第一轮复习平面向量

2022-08-08

第一篇:第一轮复习平面向量

平面向量复习题

平 面 向 量

向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具在三角、函数、导数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。近年考纲又新增“平面向量在几何中的应用”试题进一步要求我们具备多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题。一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值。除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等。只有这样才能做到举一反三,以不变应万变。

一、高考考纲要求

1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.

2.掌握向量的加法与减法.

3.掌握实数与向量的积,理解两个向量共线的充要条件.

4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

6.掌握平面两点间的距离公式,掌握线段的定比分点和中点公式,并且能熟练运用;掌握平移公式.

二、高考热点分析

在高考试题中,对平面向量的考查主要有三个方面:

其一是主要考查平面向量的概念、性质和运算法则,理解和运用其直观的几何意义,并能正确地进行计算。 其二考查向量坐标表示,向量的线性运算。

其三是和其他知识结合在一起,在知识的交汇点设计试题,考查向量与学科知识间综合运用能力。

数学高考命题注重知识的整体性和综合性,重视知识的交互渗透,在知识网络的交汇点设计试题.由于向量具有代数和几何的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项知识的媒介.因此,平面向量与其他知识的结合特别是与解析几何的交汇、融合仍将是高考命题的一大趋势,同时它仍将是近几年高考的热点内容.

附Ⅰ、平面向量知识结构表

1. 考查平面向量的基本概念和运算律

1此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。 1.(北京卷)| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为

A.30°

B.60°

C.120°

D.150°

()

2.(江西卷)已知向量

A.30°

(1,2),(2,4),||

B.60°

,若()

C.120°

,则与的夹角为

2()

D.150°

3.(重庆卷)已知A(3,1),B(6,1),C(4,3),D为线段BC的中点,则

A.

与的夹角为()

444

4B.arccos C.arccos() D.-arccos()

2555

5

4.(浙江卷)已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则

arccos

()

A.a⊥e B.a⊥(a-e)

C.e⊥(a-e) D.(a+e)⊥(a-e)



5 .(上海卷)在△ABC中,若C90,ACBC4,则BABC 2. 考查向量的坐标运算

1.(湖北卷)已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是

A.[-4,6]

2.(重庆卷)设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于

A.(1,1)

B.(-4,-4)

C.-4

D.(-2,-2)

()

()

B.[-6,4]

C.[-6,2]

D.[-2,6]

()



3.(浙江卷)已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是

A.{2,3}

B.{-1,6}

C.{2}

D.{6}

例4.(2005年高考·天津卷·理14)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则OC=。



5.(全国卷)已知向量OA(k,12),OB(4,5),OC(k,10),且A、B、C三点共线,则k=.6.(湖北卷)已知向量a7.(广东卷)已知向量a

(2,2),b(5,k).若|ab|不超过5,则k的取值范围是

(2,3),b(x,6),且a//b,则x.

3. 平面向量在平面几何中的应用



ABAC

),[0,),则1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OPOA(|AB||AC|

P的轨迹一定通过△ABC

A.外心

的 () B.内心

C.重心

D.垂心



2.(辽宁卷)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP等于()

A.(ABAD),(0,1)

B. (ABBC),(0,

C. (ABAD),(0,1)

D. (ABBC),(0,



3.已知有公共端点的向量a,b不共线,|a|=1,|b|=2,则与向量a,b的夹角平分线平行的单位向量是.



4.已知直角坐标系内有三个定点A(2,1)、B(0,10)、C(8,0),若动点P满足:OPOAt(ABAC),tR,

则点P的轨迹方程。

4. 平面向量与三角函数、函数等知识的结合

当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式。在此基础上,可以设计出有关函数、不等式、三角函数、数列的综合问题。此类题的解题思路是转化为代数运算,其转化途径主要有两种:

①利用向量平行或垂直的充要条件, ②利用向量数量积的公式和性质. 1.(江西卷)已知向量(2cos

xxxx

,tan()),(2sin(),tan()),令f(x). 224242

4求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.2.(山东卷)已知向量



m(cos,sin)

n

sin,cos,,2

mn求



cos的值.

