平面向量坐标表示教案

2024-05-25

平面向量坐标表示教案(通用10篇)

篇1:平面向量坐标表示教案

8.3.2平面向量平行的坐标表示

教学目标:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。

教学重点:平行向量充要条件的坐标表示,解决向量平行(共线)的有关问题 教学难点:充要条件的推导,共线条件的判断 教学过程:

一、复习:1.平行向量基本定理

2.平面向量的坐标运算法则



二、1.提出问题:共线向量的充要条件是有且只有一个实数λ使得a=λb(b0),那么这个充要条件如何用坐标来表示呢?

2.推导:设a=(x1, y1)b=(x2, y2)其中ba

xx2由a=λb(x1, y1)=λ(x2, y2)1 消去λ:x1y2-x2y1=0

y1y2结论:a∥b(b0)的充要条件是x1y2-x2y1=0

注意:1消去λ时不能两式相除,∵y1, y2有可能为0,∵b0

∴x2, y2中至少有一个不为0 2充要条件不能写成y1y2 ∵x1, x2有可能为0 x1x2ab3从而向量共线的充要条件有两种形式:a∥b(b0)

x1y2x2y10

三、应用举例

例一,判断下列两个向量是否平行

(1)a=(-1,3),b=(5,-15)(2)AB=(2,0),CD=(0,3)

解:(1)(-1)(-15)=35 a与b平行(2)2300 AB与CD不平行

点评:利用坐标表示可以判断两个向量是否平行 两个课后练习巩固

例二 若向量a=(-1,x)与b=(-x, 2)共线且方向相同,求x

解:∵a=(-1,x)与b=(-x, 2)共线

∴(-1)×2-x•(-x)=0 ∴x=±2

∵a与b方向相同

∴x=2

定评:如果两个向量共线 根据公式可以求出未知数

完成课后第二第三两题

例三 已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的关系.解:AB11,312,4,AC21,513,6又26340,故AB//AC,直线AB、直线AC有公共点A,所以A、B、C三点共线.同时引导学生如何证明三点不共线 点评:如何证明三点共线 主要是证明两个有公共点的两个向量平行,变式.已知A(-1,-1)B(1,3)C(1,5)D(2,7)(1)向量AB与CD平行吗?(2)直线AB与平行于直线CD吗?

解:∵AB=(1-(-1), 3-(-1))=(2, 4)CD=(2-1,7-5)=(1,2)又:∵2×2-4-1=0 ∴AB∥CD 又:AC=(1-(-1), 5-(-1))=(2,6)AB=(2, 4)2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD

四、练习:

1.已知平面向量a(1,2),b(2,m),且a∥b,则2a3b的坐标为 . 2.已知点A(0,1)B(1,0)C(1,2)D(2,1)求证:AB∥CD

五、高考链接

(1,2),b(2,3)4,7)共⑴(08全国2)设向量a,若向量ab,与向量c(线,求值.

,m),c(1,2),若(ab)∥c,则⑵(10陕西11)已知向量a(1,2),b(1m=.五、小结:1.向量平行的充要条件(坐标表示)• 2.利用向量共线求未知数

• 3. 利用向量思想证明点共线的方法

六、作业:P64 练习8-6 《同步训练》P38、39

七、课后反思

————————————————————————————————————————————————————————————————————————————————————————————————————————————



篇2:平面向量坐标表示教案

整体设计

教学分析

平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标

1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点

教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排 1课时

教学过程

导入新课

思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课 新知探究 提出问题 ①平面向量的数量积能否用坐标表示? ②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢? ③怎样用向量的坐标表示两个平面向量垂直的条件? ④你能否根据所学知识推导出向量的长度、距离和夹角公式?

