高三物理教案:动量守恒教案

动量

1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg

2、动量和动能的区别和联系

①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk

3、动量的变化及其计算方法

动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:

(1)P=Pt一P0,主要计算P0、Pt在一条直线上的情况。

(2)利用动量定理 P=Ft,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。

二、冲量

1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。单位是N

2、冲量的计算方法

(1)I=Ft.采用定义式直接计算、主要解决恒力的冲量计算问题。

(2)利用动量定理 Ft=P.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。

三、动量定理

1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或 Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间t内受合力为F合,合力的冲量是F合质点的初、未动量是 mv0、mvt,动量的变化量是P=(mv)=mvt-mv0.根据动量定理得:F合=(mv)/t)

2.单位:牛秒与千克米/秒统一:l千克米/秒=1千克米/秒2秒=牛

3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

(2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

(3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.4.应用动量定理的思路:

(1)明确研究对象和受力的时间(明确质量m和时间t);

(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);

(3)规定正方向,目的是将矢量运算转化为代数运算;(4)根据动量定理列方程

(5)解方程。

四、动量定理应用的注意事项

1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

2.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时F则是合外力对作用时间的平均值。

3.动量定理公式中的(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

篇9:动量守恒定律教学反思

如何解决这一现象呢?我做了这样的教学设计。

一.回归课本,指导学生进行弹性碰撞特点的理论推导。本环节中强调守恒条件以及对弹性碰撞特点的理解。

二.归纳试题类型,找到解题模型。主要选择子弹模型、木板滑块模型、滑块碰撞模型、微观粒子碰撞模型、微观粒子衰变模型。采用讲一题练一题的方法,让学生熟悉这几个模型的解题思路和题中常见的隐含的条件。为学生解决类似题型打好基础。

三.针对多过程的运动模型,引导学生做好运动分析,逐一过程利用守恒条件分析研究对象是否动量守恒。

四.针对多物体多运动过程模型,引导学生做好受力分析,运动过程分段处理,围绕守恒条件逐一分析所选定的研究对象是否守恒。

篇10:动量守恒定律说课稿

作为一名辛苦耕耘的教育工作者,就难以避免地要准备说课稿,说课稿有助于学生理解并掌握系统的知识。我们应该怎么写说课稿呢?下面是小编为大家整理的动量守恒定律说课稿,欢迎大家分享。

动量守恒定律说课稿1

高中一年级物理新教材按知识的逻辑性重新把高三年的一些内容放到起始年段来讲述,当然在难度、深度方面有所不同,讲述的方式方法也有巧妙的安排,如该回避的尽量不予提及、该简化的毫不保留、大胆下放一些内容作为选修教材等等,故把握好高一物理教材的度至关重要,下以一节“动量守恒定律的应用”的教学法为例,加以阐述,以食读者。

一、教材地位:

1、本课是新教材高中物理第一册(试验修订本?必修)第七章第四节;主要内容是讲授“动量守恒律”在碰撞、爆炸等内力?>外力这类题型中的应用。

2、地位:“动量守恒律”是大自然界物体间相互作用的普适基本规律之一。它反映了系统相互作用对时间的累积(F?t)总和为零的这么一个定律,近代研究表明守恒律来源于对称性;考虑教材编排的系统性,书上从牛顿运动定律中导出动量守恒,然而其适用范围却比牛顿运动定律广泛得多----不论是变力还是恒力、不论是哪个参照系、不论是高速或低速,宏观或微观系统等都可以使用;且在解决问题过程中无需虑及中间细节,只需注意始、末态,具有简捷方便的独特优势,为处理力学(含后续学习的电力、磁力)问题辟开了一新的思维方法。本课是“教纲”里要求学生熟练掌握、高考重点考查的知识点,故应教好本课。

3、编排:《动量守恒定律的应用》是继学生学习了“动量、动量定理、动量守恒定律”之后,通过应用守恒定律解决碰撞等实际问题达到掌握该定律的一节习题课-----旨在加深对动量及守恒条件的理解、进而熟练地应用守恒定律列式求解相关定量问题。

4、依据教纲对本节的“B”级要求、教材的编排,本节教学目标可定为:〈1〉知识目标:学生要会用动量守恒律处理一维碰撞、爆炸等两物体相互作用的问题:即

会确定系统、分析相互作用过程(初、中、末态)物体的受力,从而判定系统动量为什么守恒;根据动量守恒律的矢量性、同时性(“一边一时”),正确写出已知条件、守恒方程、求得未知量;知道守恒律解题优点所在。书P127

好学教育-专业,权威,高效,分享-打造国内领先的终身教育平台!