28

3.(上海卷)已知函数

f(x)kxb的图象与x,y轴分别相交于点

A、B,

22(,分别是与x,y轴正半

轴同方向的单位向量),函数g(x)

x2x6.f(x)g(x)时,求函数

(1)求k,b的值; (2)当x满足

g(x)

1的最小值.

f(x)

【反思】这类问题主要是以平面向量的模、数量积、夹角等公式和相互知识为纽带,促成与不等式知识的相互迁移,有效地考查平面向量有关知识、不等式的性质、不等式的解法、不等式的应用及综合解题能力。

5. 平面向量与解析几何的交汇与融合

由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点。

平面几何与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,解决此类问题基本思路是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算的几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:

1、 运用向量共线的充要条件处理解几中有关平行、共线等问题

运用向量共线的充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问

题要简捷的多。

2、运用向量的数量积处理解几中有关长度、角度、垂直等问题

运用向量的数量积,可以把有关的长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求的结果。

3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。

1.(江西卷)以下同个关于圆锥曲线的命题中 ①设A、B为两个定点,k为非零常数,|

PA||PB|k,则动点P的轨迹为双曲线;

(),则动点P的轨迹为椭圆; 2

②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若③方程2x

5x20的两根可分别作为椭圆和双曲线的离心率;

x2y2x2

1与椭圆y21有相同的焦点. ④双曲线

25935

其中真命题的序号为(写出所有真命题的序号)



2.平面直角坐标系中,O为坐标原点,已知A(3,1),B(1,3),若点C满足OC0AOB,其中,R,

且

1,则点C的轨迹方程为()

A. C.

3x2y110B. (x1)2(y2)25 2xy0D. x2y50

2.已知平面上一个定点C(-1,0)和一条定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,



(PQ+2PC)(PQ-2PC)=0.

(1)求点P的轨迹方程;



PC的取值范围. (2)求PQ·

第二篇:高中数学知识复习要点掌握之平面向量

平面向量复习基本知识点及经典结论总结

1、向量有关概念:

(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A(1,2),B(4,2),则把向量AB按向量a=(-1,3)平移后得到的向量是_____(答:(3,0))

(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;

(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是AB);

|AB|

(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;

(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A、B、C共线AB、 AC共线;

(6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若ab,则ab。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若ABDC,则ABCD是平行四边形。(4)若ABCD是平行四边形,则ABDC。(5)若ab,bc,则ac。(6)若a//b,b//c,则a//c。其中正确的是_______(答:(4)(5))

2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,j为基底,则平面内的任一向量a可表示为axiyjx,y,称x,y为向量a的坐标,a=x,y叫做向量a的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数

1、2,使a=1e1+2e2。如(1)若a(1,1),b

13;(2)下列向量组中,能作为平面内所有向量基底的是 A. ab)2

213;(3)e1(0,0),e2(1,2) B. e1(1,2),e2(5,7) C. e1(3,5),e2(6,10)D. e1(2,3),e2(,)(答:B)2

424已知AD,BE分别是ABC的边BC,AC上的中线,且ADa,BEb,则BC可用向量a,b表示为_____ab);33(1,1),c(1,2),则c______(答:

(4)已知ABC中,点D在BC边上,且CD2DB,CDrABsAC,则rs的值是___(答:0)

4、实数与向量的积:实数与向量a的积是一个向量,记作a,它的长度和方向规定如下:1aa,2当>0时,a的方向与a的方向相同,当<0时,a的方向与a的方向相反,当=0时,a0,注意:a≠0。

5、平面向量的数量积:

(1)两个向量的夹角:对于非零向量,,作OAa,OBb,AOB

0称为向量,的夹角,当=0时,,同向,当=时,,反向,当=2时,,垂直。

(2)平面向量的数量积:如果两个非零向量a,b,它们的夹角为,我们把数量|a||b|cos叫做a与b的数量积(或内积或点积),记作:,即=abcos。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)△ABC中,|AB|3,|AC|4,|BC|5,则ABBC_________(答:-