活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下: ∵a=x1i+y1j,b=x2i+y2j, ∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0, ∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下: 1°平面向量数量积的坐标表示

两个向量的数量积等于它们对应坐标的乘积的和, 即a=(x1,y1),b=(x2,y2), 则a·b=x1x2+y1y2.2°向量模的坐标表示

若a=(x,y),则|a|=x+y,或|a|=x2y2.如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么 a=(x2-x1,y2-y1),|a|=(x2x1)2(y2y1)2.3°两向量垂直的坐标表示 设a=(x1,y1),b=(x2,y2),则 a⊥bx1x2+y1y2=0.4°两向量夹角的坐标表示

设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示,可得 cosθ=ab|a||b|x1x2y1y2xy212122

2xy2222

讨论结果:略.应用示例

例1 已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC是直角三角形.下面给出证明.∵AB=(2-1,3-2)=(1,1), AC=(-2-1,5-2)=(-3,3), ∴AB·(-3)+1×3=0.AC=1×∴AB⊥AC.∴△ABC是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.变式训练

在△ABC中,AB=(2,3),AC=(1,k),且△ABC的一个内角为直角,求k的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.AC=0.若∠A=90°,则AB⊥AC,所以AB·于是2×1+3k=0.故k=23.113同理可求,若∠B=90°时,k的值为32113;若∠C=90°时,k的值为

13.故所求k的值为23或或

3213.例2(1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC的余弦值;(2)a=(3,0),b=(-5,5),求a与b的夹角.活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)与b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=x1y1,|b|=即cosθ=ab|a||b|x1x2y1y2xy212122x2y2的积,其比值就是这两个向量夹角的余弦值,22xy2222.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB=(5,1)-(2,-2)=(3,3), AC=(1,4)-(2,-2)=(-1,6), AC=3×∴AB·(-1)+3×6=15.又∵|AB|=3232=32,|AC|=(1)262=37, ABAC|AB||AC|15323757474∴cos∠BAC=

.(2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=52.设a与b的夹角为θ,则 cosθ=ab|a||b|15352220≤θ≤π,∴θ=.又∵

34.点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.变式训练

设a=(5,-7),b=(-6,-4),求a·b及a、b间的夹角θ.(精确到1°) 解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=52(7)2由计算器得cosθ=74,|b|=(6)(4)2252

27452≈-0.03.利用计算器中得θ≈92°.例3 已知|a|=3,b=(2,3),试分别解答下面两个问题:(1)若a⊥b,求a;(2)若a∥b,求a.活动:对平面中的两向量a=(x1,y1)与b=(x2,y2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2-x2y1=0很容易混淆, 应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b=0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a=(x,y),由|a|=3且a⊥b, x2y2|a|29,得 2x3x0,99x13,x13,1313解得 或66yy1313,1313∴a=(91313,61313)或a=

91313,61313.(2)设a=(x,y),由|a|=3且a∥b,得 x2y2|a|29, 3x2y0.6x13解得y91313,6x13或y9131313)或a=(61313, 13.913∴a=(61313,91313,13).点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练

求证:一次函数y=2x-3的图象(直线l1)与一次函数y=12x的图象(直线l2)互相垂直.解:在l1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l1上取两点A(1,-1),B(2,1).同理,在直线l2上取两点C(-2,1),D(-4,2),于是: AB=(2,1)-(1,-1)=(2-1,1+1)=(1,2), CD=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).CD=1×由向量的数量积的坐标表示,可得AB·(-2)+1×2=0, ∴AB⊥CD,即l1⊥l2.知能训练

课本本节练习.解答: 1.|a|=5,|b|=29,a·b=-7.2.a·b=8,(a+b)·(a-b)=-7,a·(a+b)=0,(a+b)2=49.3.a·b=1,|a|=13,|b|=74,θ≈88°.课堂小结

1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业

课本习题2.4 A组8、9、10.设计感想

篇3:平面向量坐标表示教案

我们知道数量积ab在知道两个向量的模和夹角时只需利用其定义∣a∣∣b∣cos<a, b>来求, 或者在知道两个向量的坐标a= (x1, y1) , b= (x2, y2) , 时可用坐标公式ab=x1x2+y1y2来求即可, 但是很多问题中要求数量积的两个向量并不具备上述条件, 比如:

