三角形五心的向量表示

2023-02-22

第一篇:三角形五心的向量表示

三角形四心的向量表示

从动和静两个角度看三角形中四“心”的向量表示

平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。

一.从静止的角度看向量的四“心”

1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心.

 2. 已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.

3. 已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。

2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心

222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。

二.从运动的角度看三角形的四“心”

1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的(

)

(A)内心

(B)外心

(C)重心

(D)垂心 解:OPOA(ABAC) ,可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,,故动点P的轨迹一定通过ABC的重心. 2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的(

) |AB||AC|(A)内心

(B)外心

(C)重心

(D)垂心

ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。

3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+  ,R,则动点P一定通过ABC的(

) OPOA|AB|cosB|AC|coCs(A)内心

(B)外心

(C)重心

(D)垂心

ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。 APB0C4. 已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的(

) sA|C|coC|AB|coBs(A)内心

(B)外心

(C)重心

(D)垂心

ABAC+ |AB|cosB|AC|cosCABACABAC+ ,当R时, + 表示垂直于可得DP|AB|cosB|AC|cosC|AB|cosB|AC|cosCOBOCOBOC分析:设BC的中点为为D,则OD,所以由OP22BC的向量,所以DP为线段BC的垂直平分线,故动点P的轨迹一定通过ABC的外心. 上面通过动和静两个角度看三角形的四”心”的向量表示,得出了椒优美的结论,使我们对向量的四心有了新的认识,更好的体会到辩证的和谐的统一.

第二篇:三角形内心的向量表示形式

有这样一个高考题:

已知O,N,P在ABC所在平面内,且OAOBOC,NANBNC0,且PAPBPBPC,则点PCPAO,N,P依次是ABC的(

)

(A)重心 外心 垂心

(B)重心 外心 内心

(C)外心 重心 垂心

(D)外心 重心 内心

答案为C,即分别为外心、重心、垂心,通过此题我们可以发现三角形的这三个“心”的向量表示形式非常和谐美观。而三角形的“心”常见的有四个,我们不仅会想三角形内心的向量表示形式是什么呢?

内心的向量表示有三种常见的形式,网络以及资料上面,对于它们的证明往往不完整,下面我把内心的向量表示形式及其验证的完整过程给读者介绍一下.

(1)点I是ABC所在平面内一点,I是ABC内心的充要条件是

CACBBICI0

CACBABAC分析:此条件直观意义较强,如即分别为与AB、AC同

ABACAIABACABACBCBABCBA向的单位向量AM、AN的差向量MN,由条件可得MN与AI垂直,而MN为等腰AMN的底边,故AI为A的角平分线,同理可得BI、CI亦为角平分线,即I是ABC内心.

上面的条件直观意义较易发现,然而形式较为复杂,下面介绍一个较为简单的充要条件,你能做出证明吗?

(2)如图,ABC的边长分别为a、b、c,点I是ABC所在平面内一

点,I是ABC内心的充要条件是aIAbIBcIC0

证明:已知点I为ABC的内心,延长AI交BC于点D, 则BDcBDcac,所以,BD DCbBCbcbcAIABAIbccbc ,所以

acIDBDADabcabc连接BI,则有bcbcbccAD=(ABBD)(ABBC) 因此,AIabcabcabcbcbccbcbc(AB(ACAB))(ABAC) abcbcabcbcbcbcbcbcABAC ABACabcabcabcbcbc(abc)AIbABcAC

aAI(bABbAI)(cACcAI)bIBcIC

aIAbIBcIC0

反之,当aIAbIBcIC0时,可得点I为ABC的角平分线的交点,即为三角形的内心.

此题的证明需要利用角平分线的性质定理与比例的性质,在化简变形的过程中要特别注意. (2)若0为平面内任一点,则点I为ABC的內心的充要条件为abcOAOBOC

abcabcabc证明:由(1)知aIAbIBcIC0 OI a(OIOA)b(OIOB)c(OIOC)0  (abc)OIaOAbOBcOC

 从而有OIabcOAOBOC

abcabcabc上面我们提到的三角形的四个“心”非常奇妙,这一点从它们的向量表示形式上也能够体现出来,在平时的学习中要注意体会;同时向量法是研究几何图形性质的重要方法,而上面的证明过程也告诉我们把几何图形中的几何量用向量表示出来后,灵活运用平面几何中的比例关系及比例的性质是再进行向量运算的“先行军”.