9);(2)已知a(1,),b(0,),cakb,dab,c与d的夹角为12124,则

k等于____(答:1);(3)已知a2,b5,ab3,则ab等于____;(4)已知a,b是两个非零向量,且abab,则a与ab

的夹角为____(答:30)

(3)b在a上的投影为|b|cos,它是一个实数,但不一定大于0。如已知|a|3,|b|5,且ab12,则向量a在向量b上的投影为______(答:



12)

5(4)的几何意义:数量积等于的模|a|与在上的投影的积。 (5)向量数量积的性质:设两个非零向量,,其夹角为,则: ①abab0;

②当,同向时,

=ab,特别地,aaaa,a;当与反向时,=-ab;当为锐角时,>0,且a、 b不同向,ab0是为锐角的必要非充分条件;当为钝角时,<0,且a、 b不反向,ab0是为钝角的必要非充分条件;

③非零向量,夹角的计算公式:cos

22abab

;④|ab||a||b|。如(1)已知a(,2),b(3,2),



如果a与b的夹角为锐角,则的取值范围是______(答:



41或0且);(2)已知OFQ的面积为S,3

3

13

且OFFQ1,若S,则OF,FQ夹角的取值范围是_________(答:(,));(3)已知

432

2a(cosx,sixnb),与b之间有关系式kabkb,其中k0,①用k表示ab;②求ab的最(cyos,ysain

1k21

(k0);②最小值为,60) 小值,并求此时a与b的夹角的大小(答:①ab4k2

6、向量的运算: (1)几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加

法还可利用“三角形法则”:设ABa,BCb,那么向量AC叫做a与b的和,即abABBCAC;

②向量的减法:用“三角形法则”:设ABa,ACb,那么abABACCA,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:①ABBCCD___;②ABADDC____

;③(ABCD)(ACBD)_____(答:①AD;②CB;③0);(2)若正方形ABCD的边长为1,;(3)若O是ABC所在平面内一点,且满足ABa,BCb,ACc,则|abc|=_____(答:)

ABCOBOCOBOC2OA,则ABC的形状为____(答:直角三角形);(4)若D为ABC的边BC的中点,

|AP|

;(5)若点O是△ABC的外,则的值为___(答:2)

|PD|

心,且OAOBCO0,则△ABC的内角C为____(答:120);

(2)坐标运算:设a(x1,y1),b(x2,y2),则:

所在平面内有一点P,满足PABPCP0,设

①向量的加减法运算:ab(x1x2,y1y2)。如(1)已知点A(2,3),B(5,4),C(7,10),若

1;(2)已知APABAC(R),则当=____时,点P在第

一、三象限的角平分线上(答:)21

;(3)已知作用在点A(1,1)A(2,3),B(1,4),且AB(sinx,cosy),x,y(,),则xy或)22226

的三个力F1(3,4),F2(2,5),F3(3,1),则合力FF1F2F3的终点坐标是(答:(9,1))

②实数与向量的积:ax1,y1x1,y1。

③若A(x1,y1),B(x2,y2),则ABx2x1,y2y1,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设A(2,3),B(1,5),且AC

AB,AD3AB,则C、D的坐标分别是__________(答:

3(1,

1

1; ),(7,9))

④平面向量数量积:abx1x2y1y2。如已知向量a=(sinx,cosx), b=(sinx,sinx), c=(-1,0)。(1)

311

,],,求向量、的夹角;(2)若x∈[函数f(x)的最大值为,求的值(答:(1)150;(2)842

2或1);

若x=

⑤向量的模

:|a|_____;

⑥两点间的距离:若Ax

1,y1,Bx2y,

a|a|2x2y2。如已知

a,b均为单位向量,它们的夹角为60,那么|a3b|=

,则|AB|如如图,在平面斜坐标系xOy中,

xOy60,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若OPxe1ye2,其中

(1)若点P的斜坐标为(2,e1,e2分别为与x轴、y轴同方向的单位向量,则P点斜坐标为(x,y)。-2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程。(答:(1)2;(2)x2y2xy10);



baab律:abca,bcac,bcabab;(3)分配律:

aaa,abab,abcacbc。如下列命题中:① a(bc)abac;②

7、向量的运算律:(1)交换律:abba,aa,abba;(2)结合





a(bc)(ab)c;③ (ab)|a|

2





2|a||b||b|;④ 若ab0,则a0或b0;⑤若abcb,则ac;⑥aa;⑦

aba

ba

;

⑧(ab)2ab;⑨(ab)2a2abb。其中正确的是______(答:①⑥⑨) 提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()(),为什么?