例1:在△ABC中, ∠BAC=120°, AB=2, AC=1, D是BC上一点, CD=2BD, 则

分析:该题直接用定义∠ADC求解虽说可行, 但运算烦琐.我们换个角度考虑, 题中已知两向量和的模和夹角, 意味着它们的数量积值很容易求, 因此如能用这两个向量作为基底表示和, 进而转化成基底之间的数量积运算 (可称之为基底法) , 那么这道题就容易解决了.解法如下:

其实很多能用基底法解决的数量积问题如果能够合理建系, 利用坐标求数量积 (可称之为坐标法) , 也不失为一种好办法.解答如下:

我们再细细琢磨一下, 不难发现, 其实坐标法不过是基底法的特殊化, 就是单位正交基底法, 而用坐标来处理之后的几何问题在求解过程中, 特别是在求某个点的坐标时, 我们可以运用直线方程求交点的办法来处理, 这样会更加自然, 可操作性强.比如:

例2:在△ABC中, A=60°, AB=3, AC=2, D是AC中点, 点E在AB边上, 且, BD与CE交于点M, N是BC的中点, 则

分析:该题与例1的共同点就是题中已知两个向量的模及其夹角, 即有了基底, 所以基底法可行, 解答如下:

解:建系如图, 易得A (0, 0) , B (3, 0) , , D为AC中点, 故D, , 则E (1, 0) , 同样N为BC中点, 则, 接下来就缺M点坐标了.

思路 (1) 同上法, , 则 (对学生平面几何知识要求较高) ;

思路 (2) 用直线CE与BD方程求交点M的坐标 (学生最容易想到, 体现了解几思想) .

以上两题所给条件, 我们可能会首选基底法, 而不大会先考虑建系用坐标法, 因为不是正交基底, 但是一旦出现正交基底, 我们肯定第一反应就是选择坐标法, 这也是情理之中的事情.比如:

例3:在矩形ABCD中, 边AB、AD的长分别为2、1, 若M、N分别是边BC、CD上的点, 且满足, 则的取值范围是___________

分析:由于题中出现了矩形即∠A=90°, 向量和的模都已知, 所以很容易想到建系, 解答如下:

解:建系如图, 易得A (0, 0) , B (2, 0) , C (2, 1) , D (0, 1) , 设, 则M (2, x) , N (2-2x, 1) , 故

例4:已知直角梯形ABCD中, AD∥BC, ∠ADC=90°, AD=2, BC=1, P是腰DC上的动点, 则的最小值为___________

解:建系如图, 易知D (0, 0) , A (2, 0) , 设CD=m>0, 则C (0, m) , B (1, m) , 再设P (0, p) , p∈[0, m], 则易得, 因此有, 显然当p=43m∈[0, m]时,

篇4:平面向量的坐标应用

一、平面向量的坐标运算

例1 已知三点A(1,-2),B(7,0),C(-5,6),用坐标表示向量

解:由,可得

评析:向量的坐标运算主要是利用加、减、数乘运算法则进行的。

二、向量平行的坐标表示

侧2 已知A,B,C三点的坐标分别为(-l,

求证:

证明:由题意得

设点E,F的坐标分别为

因为,所以,可得

由,可得。

评析:若向量,满足(或),则a∥b。

三、三点共线问题

__’.________’

例3 已知16),求证:A,B,C三点共线。

证明:(-2,-4)。

由4×(-4)-8×(-2)=0,可知,又它们有公共点B,所以A,B,C三点共线。

例4 在平面直角坐标系xOy中,点A(4,O),B(4,4),C(2,6),求AC与OB的交点P的坐标。

解:设点P的坐标为(x,y)。

由,得4x-4y=O,即x-y=0 ①。

由,且,可得-6×(x-2)-2×(y-6)=0,即3x+y-12=0②。

由①②解得即点P的坐标为(3,3)。

评析:A,B,C三点共线<=>与共线。

四、利用向量的坐标解决平面几何问题

例5 已知点A(2,3),B(5,4),C(7,lO)及

(l)当λ为何值时,点P在第一、三象限的角平分线上?