第三篇:向量中的三角形心的问题

向量中的三角形“四心”问题

学习向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?你能证明吗?下面的几个结论也许能给同学们一点帮助。

结论1:若点O为△ABC所在的平面内一点,满足点O为△ABC的垂心。 证明:由,所以

。同理可证

,得

,即

,则

。故O为△ABC的垂心。

结论2:若点O为△ABC所在的平面内一点,满足,则点O为△ABC的垂心。

证明:由。同理可证

,得

。容易得到

,所以

由结论1知O为△ABC的垂心。

结论3:若点G为△ABC所在的平面内一点,满足ABC的重心。 证明:由,所以

,得

,则点G为△

。设BC边中点为M,则

,即点G在中线AM上。设AB边中点为N,同理可证G在中线CN上,故点G为△ABC的重心。

结论4:若点G为△ABC所在的平面内一点,满足为△ABC的重心。

,则点G证明:由,得。由结论3知点G为△ABC的重心。

,得结论5:若点P为△ABC所在的平面内一点,并且满足

,则点P为△ABC的内心。

证明:由于方向的单位向量为,与

,可得

同方向的单位向量为

,则

。设与同

。因为

,知点P在∠A为单位向量,所以向量的平分线上。

同理可证点P在∠B的平分线上。 故点G为△ABC的内心。

在∠A的平分线上。由结论6:若点O为△ABC所在的平面内一点,满足,则点O为△ABC的外心。

证明:因为,所以

同理得

,所以。故点O为△ABC的外心。

由题意得

,得说明:以上几个结论不仅给大家展示了三角形的“四心”的向量表示,而且是向量加减法应用的很好典例,值得大家关注。

第四篇:复数的向量表示

教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习复数的向量表示,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对

值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数 与复平面内的点 形成—一对应关系,而点 又与复平面的向量 构成—一对应关系.因此,复数集 与复平面的以 为起点,以 为终点的向量集 形成—一对应关系.因此,我们常把复数 说成点Z或说成向量 .点 、向量 是复数 的另外两种表示形式,它们都是复数 的几何表示.

相等的向量对应的是同一个复数,

复平面内与向量 相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系. 2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是 ,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问 的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)

都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量 的模,又叫做向量 的绝对值,也就是有向线段OZ的长度 .它也叫做复数 的模或绝对值.它的计算公式是 . 教学设计示例 复数的向量表示 教学目的

1掌握复数的向量表示 ,复数模的概念及求法,复数模的几何意义.

2 通过数形结合研究复数.

3培养学生辩证唯物主义思想. 重点难点

复数向量的表示及复数模的概念. 教学学具

投影仪

教学过程 1复习提问:向量的概念;模;复平面. 2新课:

一、复数的向量表示: 在复平面内以原点为起点,点Z(a,b)为终点的向量OZ,由点Z(a,b)唯一确定.

因此复平面内的点集与复数集C之间存在一一对应关系,而复平面内的点集与以原点为起点的向量一一对应.

常把复数z=a+bi说成点Z(a,b)或说成向量OZ,并规定相等向量表示同一复数.

二、复数的模

向量OZ的模(即有向线段OZ的长度)叫做复数z=a+bi的模(或绝对值)记作|Z|或|a+bi|

|Z|=|a+bi|=a+b

例1 求复数z1=3+4i及z2=-1+2i的模,并比较它们的大小.

解:∵|Z1|2=32+42=25 |Z2|2=(-1)2+22=5

∴|Z1|>|Z2| 练习: 1已知z1=1+3i z2=-2i Z3=4 Z4=-1+2i

⑴在复平面内,描出表示这些向量的点,画出向量.

⑵计算它们的模.

三、复数模的几何意义

复数Z=a+bi,当b=0时z∈R |Z|=|a|即a在实数意义上的绝对值复数模可看作点Z(a,b)到原点的距离.

例2 设Z∈C满足下列条件的点Z的集合是什么图形?