8、向量平行(共线)的充要条件:a//bab(ab)2(|a||b|)2x1y2y1x2=0。如(1)若向量

ua2b,v2ab,当x=_____时a与b共线且方向相同(答:2);(2)已知a(1,1),b(4,x),a(x,1),b(4,x),

且u//v,则x=______(答:4);(3)设PA(k,12),PB(4,5),PC(10,k),则k=_____时,A,B,C共线(答:-2或11)

9、向量垂直的充要条件:abab0|ab||ab|

x1x2y1y20.特别地

(

ABAB

ACAC

)(

ABAB

AC

3;(2))。如(1)已知OA(1,2),OB(3,m),若OAOB,则m)2AC

以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,B90,则点B的坐标是________ (答:(1,3)或(3,-1));(3)已知n(a,b),向量nm,且nm,则m的坐标是________ (答:(b,a)或(b,a))

10.线段的定比分点:

(1)定比分点的概念:设点P是直线P1P2上异于P

1、P2的任意一点,若存在一个实数 ,使PPPP2,则

1叫做点P分有向线段PP的定比分点; 12所成的比,P点叫做有向线段PP12的以定比为

(2)的符号与分点P的位置之间的关系:当P点在线段 P1P2上时>0;当P点在线段 P1P2的延长线上,则点P分有时<-1;当P点在线段P2P1的延长线上时1

0;若点P分有向线段PP12所成的比为

向线段P2P1所成的比为

。如若点P分AB所成的比为

37

,则A分BP所成的比为_______(答:)

43x

,(3)线段的定比分点公式:设P则x1,y1)、P2(x2,y2),P(x,y)分有向线段PP1(12所成的比为

y

x1x

21,y1y21

x1x2x2特别地,当=1时,就得到线段P1P2的中点公式。在使用定比分点的坐标公式时,应明确(x,y),yy1y22(x1,y1)、(x2,y2)的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分

1

点和终点,并根据这些点确定对应的定比。如(1)若M(-3,-2),N(6,-1),且MPMN,则点P的坐标为

7

1_______(答:(6,));(2)已知A(a,0),B(3,2a),直线yax与线段AB交于M,且AM2MB,则a等于

32_______(答:2或-4)

xxh

11.平移公式:如果点P(x,y)按向量ah,k平移至P(x,y),则;曲线f(x,y)0按向量ah,k

kyy

平移得曲线f(xh,yk)0.注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不

变性,可别忘了啊!如(1)按向量a把(2,3)平移到(1,2),则按向量a把点(7,2)平移到点______(答:(-8,

(3));(2)函数ysin2x的图象按向量a平移后,所得函数的解析式是ycos2x1,则a=________(答:

12、向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

(2)||a||b|||ab||a||b|,特别地,当a、 b同向或有0|ab||a||b|



,1))

;当a、 b反向或有0|ab||a b不共线||a||b|||ab|;当a、|b||a||b||a||b

). |a||b||a||ba||(这些和实数比较类似b

xx2x3y1y2y3

(3)在ABC中,①若Ax1,y1,Bx2,y2,Cx3,y3,则其重心的坐标为G1,。如

33若⊿ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则⊿ABC的重心的坐标为_______(答:(

2

4,)); 3

3②PG(PAPBPC)G为ABC的重心,特别地PAPBPC0P为ABC的重心;

③PAPBPBPCPCPAP为ABC的垂心;

④向量(ABAC)(0)所在直线过ABC的内心(是BAC的角平分线所在直线);

|AB||AC|

⑤|AB|PC|BC|PA|CA|PB0PABC的内心;