(2)若点P在第三象限内,求λ的取值范围。

(3)四边形ABCP能为平行四边形吗?若能,求出相应的λ值;若不能,请说明理由。

解:设点P的坐标为(x,y),则y-3)。

由,得(x-2,y-3)=(3,1)+λ(5,7),所以即可得点P的坐标为(5λ+5,7λ+4)。

(l)当点P在第一、三象限的角平分线上时,5λ+5=7λ+4,解得。

(2)当点P在第三象限时,可得解得λ<-1,即A的取值范围为(一∞,-l)。

(3)。若四边形ABCP为平行四边形,则,即得方程组可知此方程组无解,所以四边形ABCP不能为平行四边形。

篇5:平面向量坐标表示教案

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课

教 具:多媒体、实物投影仪 教学过程:

一、复习引入:

1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量

二、讲解新课: 1.平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○我们把(x,y)叫做向量a的(直角)坐标,记作 a(x,y)…………○

2式叫做向其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0). 1

如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1)若a(x1,y1)ab(x1x2,y1y2),b(x2,y2),则ab(x1x2,y1y2),两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j 即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2)(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)(x1,y1)=(x2 x1,y2 y1)(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y)

三、讲解范例:

例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)

例4已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0 得:(3,4)+(2,5)+(x,y)=(0,0)32x0x5即: ∴ ∴F3(5,1)45y0y1

四、课堂练习:

1.若M(3,-2)N(-5,-1)且 MP12MN,求P点的坐标

2.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.五、小结(略)

六、课后作业(略)

七、板书设计(略)

篇6:平面向量坐标表示教案

一、复习引入:1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量2.平面向量的坐标表示

分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj把(x,y)叫做向量a的(直角)坐标,记作a(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0).2.平面向量的坐标运算(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x,y)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差..实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.1

向量AB的坐标与以原点为始点、点P为终点的向量的坐标是相同的。3.练习:1.若M(3,-2)N(-5,-1)且 MP1MN,求P点的坐标22.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),如何求证:四边形ABCD是梯形.?

二、讲解新课:

1、思考:(1)两个向量共线的条件是什么?(2)如何用坐标表示两个共线向量?

设a=(x1,y1),b=(x2,y2)其中ba.x1x2由a=λb得,(x1,y1)=λ(x2,y2) 消去λ,x1y2-x2y1=0

y1y2a∥b(b0)的充要条件是x1y2-x2y1=0探究:(1)消去λ时能不能两式相除?

(不能 ∵y1,y2有可能为0,∵b0 ∴x2,y2中至少有一个不为0)

(2)能不能写成y1y2 ?(不能。∵x1,x2有可能为0)x1x2ab

x1y2x2y10(3)向量共线有哪两种形式? a∥b(b0)

三、讲解范例:

例1已知a=(4,2),b=(6,y),且a∥b,求y.例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.思考:你还有其它方法吗?

例3若向量a=(-1,x)与b=(-x,2)共线且方向相同,求x 解:∵a=(-1,x)与b=(-x,2)共线 ∴(-1)×2-x•(-x)=0

 ∴x=±2 ∵a与b方向相同 ∴x=2

例4 已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量AB与CD平行吗?直线AB平行于直线CD吗?

解:∵AB=(1-(-1),3-(-1))=(2,4),CD=(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴AB∥CD

又 ∵ AC=(1-(-1),5-(-1))=(2,6),AB=(2,4),2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD 例5设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.思考:(1)中 P1P:PP2=?(2)中P1P:PP2=? 若P1P:PP2=如何求点P的坐标?