好学教育:

〈2〉能力目标:提高解题能力即读题、析题、图景想象等能力,掌握解题步骤、解题表述等科学思维习惯及方法。

〈3〉德育目标:培养理论联系实际的辨证唯物主义实践观。5、教学重点:正确列出动量守恒方程及应用守恒律解题的一般方法。教学难点:

<1>如何使学生深刻领悟一维矢量的运算方法--------化为标量(代数)运算。<2>初动量、末动量的理解及确定二、教法说明:

本堂课主要采用讨论、阅读指导、练习、实验及多媒体放映等教学方法。教法选择的依据:<1>应用讨论法有利于发挥学生的主体作用,集思广益、取长补短,渗透合作、共赢的思想,调动积极性:作为知识应用课,正是需要对问题进行分析讨论,求得共识,本课应让学生读题并讨论----分析系统动量是否守恒?加深对知识应用的领悟。有些老师处理问题时也是在讨论、自学中完成的。

<3>通过观看实况录象(打台球、挂车等)、观察气垫导轨上滑块的碰撞等实验引起同学们对碰后物体速度求解的兴趣,让同学们认识到本课学习的意义;通过直观模拟碰撞现象给学生以更多的感性认识,变抽象为具体,多维度化解教学难度,加深对规律应用(知识)的记忆。

好学教育-专业,权威,高效,分享-打造国内领先的终身教育平台!

好学教育:

<5>人类对经历过的挫折总是记忆犹新,本节可以通过对典型例题的分析、求解,通过学生动脑、动手演算,比较、讲解不同学生的答题错误,特别是对动量矢量性的疏忽和运算错误,进行有目的的强化,以期突破本节的难点。如对书上【例2】设具体数字而让学生解答,待出现答题错误时加以纠正;也可做这样的理想实验:站在悬崖边的人,给他一个动量,他将如何运动?引出对方向性的思考,如此种种让学生牢固烙上动量是矢量动量守恒律是矢量式的印象。

本节内容在高三教学中还须深化,考虑高一学生各方面能力限制(如数学、语文能力等),教学所涉及的习题尽可能过程清晰、系统(对象)容易确定;

只要求到一维两物体的题型,系统只有某方向动量守恒的问题尽量回避;守恒定律中速度相对性及变质量问题高一年不予提及;

知识的综合只牵涉到平抛或竖直上抛即可,且作为较高要求,应放在另一节练习课上。

三、学法设计:

本课的教学要培养科学的读书及解题方法,力求养成规范答题习惯,提高学习积极性。

通过对定律导出的简单复习,培养正确的思维习惯------即从本质上明确定理、定律的来龙去脉,原理上真正理解定律的适用条件(比牛顿运动定律更广);

通过解答实际题目的训练,培养审题能力、养成注重过程分析注意整体思维和严谨解题步骤的习惯,克服边审题边列方程的缺陷,形成按时间并列型思路列已知量的方法;

引导题后小结------“题后思”,让学生变“学会”为“会学”即守恒律题型的一般解题方法:确定对象确定过程并分析确定正方向并写出已知列方程求未知量。

高一学生喜好表现,可以通过对不同层次教学对象课堂作业的投影、讲评,可激发学者“愿学”的情感,让大家学有所获有所得,多层面提高学力。

注意由浅入深、按步解答、适当降低、抓好反馈落实的环节,注意归纳,给予机会提高自信心以激发差生学习情绪,解题时易出现的混乱问题有二:一是符号问题,强调设正方向,若未知量方向已明确则未知量字母只代表大小即可,若未知量方向不明,则未知量字母含有大小和方向,依得出的结果再行分析;二是守恒方程“一边一态”的问题,解决办法是严格列出已知,作图辅助思维。

把例题及课堂练习发到学生手上,适当选择1-2题综合型题目(两个以上知识点),鼓励好生上台讲述,多完成难一点作业,籍以调动优等生的积极性。

好学教育-专业,权威,高效,分享-打造国内领先的终身教育平台!