,点M为平面内的任一点,则MPMP1MP2,特别地P为PP(3)若P分有向线段PP12的中12所成的比为

1

1MP2; 点MPMP

2(4)向量PA、 PB、 PC中三终点A、B、C共线存在实数、使得PAPBPC且1.如平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足OC



1OA2OB,其中1,2R且



121,则点C的轨迹是_______(答:直线AB)

第三篇:高考二轮复习数学考点突破之数列+三角函数与平面向量

高考二轮数学复习:三角函数与平面向量

1.三角函数作为一种重要的基本初等函数,是中学数学的重要内容,也是高考命题的热点之一.近几年对三角函数的要求基本未作调整,主要考查三角函数的定义、图象与性质以及同角三角函数的基本关系式、诱导公式、和角与倍角公式等.高考对三角函数与三角恒等变换内容的考查,一是设置一道或两道客观题,考查三角函数求值、三角函数图象与性质或三角恒等变换等内容;二是设置一道解答题,考查三角函数的性质、三角函数的恒等变换或三角函数的实际应用,一般出现在前两个解答题的位置.无论是客观题还是解答题,从难度来说均属于中低档题目,所占分值在20分左右,约占总分值的13.3%.

2.平面向量是连接代数与几何的桥梁,是高考的重要内容之一.高考常设置1个客观题或1个解答题,对平面向量知识进行全面的考查,其分值约为10分,约占总分的7%.近年高考中平面向量与解三角形的试题是难易适中的基础题或中档题,一是直接考查向量的概念、性质及其几何意义;二是考查向量、正弦定理与余弦定理在代数、三角函数、几何等问题中的应用.

1.2011年高考试题预测

(1)分析近几年高考对三角函数与三角恒等变换部分的命题特点及发展趋势,以下仍是今后高考的主要内容:

①三角函数的图象与性质是高考考查的中心内容,通过图象求解析式、通过解析式研究函数性质是常见题型.

②解三角函数题目的过程一般是通过三角恒等变换化简三角函数式,再研究其图象与性质,所以熟练掌握三角恒等变换的方法和技巧尤为重要,比如升幂(降幂)公式、asin

x+bcos

x的常考内容.

③通过实际背景考查同学们的数学建模能力和数学应用意识.

高考二轮复习数学考点突破之数列

1.本专题是高中数学的重要内容之一,在高考试题中一般有2~3个题

(1~2个选择、填空题,1个解答题),共计20分左右,约占总分的13%.选择题、填空题的难度一般是中等,解答题时常会出现与函数、三角、不等式等知识交汇的问题,故多为中等偏上乃至较难的问题.

2.数列是高中数学的重要内容,又是学习高等数学的基础.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏,有关数列的试题一般是综合题,经常把数列与不等式的知识综合起来考查,也常把数列与数学归纳法综合在一起考查.探索性问题是高考的热点,常有数列解答题中出现.

3.近两年来,高考关于数列方面的命题主要有以下三个方面:(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式.

(2)数列与其他知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合.(3)数列的应用问题,其中主要是以增长率问题为主.试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,有一些地方用数列与几何的综合,或与函数、不等式的综合作为最后一题,难度较大.热点,常有数列解答题中出现.

第四篇:平面向量

一、知识梳理:

(1)本章要点梳理:

1.向量加法的几何意义:起点相同时适用平行四边形法则(对角线),首尾相接适用“蛇形法则”,1

特别注意:(ABAC) 表示△ABC的边BC的中线向量.向量减法的几何意义:起点相同适

2用三角形法则,(终点连结而成的向量,指向被减向量),||表示A、B两点间的距离;以、为邻边的平行四边形的两条对角线分别表示向量+、(或).2.理解单位向量、平行向量、垂直向量的意义。 与非零向量同向的单位向量a0,叫做的单位向量。而a0都与共线(与反向

的单位向量为-a0.3.两向量所成的角指的是两向量方向所成的角;两向量数量积||||cos,;其中|b|cosa,b可视为向量在向量上的投影.

4.向量运算中特别注意a|a|的应用.研究向量的模常常先转化为模平方再进行向量运算.另外,有关向量的运算也可以利用数形结合的方法来求解,有些题目就可以由作图得解.