四、课堂练习:P101面4、5、6、7题。

五、小结 :(1)平面向量共线的坐标表示;

(2)平面上两点间的中点坐标公式及定点坐标公式;(3)向量共线的坐标表示.六、课后作业:《习案》二十二。思考:

1.若a=(2,3),b=(4,-1+y),且a∥b,则y=(C)A.6 B.5 C.7 D.8 2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B) A.-3 B.-1 C.1 D.3 3.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).AB与DC共线,则x、y的值可能分别为(B)A.1,2 B.2,2 C.3,2 D.2,4 4.已知a=(4,2),b=(6,y),且a∥b,则y= 3.3

篇7:平面向量坐标表示教案

1、本节课先是通过对相关知识的回顾,然后引进与x轴、y轴方向相同的两个单位向量,进一步探索两个向量数量积的坐标表示。最后通过几个例题加强学生对两个向量数量积的坐标表示的理解及其灵活应用。课堂结构清晰完整流畅。在教学中,知识的回顾,题目的设计都围绕数量积坐标表示展开。数量积公式得出后,启发学生自己动手推导出模、夹角的坐标表示,回顾了公式的同时又培养了学生的推导能力、自主学习能力。在与学生的课堂交流中能倾听学生的想法,及时纠正偏差,激发了学生自主探究的欲望,较好的提升了学生的思维能力,对于学生在探究过程中出现的问题都能认真加以点评,适时指出不足与优点,对于学生的发现与总结都能给于很好的评价与赞扬,让学生收到激励,保持学习的热情。

2、教学设计结构严谨,过渡自然,时间分配合理。知识回顾部分把上节课的数量积、夹角、模、垂直、平行的有关知识进行回顾,每一条知识点的回顾都是本堂课的新课内容。

3、新课引入部分问题设计合理,但提问的字句还需斟酌,要语简意赅,如

22思考2中:对于上述向量i,j,则i,j,i.j分别等于什么?这样的问法觉的还是太繁琐,是否可以改为计算i2,j2,i.j?这样可能更直接一点。

4、公式的得出,在应用之前或者应用之后都应该对公式的结构特征进行归纳总结。学生因为接受新知识,对公式肯定不是很了解,应该要引导学生分析公式特征及应用的注意点。

5、一节课的知识与技能是否落实,难点是否得到突破,是教学者最为关心的话题。课堂习题正是检验教学效果的工具。在习题设置上,除了覆盖重难点外,还应做到由简入深。同时,在教学过程中,通过旧知生成新知的过程,采用问题串的形式引导学生一步步完成自主探究得到生成,是比较有效的教学方式。

篇8:平面向量·定理及坐标运算

1. 若[e1],[e2]是平面内的一组基底,则以下的四组向量中不能作为一组基底的是( )

A. [e1],[2e2] B. [e1],[e1]-[e2]

C. [-e1]+[e2],[e1]-[e2] D. [e1]+[e2],[e1]-[e2]

2. 设[a=(2,3)],[a]在[b]方向上的投影为[3,][b]在[x]轴上的投影为1,则[b=]( )

A. [(1,512)] B. [(-1,512)]

C. [(1,-512)] D. [(-1,-512)]

3. 若非零向量[a,b]满足[a=b],且[(2a+b)?b][=0],则向量[a,b]的夹角为( )

A.[120?] B. [30?] C. [60?] D. [150?]

4. 在边长为[1]的菱形[ABCD]中,[∠BAD=60?],[E]是[BC]的中点,则[AC?AE=]( )

A. [3+33] B. [92]

C. [3] D. [94]

5. 对任意两个非零的平面向量[α]和[β],定义[α?β=α?ββ2];若平面向量[a,b]满足[a≥b>0],[a]与[b]的夹角[θ∈(0,π4)],且[a?b],[b?a]都在集合[n2n∈Z]中,则[a?b=]( )

A. [52] B. [32]

C. [1] D. [12]

6. 已知向量[a=(cosθ,sinθ),b=(cosφ,sinφ)],若[θ-φ=π3],则向量[a]与向量[a+b]的夹角是( )