好学教育:

在上述关于教材、教法、学法等分析的基础上,我实施了这一节课教学,取得了良好的教学实效。

四、新教材教学的心得:

新教材把高三年级某些重要的章节都下放到了高一年来(如动量、曲线圆周运动、万有引力定律等),这些内容都是要求较高且不容易理解和掌握的高考重点知识,放在高一年的目的之一是保证力学知识在高中阶段的连贯性、完整性、系统性。

<2>初动量、末动量的理解及确定

<2>教学法指出:练习本身是一种知识应用,同时又是巩固知识形成技能、技巧的重要手段。练习法应是本节的重头戏,旨在培养正确的解题思路、建构物理图景、掌握严谨的解题规范籍以形成好的学习习惯,同时让学生感到学以致用,悟出守恒律解题的方便所在,提高解题能力。大纲中就明确指出:“做好练习是使学生牢固地掌握基础知识,灵活地解决实际问题的重要途径”,扬振宁教授曾回忆起他的大学生涯时说“勤奋地去做练习”“习题做得很多”。

<4>如果说学习要达到深透的境地,真正学有所得,学生必须在读书上狠下功夫,读书方法的渗透就成为教学的重要任务之一,如符号法、旁批法、类比法、纲领法等等;教科书是学生在学校中获得知识的主要来源,应注意在物理内容的讲授过程中加强对学生阅读的指导。这一节课应引导学生阅读课本关于碰撞、爆炸等过程叙述,进一步理解系统内力、外力、外力之和的概念,弄清初、末态的界定以及什么是相互作用前、后的总动量;通过读题指导,教给学生抓住关键词句、挖掘隐含条件(如“一起”、“静止”、“相向”、“突然”等等),建构物理模型,逐步学会读物理书。

<6>教材教法处理注意点:

本节内容在高三教学中还须深化,考虑高一学生各方面能力限制(如数学、语文能力等),教学所涉及的习题尽可能过程清晰、系统(对象)容易确定;

只要求到一维两物体的题型,系统只有某方向动量守恒的问题尽量回避;

守恒定律中速度相对性及变质量问题高一年不予提及;

知识的综合只牵涉到平抛或竖直上抛即可,且作为较高要求,应放在另一节练习课上。

三、学法设计:

本课的教学要培养科学的读书及解题方法,力求养成规范答题习惯,提高学习积极性。

通过对定律导出的简单复习,培养正确的思维习惯------即从本质上明确定理、定律的来龙去脉,原理上真正理解定律的适用条件(比牛顿运动定律更广);

通过解答实际题目的训练,培养审题能力、养成注重过程分析注意整体思维和严谨解题步骤的习惯,克服边审题边列方程的缺陷,形成按时间并列型思路列已知量的方法;

引导题后小结------“题后思”,让学生变“学会”为“会学”即守恒律题型的一般解题方法:确定对象 确定过程并分析确定正方向并写出已知列方程求未知量。

高一学生喜好表现,可以通过对不同层次教学对象课堂作业的投影、讲评,可激发学者“愿学”的情感,让大家学有所获有所得,多层面提高学力。

注意由浅入深、按步解答、适当降低、抓好反馈落实的环节,注意归纳,给予机会提高自信心以激发差生学习情绪,解题时易出现的混乱问题有二:一是符号问题,强调设正方向,若未知量方向已明确则未知量字母只代表大小即可,若未知量方向不明,则未知量字母含有大小和方向,依得出的结果再行分析;二是守恒方程“一边一态”的问题,解决办法是严格列出已知,作图辅助思维。

把例题及课堂练习发到学生手上,适当选择1-2题综合型题目(两个以上知识点),鼓励好生上台讲述,多完成难一点作业,籍以调动优等生的积极性。

在上述关于教材、教法、学法等分析的基础上,我实施了这一节课教学,取得了良好的教学实效。

四、新教材教学的心得:

新教材把高三年级某些重要的章节都下放到了高一年来(如动量、曲线圆周运动、万有引力定律等),这些内容都是要求较高且不容易理解和掌握的高考重点知识,放在高一年的目的之一是保证力学知识在高中阶段的连贯性、完整性、系统性。

考虑高一学生能力的发展水平,教材把这些知识编排得深理浅出,通俗易懂,既照顾科学性又兼及可读性,因而有降低知识难度的意图,特别是不涉及繁难的隐含条件较多的物理问题,着重于知识形成过程的介绍及知识的实际应用,教学时切勿想一步到位,盲目拔高,应遵从直观简洁的理论实质及准确叙述有实际意义的应用练习巩固,把握好度(特别是梯度),重在激发学习兴致。