5.向量的坐标运算是高考中的热点内容,向量的坐标形式实质上是其分解形式xy的“简记”.其中i,j分别表示与x轴、y轴正方向同向的单位向量.

6.利用向量求角时,要注意范围.两向量所成角的范围是[0,].特别注意:0不能等同于,所成角是锐角,因为当,同向时也满足0;同样的道理,0不能等同于,所成角是钝角,因为当a,b反向时也满足0

[例]l是过抛物线y22px(p0)焦点的直线,它与抛物线交于A、B两点,O是坐标原点,则△ABO是()A、锐角三角形;B、直角三角形;C、钝角三角形;D、不确定与P值有关. 22

y22pxpp分析:由直线l过焦点F(,0),设其方程为xmy,联立得:,即:p22xmy2

y1y2p2=.则y2pmyp0,则y1y2p,又x1x22p2p4222223p

2OAOBx1x2y1y20,则AOB一定是钝角.选C.

47.直线l的向量参数方程式:A、P、B三点共线 则OP(1t)OAtOB

8.关注向量运算与三角函数综合是高考中的常见题型.[例]已知向量a{2cosx,1},b{cosx,3sin2x},xR.设f(x)ab.

(1)若f(x)13且x[,],求x的值; (2)若函数y2sin2x的图像按向量3

3c{m,n}(|m|

2)平移后得到函数yf(x)的图像,求实数m,n的值.

2解析:(1)f(x)2cosx3sin2xcos2x13sin2x2sin(2x

6)1,

易得x

4.(2)函数y2sin(2x

6)1是由函数y2sin2x的图像向左平移,再把1

2所得图像向上平移1个单位而得,所以m

二、易错、易混、易忘点梳理: 12,n1.

【易错点1】涉及向量的有关概念、运算律的理解与应用,易产生概念性错误。

例1.下列命题:①()2()2||4 ②()() ③ |²|=||²||④若∥b,b∥c,则∥ ⑤∥,则存在唯一实数λ,使 ⑥若,且≠,则⑦设e1,e2是平面内两向量,则对于平面内任何一向量,都存在唯一一组实数x、y,使xe1ye2成立。⑧若|+|=|-|则²=0。⑨²=0,则=或=。其中真命题的个数为()

A.1B.2C.3D.3个以上 2解析:①正确。根据向量模的计算aaa判断。②错误,向量的数量积的运算不满足交换律,这是因为根据数量积和数乘的定义(ac)b表示和向量b共线的向量,同理(ab)c表示和向量c共线的向量,显然向量b和向量c不一定是共线向量,故(ab)c(ac)b不一定成立。③错误。应为abab④错误。注意零向量和任意向量平行,非零向量的平行性才具有传递性。⑤错误。应加条件“非零向量a”。⑥错误。向量不满足消去律。根据数量的几何意义,只需向量b和向量b在向量c方向的投影相等即可,作图易知满足条件的向量有无数多个。⑦错误。注意平面向量的基本定理的前提有向量e1,e2是不共线的向量即一组基底。⑧正确。条件表示以两向量为邻边的平行四边形的对角线相等,即四边形为矩形。故²=0。⑨错误。只需两向量垂

直即可。答案:B 【知识点归类点拔】在利用向量的有关概念及运算律判断或解题时,一定要明确概念或定理成立的前提条件和依据向量的运算律解答,要明确向量的运算和实数的运算的相同和不同之处。一般地已知a,b,с和实数λ,则向量的数量积满足下列运算律:①a²b=b²a(交换律)②(λa)²b=λ(a²b)=a²(λb)(数乘结合律)③(a+b)²с=a²с+b²с(分配律)说明:(1)一般地,(a²b)с≠a(b²с)(2)有如下常用性质:a=|a|,(a+b)(с+d)=a²с+a²d+b²с+b²d,(a+b)=a+2a²b+b

【练习】设a、b、c是任意的非零平面向量,且相互不共线,则①(a²b)c-(c²a)b=0②|a|-|b|<|a-b|③(b²c)a-(c²a)b不与c垂直④(3a+2b)(3a-2b)=9|a|-4|b|中,是真命题的有()A.①②B.②③C.③④D.②④答案: D

【易错点2】利用向量的加法、减法、数量积等运算的几何意义解题时,数形结合的意识不够,忽视隐含条件。

例2.四边形ABCD中,AB=a,BC=b,CD=с,DA=d,且a²b=b²с=с²d=d²a,试问四边形ABCD是什么图形?