A. [60?] B. [30?] C. [150?] D. [120?]

7. 已知[A,B,C]是平面上不共线的三点,[O]为平面[ABC]内任一点,动点[P]满足等式:[OP=13[(1-λ)OA+(1-λ)OB+(1+2λ)OC]] ([λ∈R]且[λ≠0]),则点[P]的轨迹一定通过[ΔABC]的( )

A. 内心 B. 垂心

C. 外心 D. 重心

8. 点[O]是锐角[ΔABC]外接圆圆心, [∠A=θ,]若[cosBsinCAB+cosCsinBAC=2mAO,] 则[m=]( )

A. [sinθ] B. [cosθ]

C. [tanθ] D. 不能确定

9. 在[ΔABC]中,点[D]在[AB]上,[CD]平分[∠ACB]. 若[CB=a,CA=b,a=1,b=2],则[CD=]( )

A. [13a+23b] B. [23a+13b]

C. [35a+45b] D. [45a+35b]

10. 已知[C]为线段[AB]上一点,[P]为直线[AB]外一点,满足[|PA|-|PB|=2,|PA-PB|=25],[PA?PCPA=][PB?PCPB],点[I]在[PC]上,且[BI=BA+λ(AC|AC|+AP|AP|)][(λ>0)],则[BI?BABA]的值为( )

A. [5] B. [2]

C. [5-1] D. [0]

二、填空题(每小题4分,共16分)

11. 已知两非零向量[a,b]满足[a=2,][a-b][=1],则向量[a,b]夹角的最大值是 .

12. 已知[a=(m,5+m),b=(n,3+n)],则[a+b]的最小值为 .

13. 已知同一平面上的向量[PA,PB,AQ,BQ]满足如下条件:①[|PA+PB|=|AB|=2]; ②[(AB|AB|+AQ|AQ|)?BQ=0]; ③[|AB+AQ|=|AB-AQ|].则[|PQ|]的最大值与最小值之差是 .

14. 在四边形[ABCD]中,[AB=DC=(1,1)],[1BABA+1BCBC=3BDBD],则该四边形的面积为 .

三、解答题(共4小题,44分)

15. (10分)在[ΔABC]中,点[M]是[BC]的中点,点[N]在边[AC]上,且[AN=2NC,AM]与[BN]相交于点[P],求[AP∶PM]的值.

16. (10分)在[ΔOAB]中,[OC=14OA,OD][=12OB,][AD]与[BC]交于点[M],设[OA=a,OB=b].

(1)以[a,b]为基底表示[OM];

(2)过[M]作直线交[OA,OB]分别于[E,F],若[OE=13OA,OF=λOB],求[λ]的值.

17. (12分)[ΔABC]中,[AE=13AC,AF=14AB,][BE]交[CF]于[O],连[AO]交[BC]于[P],求[SΔPCE∶SΔABC]的值.

18. (12分)已知椭圆[C:x2a2+y2b2=1(a>b>0)]上的动点到焦点距离的最小值为[2-1],以原点为圆心、椭圆的短半轴长为半径的圆与直线[x-y+2=0]相切.

(1)求椭圆[C]的方程;

(2)若过点[M(2,0)]的直线与椭圆[C]相交于[A,B]两点,[P]为椭圆上一点, 且满足:[OA+OB=tOP]([O]为坐标原点),当[|AB|=253] 时,求实数[t]的值.

篇9:平面向量的坐标运算教案

教学目标:

1.知识与技能:

理解平面向量坐标的概念,掌握平面向量坐标的运算。2.过程与方法:

在对平面向量坐标表示及坐标运算的学习过程中使学生的演绎、归纳、猜想、类比的能力得到发展,利用图形解决问题,也让学生体会到数形结合的思想方法解决问题的能力的重要性。3.情感、态度与价值观:

通过本节课的学习,使学生感受到数学与实际生产、生活的密切联系,体会客观世界中事物之间普遍联系的辩证唯物主义观点。教学重点:

平面向量的坐标表示及坐标运算。教学难点:

平面向量坐标表示的意义。教学方法:

结合本节课的目标要求、重难点的确定以及学生实际思维水平,教学设计中采取启发引导、类比归纳、合作探究、实践操作等教学方法。教学手段:

投影仪、多媒体软件 教学过程 1.情境创设

教师借助多媒体动画演示人站在高处抛掷硬物的过程作为本节课的问题情境引入课题,引导学生注意观察硬物下落轨迹,提出问题:结合同学们的生活常识及物理学知识,想一想硬物的速度可做怎样的分解?