粗看起来教材似乎又回到了80年代全日制十年制高级中学的教材编排顺序,细细品味,却是螺旋式上升了一大台阶:屏弃了过于枯燥的理论论述;吸取了近几年各方面最新最好的教育教学精华;溶入了颇具时代气息的生产生活实例及最新科技成果;体现了教育教学革新的趋势,是对以往教材的大洗礼。

教科书具有很强的可读性、大众性,特别是“阅读材料”和“做一做”教学中要充分挖掘教材、抓住机会,提高学生的阅读自学能力。

动量守恒定律说课稿5

首先,我对本节教材进行一些分析:

(一)教材的内容、地位和作用

地位及作用:动量守恒定律是自然界普遍适应的基本规律之一,它比牛顿定律发现的早,应用比牛顿定律更为广泛,如可以适用于牛顿定律不能够解决的接近光速的运动问题和微观粒子的相互作用;即使在牛顿定律的应用范围内的某些问题,如碰撞、反冲及天体物理中的“三体问题”等,动量守恒定律也更能够体现它简单、方便的优点。

处理方法:虽然3—5要求低,但是动量守恒定律是高中物理3—5的最重要内容,做为一名物理老师,不仅要传授给学生物理知识,更重要的是传授给学生物理思想、物理意识,因此在教学中力图让学生自主探究切来掌握研究问题的方法,提高解决问题的能力。

基于课标和对教材的理解和分析,本人将该节课的教学三维目标定位为:

(二)教学目标

1、理解动量的概念,知道动量是矢量,2、理解动量守恒定律的确切含义和表达式,培养守恒思想。

3、知道动量守恒定律成立的条件,并会用它解决问题。在讲解例题2时和学生探讨一下车辆安全问题。培养学生的安全意识。

4、通过自主探究培养学生的自学能力,强烈的求知欲、浓厚的学习兴趣等。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点,难点。

(三)教学重点、难点

重点是动量、动量守恒定律。

难点是动量守恒条件的确立。

为了讲清重点、难点,使学生能达到本节课设定的教学目标,再从教法和学法上谈谈。

(四)教法和学法

为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,通过问题导学,合作探究,学生交流展示,学生提出疑问,在自主学习中体会物理概念形成过程中所蕴涵的物理方法,使之获得内心感受。再进行达标训练起到巩固的效果。

(五)教学准备

多媒体(展示碰撞动画)、实物展示台(供学生展示用)、学案(课前要求预习)。

最后我来具体谈一谈这一堂课的教学过程。

(六)教学流程

1)整体设计

安排“知识键接(创设情景)————展示目标——问题导学(合作探究)——当堂达标训练——课后巩固训练”进行,体现学生是课堂的主体,老师的主导地位。

2)环节设计(主要是知识键接引入和重难点突破)

情景键接导入,通过两小球的一维碰撞,V2>V1,发生碰撞,问碰撞后有几种可能情况?并思考碰撞中遵循怎样的规律?(从不变量引入守恒并导出了动量的概念)

重点(1)讨论动量概念,我设计如下知识点填空,可以概括其要点。

1、定义;

2、表达式;

3、单位;

4、方向;

5、动量变化。

这些内容在引入动量概念后可以轻松自主解决。

重点、难点(2)理解动量守恒定律及条件

自学问题:

1、什么是系统?什么是内力和外力?

2、分析上节课两球碰撞得出的结论的条件。两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。

3、动量守恒定律的内容

4、表达式

5、适用条件

在例题2的分析中可设计如下问题:

1、是否满足守恒条件;

2、选择正方向;

3、碰前动量;

4、碰后动量;

5、根据动量守恒定律列式计算。

1)学生活动:

讨论(—)学生交流,教师巡视,学生在讨论中遇到问题询问老师、老师汇总

展示交流(1)教学把巡视中遇到的问题和重点问题提出来,先让或者引导其他小组会的同学给与解答,不会的教师才再给与解答。然后教师给与延伸(例题分析)

2)当堂达标训练(10分钟)学生展示答案与标准答案比较。解答有异议的问题。

3)课后设计专门的巩固训练

上一篇:隧道测量方法下一篇:旧制度与大革读后感