【易错点分析】四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量,易忽视如下两点:(1)在四边形中,AB,BC

,CD,DA是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系。

解:四边形ABCD是矩形,这是因为一方面:由a+b+с+d=0得a+b=-(с+d),即(a+b)=(с+d)即|a|+2a²b+|b|=|с|+2с²d+|d|由于a²b=с²d,∴|a|+|b|=|с|+|d|①同理有|a|+|d|=|с|+|b|②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD222222222222222222222

形ABCD是平行四边形.另一方面,由a²b=b²с,有b(a-с)=0,而由平行四边形ABCD可得a=-с,代入上式得b²(2a)=0即a²b=0,∴a⊥b也即AB⊥BC。综上所述,四边形ABCD是矩形.【知识点归类点拔】向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。基于这一点解决向量有关问题时要树立起数形结合,以形助数的解题思路。例如很多重要结论都可用这种思想直观得到:(1)向量形式的平行四边形定理:2(|a|+|b|)=|a-b|+|222a+b|2(2)向量形式的三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)等有用的结论。

【练习】(1)点O是ABC所在平面内的一点,满足OAOBOBOCOCOA,则点O是ABC的()

(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点

(C)三条中线的交点(D)三条高的交点

(2)ABC的外接圆的圆心为O,两条边上的高的交点为H,OHm(OAOBOC),则实数m =

答案:(1)D(2)m=

1【易错点3】忽视向量积定义中对两向量夹角的定义。 例3.已知ABC中,a5,b8,c7,求BCCA.(答案:-20)

【知识点归类点拔】高中阶段涉及角的概念不少,在学习过程中要明确它们的概念及取值范围,如

0,1800,180直线的倾斜角的取值范围是,两向量的夹角的范围是,注意向量的夹角是

否为三角形内角。 

【易错点4】向量数积性质的应用。

例4.已知a、b都是非零向量,且a + 3b与7a  5b垂直,a  4b与7a  2b垂直,求a与b的夹角。

解析:本题应依据两向量夹角公式树立整体求解的思想。答案: 60。

【知识点归类点拔】利用向量的数量积的重要性质结合向量的坐标运算可解决涉及长度、角度、垂直等解析几何、立体几何、代数等问题,要熟记并灵活应用如下性质:设a与b都是非零向量,①a与b的数量积的几何意义是向量a在向量b方向的单位向量正射影的数量②a⊥ba²b=0③a²a=|a|或|a|=aaa④cosθ=22ab ab

⑤|a²b|≤|a|²|b|

5【练习】(1)已知向量a(1,2),b(2,45,若(ab)c,则a与c的夹角为()

2C.120°D.150°答案:C(注意b2a) (2已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则() (A) a⊥e(B) a⊥(a-e)(C) e⊥(a-e)(D) (a+e)⊥(a-e)答案:C A.30°B.60°

【易错点5】向量与三角函数求值、运算的交汇 例

5、a(1cos,sin),b(1cos,sin),c(1,0),(0,),(,2),a与c的夹

角为θ1, b与c的夹角为θ2,且12,求sin的值.