⑴ |Z|=4 ⑵ 2≤|Z|<4

解:(略)

练习:⑴ 模等于4的虚数在复平面内的点集 .

⑵ 比较复数z1=-5+12i z2=―6―6i的模的大小.

⑶已知:|Z|=|x+yi|=1 求表示复数x+yi的点的轨迹.

教学后记: 板书设计:

一、复数的向量表示:

三、复数模的几何意义

二、复数的模

例2 例1 探究活动

已知 要使 ,还要增加什么条件?

解:要使 ,即 由此可知,点 到两个定点 和 的距离之和为6 ,如把看成动点,则它的轨迹是椭圆 .

因此,所要增加的条件是:点 应满足条件 .

说明 此题是属于缺少条件的探索性问题,解决这类问题的一般做法是从结论出发,并采用逆推的方法得出终结的结论,便理所求的条件.

第五篇:平面向量平行的坐标表示教案

8.3.2平面向量平行的坐标表示

教学目标:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。

教学重点:平行向量充要条件的坐标表示,解决向量平行(共线)的有关问题 教学难点:充要条件的推导,共线条件的判断 教学过程:

一、复习:1. 平行向量基本定理

2.平面向量的坐标运算法则



二、1.提出问题:共线向量的充要条件是有且只有一个实数λ使得a=λb(b0),那么这个充要条件如何用坐标来表示呢?

2.推导:设a=(x1, y1) b=(x2, y2) 其中ba

xx2由a=λb (x1, y1) =λ(x2, y2) 1 消去λ:x1y2-x2y1=0

y1y2结论:a∥b (b0)的充要条件是x1y2-x2y1=0

注意:1消去λ时不能两式相除,∵y1, y2有可能为0, ∵b0

∴x2, y2中至少有一个不为0 2充要条件不能写成

y1y2 ∵x1, x2有可能为0 x1x2ab3从而向量共线的充要条件有两种形式:a∥b (b0)

x1y2x2y10

三、应用举例

例一,判断下列两个向量是否平行

(1)a=(-1,3),b=(5,-15) (2)AB=(2,0),CD=(0,3)

解:(1)(-1)(-15)=35 a与b平行 (2)2300 AB与CD不平行

点评:利用坐标表示可以判断两个向量是否平行 两个课后练习巩固

例二 若向量a=(-1,x)与b=(-x, 2)共线且方向相同,求x

解:∵a=(-1,x)与b=(-x, 2) 共线

∴(-1)×2- x•(-x)=0 ∴x=±2

∵a与b方向相同

∴x=2

定评:如果两个向量共线 根据公式可以求出未知数

完成课后第二第三两题

例三 已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的关系.

解:AB11,312,4,AC21,513,6又26340,故AB//AC,直线AB、直线AC有公共点A,所以A、B、C三点共线.同时引导学生如何证明三点不共线 点评:如何证明三点共线 主要是证明两个有公共点的两个向量平行, 变式.已知A(-1, -1) B(1,3) C(1,5) D(2,7) (1) 向量AB与CD平行吗? (2)直线AB与平行于直线CD吗?

解:∵AB=(1-(-1), 3-(-1))=(2, 4) CD=(2-1,7-5)=(1,2) 又:∵2×2-4-1=0 ∴AB∥CD 又:AC=(1-(-1), 5-(-1))=(2,6) AB=(2, 4) 2×4-2×60 ∴AC与AB不平行

∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD

四、练习:

1.已知平面向量a(1,2),b(2,m),且a∥b,则2a3b的坐标为 . 2. 已知点A(0,1) B(1,0) C(1,2) D(2,1) 求证:AB∥CD

五、 高考链接

(1,2),b(2,3)4,7)共⑴(08全国2)设向量a,若向量ab,与向量c(线,求值.

,m),c(1,2),若(ab)∥c,则⑵(10陕西11)已知向量a(1,2),b(1m= .

五、小结:1.向量平行的充要条件(坐标表示) • 2.利用向量共线求未知数

• 3. 利用向量思想证明点共线的方法

六、作业:P64 练习8-6 《同步训练》P

38、39

七、课后反思

————————————————————————————————————————————————————————————————————————————————————————————————————————————



上一篇:神经外科护理质量指标下一篇:书记在人才座谈会讲话