学生回答:速度可按竖直和水平两个方向进行分解

设计目的:情境与生活联系,激发学生学习兴趣,同时为下面展开的知识做

好铺垫。

2.展开探究

问题一:平面向量的基本定理内容是什么? 教师请一学生回答,同时投影出示其内容。问题二:向量能不能象平面坐标系中点一样给出坐标表示呢?我们如何表示更加

合理呢?

组织学生谈论,给出各种想法,教师做点评归纳。投影展示:将一任意向量a置于直角坐标系中,给出向量的起点、终点坐标,并 提出问题 问题三:既然向量的起点和终点的坐标是确定的,那么向量也可以用一对实数来表示吗?

设计目的:此问题引发学生联想,对平面向量坐标表示方法具有指导性作用。教师讲授:在直角坐标系内,我们分别取与 x轴、y轴方向相同的两个单位向量i,j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x,y,使得a=xi+yj ,我们把 叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,(x,y)式叫做向量的坐标表示。

3.深化理解

一.平面向量坐标表示的的理解 提出问题:

(1)、如果以原点O作为起点作一向量OA=a(投影动画同步演示),那么点A的位置是否可以唯一确定呢?

(2)、点A的坐标与向量OA的坐标之间有什么关系?(3)、两个向量相等的充要条件利用坐标如何进行表示呢?

(4)、如果我们将一个平面向量在直角坐标系中作任意平移(不该表大小和方向),那么它的坐标会改变吗?

组织学生以小组为单位展开探究交流活动,在讨论后回答上述问题,可师生共同完善答案,归纳如下:

(1)、点A的位置受向量OA决定,唯一确定。

(2)、以原点O为起点的向量OA的坐标和终点A的坐标事完全相同的。(3)、两个平面向量相等的充要条件是两个向量的坐标相同。

(4)、在直角坐标系中平面向量在大小和方向不变的前提下自由移动,它们的坐标就是相同的。

设计目的:让学生在合作探究中去主动学习,不仅锻炼了解决问题的能力,还培养了探究协作的能力。

出示练习:用基底i、j分别表示向量a、b、c、d,并求出它们的坐标(图略)。教师让学生独立完成,之后借助投影让 个别学生展示完成情况,教师点评。设计目的:增进了所学新知的内化。

二、平面向量的坐标运算

提出问题:通过以上研究,我们了解了平面向量的坐标表示,向量是可以进行运

算的,如何运用所学的知识进行两个向量的和与差的坐标表示及实数 与向量积的坐标表示呢?

投影出示:已知向量a=(s,t),b=(m,n),求向量a+b,a-b, λa的坐标

学生展开讨论,可能给出多种推导方法,教师要耐心给与点评,并做最后归纳。(1)向量加减法的坐标等于向量坐标的加减法。

(2)实数与向量的积的坐标等于是属于向量坐标的积。

(3)一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点坐标 教师提问:设AB是表示向量a的有向线段,点A(s,t),B(m,n),那么向量a的坐标如何表示?

学生结合向量坐标运算可得出答案,a=(m-s,n-t),教师强调

一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标。设计目的 :此环节教师充当引导者,以学生为主体,让学生在讨论思考中享受成功的快乐。

4.例题剖析

1、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。

变式:已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标,使这四点成为平行四边形的四个顶点。

教师给学生充足时间独立思考,适当时可提示作图理解,而变式对学生来说

难度增大,要鼓励学生大胆尝试,独立求解,并提示要考虑图形的多种画法。设计目的:通过例题和变式综合考查学生对本节所学知识的理解和掌握程度,也促进学生应用知识解决问题的能力。