32【易错点分析】此题在解答过程中,学生要将向量的夹角运算与三角变换结合起来,注意在用已知角表示两组向量的夹角的过程中,易忽视角的范围而导致错误结论。

解析:a(2cos,2sincos)2cos(cos,sin),b(2sin2,2sincos)22222222222sin

2(sin

2,cos

2)(0,),(,2),(0,),(,),故有2222

22cosac2cos,,|a|2cos|b|2sincos112222|a||c|2cos

22sin2

bc2sin,0,因cos22222222|b||c|2sin

2112,,从而sinsin. 22226262

【知识点归类点拔】当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具体代数与几何形式的双重身份。它是新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与三角的交汇是当今高考命题的必然趋势。高考对三角的考查常常以向量知识为载体,结合向量的夹角、向量的垂直、向量的模或向量的运算来进行考查学生综合运用知识解决问题的能力。

【易错点6】向量与解三角形的交汇

→→→→例6.ΔABC内接于以O为圆心,1为半径的圆,且3OA+4OB+5OC=0 。

→→→→→→①求数量积,OA²OB ,OB²OC ,OC²OA ;②求ΔABC的面积。

→→→【思维分析】第1由题意可知3OA、4OB、5OC三向量的模,故根据数量积的定义及运算律将一

向量移项平方即可。第2问据题意可将已知三角形分割成三个小三角形利用正弦理解答。

→→→→→→→→→→→2解析:①∵|OA|=|OB|=|OC|=1由3OA+4OB+5OC=0 得:3OA+4OB=-5OC两边平方得:9OA+

→→→2→2→→→→→→→4→→→24OA²OB+16OB=25OC∴OA²OB=0同理:由4OB+5OC=-3OA求得OB²OC=- 由3OA+5OC=-4OB

5→→3求得OA²OC=-5

1→→1443→→→→②由OA²OB=0,故s0AB= |OA||OB|= 由OB²OC=- 得cos∠BOC=-∴sin∠BOC=- ∴22555

1→→33341→→→由OC²OA=- 得cos∠COA=- ∴sin∠COA= ∴s0AC= |OCs0BC= |OB||OC|sin∠BOC= ,210555

221326→||OA|sin∠COA= 即sABC=s0AB+s0AC+s0BC= + + =521055

【知识点归类点拔】本题考查了向量的模、向量的数量积的运算,用于表达三角形的内角、面积。

第五篇:平面向量的应用

平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。下面举例说明。

一、用向量证明平面几何定理

例1. 用向量法证明:直径所对的圆周角是直角。

已知:如图1,AB是⊙O的直径,点P是⊙O上任一点(不与A、B重合),求证:∠APB=90°。

证明:联结OP,设向量OAa,OPb,则OBa且PAOAOPab,

PBOBOPab PAPBb2a2|b|2|a|20

PAPB,即∠APB=90°。

二、用向量求三角函数值

例2. 求值:cos图

1解:如图2,将边长为1的正七边形ABCDEFO放进直角坐标系中,则OA(1,0),

224466AB(cos,sin),BC(cos,sin),CD(cos,sin),777777 8810101212DE(cos,sin),EF(cos,sin),FO(cos,sin)777777246coscos 777

又OAABBCCDDEEFFO0

21cos24681012coscoscoscoscos0 777777

86104122cos,coscos,coscos又cos 777777

24612(coscoscos)0777 2461coscoscos7772

三、用向量证明不等式

222例3. 证明不等式(a1b1a2b2)2(a1a2)(bb212)

证明:设向量a(a1,a2),b(b1,b2),则|a|

与b的夹角为θ,cos

又|cos|

1222则(a1b1a2b2)2(a1a

22)(b1b2) 22a1a2|b|b1b22,2,设aab|a||b|a1b1a2b2aa2122bb2122

当且仅当a、b共线时取等号。

四、用向量解物理题 例4. 如图3所示,正六边形PABCDE的边长为b,有五个力PA、PB、PC、PD、PE作用于同一点P,求五个力的合力。

解:所求五个力的合力为PAPBPCPDPE,如图3所示,以PA、PE为边作平行四边形PAOE,则POPAPE,由正六边形的性质可知|PO||PA|b,且O点在

PC上,以PB、PD为边作平行四边形PBFD,则PFPBPD,由正六边形的性质可知|PF|3b,且F点在PC的延长线上。

由正六边形的性质还可求得|PC|2b

故由向量的加法可知所求五个力的合力的大小为b2b3b6b,方向与PC的方向

相同。

图3

上一篇:党员问题及整改措施下一篇:打印室规范管理制度

本站热搜