5.课堂小结

请学生对本节课内容作归纳,不足之处师生补充完善,最后教师作总结式说明。1.向量的坐标表示是向量的另一种表示形式,也可以称之为向量的代数表示,其背景是平面向量的基本定理。

2.向量的坐标表示为我们进行向量的运算提供了方便。

3.向量的坐标表示使得我们借助数的运算对图形的几何性质展开研究,体现了数形结合思想方法的应用。

前面我们还学习了这留待我们下一 节再来研究。

6.布置作业(1).课后习题

(2)如何运用向量坐标来表示和判定共线向量呢?让学生预习下节内容。

7.板书设计

平面向量的坐标运算

1.平面向量的坐标

例1

变式 定义

解:

解:(1)

(2)

(3)

篇10:平面向量坐标表示教案

教学目的:

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线 教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性 授课类型:新授课 课时安排:1课时

教 具:多媒体、实物投影仪 教学过程:

一、复习引入:

1向量的加法:求两个向量和的运算,叫做向量的加法

向量加法的三角形法则和平行四边形法则 2.向量加法的交换律:a+b=b+a

3.向量加法的结合律:(a+b)+c=a+(b+c)4.向量的减法向量a加上的b相反向量,叫做a与b的差即:a  b = a +(b)5.差向量的意义: OA= a, OB= b, 则BA= a  b

即a  b可以表示为从向量b的终点指向向量a的终点的向量 6.实数与向量的积:实数λ与向量a的积是一个向量,记作:λ(1)|λ=0时λ

(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λa|=|λ||a|;

a

a=0

7.运算定律 λ(μa)=(λμ)a,(λ+μ)a=λa+μa,λ(a+b)=λa+λb 8. 向量共线定理 向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa

9.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ

1e1+λ2e2

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一λ1,λ2是被a,e1,e2唯一确定的数量 10平面向量的坐标表示

于直线CD吗?

解:∵AB=(1-(-1), 3-(-1))=(2, 4), CD=(2-1,7-5)=(1,2)又 ∵2×2-4×1=0 ∴AB∥CD

又 ∵ AC=(1-(-1), 5-(-1))=(2,6)AB=(2, 4)2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD

四、课堂练习:

1若a=(2,3),b=(4,-1+y),且a∥b,则y=()

A6 B5 C7 D8 2若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为() A-3 B-1 C1 D3 3若AB=i+2j, DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量)AB与DC共线,则x、y的值可能分别为()

 A1,2 B2,2 C3,2 D2,4 4已知a=(4,2),b=(6,y),且a∥b,则y= 5已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为

6已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= 参考答案:1C 2B 3B 4 3 5 6 5

2五、小结 向量平行的充要条件(坐标表示)

六、课后作业:

1若a=(x1,y1),b=(x2,y2),且a∥b,则坐标满足的条件为() Ax1x2-y1y2=0 Bx1y1-x2y2=0 Cx1y2+x2y1=0 Dx1y2-x2y1=0 2设a=(31,sinα),b=(cosα,),且a∥b,则锐角α为()23A30° B60° C45° D75°

3设k∈R,下列向量中,与向量a=(1,-1)一定不平行的向量是() A(k,k)B(-k,-k)2222C(k+1,k+1)D(k-1,k-1)4若A(-1,-1),B(1,3),C(x,5)三点共线,则x= 5已知a=(3,2),b=(2,-1),若λa+b与a+λb(λ∈R)平行,则λ= 6若a=(-1,x)与b=(-x,2)共线且方向相同,则x= 7已知a=(1,2),b=(-3,2),当k为何值时ka+b与a-3b平行?

8已知A、B、C、D四点坐标分别为A(1,0),B(4,3),C(2,4),D(0,2),试证明:四边形ABCD是梯形

9已知A、B、C三点坐标分别为(-1,0)、(3,-1)、(1,2),AE=

上一篇:唱响青春 红色中国梦大合唱新闻稿下一篇:中学生活就这样开始了作文400字