螺旋千斤顶工作原理

2024-04-29

螺旋千斤顶工作原理(精选6篇)

篇1:螺旋千斤顶工作原理

毕 业 设 计(论 文)题 目 螺旋千斤顶的设计 系 别 专 业 班 级 学生姓名 学 号 指导教师 定稿日期 20 年 3 月 23 日 毕业设计任务书专业 指导 姓名 学号班级 教师设计题目 螺旋千斤顶的设计设计目的 通过对螺母,螺杆的稳定性,耐磨性及其强度的计算,使得该设计能与意义 够满足承受更大载荷及较高高度的螺旋千斤顶。为机械工业提供更多 的便利,缓解了大载荷物品的可移性。合理的利用摇杆的摆动,以往复扳动手柄,拔爪即推动棘轮间隙回转,设计与工 小伞齿轮带动大伞齿轮、使举重螺杆旋转,从而使升降套筒获得起升作原理 或下降,而达到起重拉力的功能。

1、耐磨性达到其轴向载荷的最低要求;基本

2、螺杆强度应适于轴向力及扭矩作用;要求

3、能最大化承受载荷,更较长时间承受最大载荷的轴向力。1 岳优兰,马文锁.机械设计基础.河南:河南大学出版社,2005 2 卜 炎.机械传动装置设计手册.湖南:机械工业出版社,2002主要 3 黄祖德.机械设计.北京:北京理工大学出版社,2007.9参考 4 徐锦康.机械设计.北京:北京高等教育出版社2008.5 张晓坤,隋晓朋,张智广.Atucad 中文版实用教程.北京:经济日资料 报出版社,2008.9及文 6 隋冬杰,刘晓菡,王傲胜.机械基础.上海:同济大学出版社,献 7 唐金松.简明机械设计手册(第二版).上海:科学技术出版社,2000.II 摘 要 机械设计在国民经济发展中起着重要的作用,机械工业担负着为国民经济部门提供各种性能先进,价格低廉,使用安全可靠,造型美观的技术装备的任务,在国家现代化建设中举足轻重。机械产品的市场竞争能力主要取决于产品的质量,而产品的质量又取决于产品的设计。千斤顶是一种简单的起重设备。主要用于厂矿、交通运输等部门作为车辆修理及其它起重、支撑等工作。其结构轻巧坚固、灵活可靠,一人即可携带和操作。螺旋千斤顶 又称机械式千斤顶,是由人力通过螺旋副传动,螺杆或螺母套筒作为顶举件。本次设计是产品开发周期中的关键环节,设计决定了实现产品功能和目标的方案,结构和选材。制造方法以及产品运行,使用和维修方法。设计不合理会导致产品功能不完善,成本提高或可靠性,安全性不好。产品设计上的缺陷造成的先天不足,难以采取制造和使用措施加以弥补。少数情况下,即有可能,损失也大。严重的设计不合理甚至会造成的产品不能用或产品制造不出来,导致产品开发失败。关键词 : 螺旋千斤顶 螺旋传动 体积小 III 目 录摘

要.........................................................IIIABSTRACT..........................................................IV目 录..........................................................V1 起重机械的概述..................................................12 螺旋传动的设计和计算............................................1 2.1 螺旋传动的类型和应用........................................1 2.2 螺旋传动的运动关系..........................................3 2.3 滑动螺旋传动的设计..........................................5 2.4 滑动螺旋的结构及材料........................................5 2.4.1 滑动螺旋的结构...................................................................................................................5 2.4.2 螺杆与螺母常用材料........................................................................................................5 2.5 耐磨性计算..................................................6 2.6 螺母螺纹牙的强度计算........................................8 2.7 螺杆强度校核................................................8 2.8 螺杆稳定性校核..............................................9 2.9 自锁性校核.................................................103 千斤顶的工作原理和设计.........................................11 3.1 千斤顶的概述...............................................11 3.2 千斤顶的种类和规格.........................................11 3.2.1 油压千斤顶的结构............................................................................................................11 3.2.2 螺旋千斤顶的种类............................................................................................................13 3.3 千斤顶的工作原理...........................................14 3.4 千斤顶的设计...............................................15 3.5 千斤顶的装配图.............................................19结 论..........................................................22致 谢..........................................................23参考文献.........................................................23 毕业设计(论文)1 起重机械的概述 起重机械是一种以间歇作业方式对物料进行起升,下降和水平移动的搬运机械。起重机械的作业通常带有重复循环的性质。一个完整的作业循环一般包括取物、起升、平移、下降、卸载,然后返回原处等环节。经常起动、制动、正向和反向运动是起重机械的基本特点。起重机械广泛用于交通运输业、建筑业、商业和农业等国民经济各部门及人们日常生活中。起重机械由运动机械、承载机构、动力源和控制设备以及安全装备、信号指示装备等组成。起重机的驱动多为电力,也可用内燃机,人力驱动只用于轻小型起重设备或特殊需要的场合。起重机械按结构特征和使用场合分为:轻小型起重设备、桥架型起重机、缆索型起重机、臂架型起重机、堆垛起重机、升降机械。然而,千斤顶又属于起重机械的一种。千斤顶是一种起重高度小小于 1m的最简单的起重设备。它有机械式和液压式两种。机械式千斤顶又有齿条式与螺旋式两种。千斤顶按工作原理分为:螺旋千斤顶、齿条千斤顶、油压千斤顶。2 螺旋传动的设计和计算2.1 螺旋传动的类型和应用 螺旋传动是利用螺杆(丝杠)和螺母组成的螺旋副来实现传动要求的。它主要用于将回转运动转变为直线运动,同时传递运动和动力。它具有结构紧凑、转动均匀、准确、平稳、易于自锁等优点,在工业中获得了广泛应用。按照用途不同,螺旋传动分为传力螺旋、传导螺旋和调整螺旋三种类型。传力螺旋以传递动力为主,要求以较小的转矩产生较大的轴向推力,一般为间歇性工作,工作速度较低,通常要求具有自锁能力,图 1.1 的螺旋千斤顶及图 1.2 的螺旋压力机均为传力螺旋。传导螺旋以传递运动为主,这类螺旋常在较长的时间内连续工作且工作速度较高,传动精度要求较高,如图 1.3 所示的机床进给机构的螺旋。调整螺旋用于调整并固定零件间的相对位置,一般在空载下工作,要求能自锁,如带传动张紧装置、机床卡盘、轧钢机轧滚下压螺旋等。1毕业设计(论文)图 1.1 螺旋千斤顶 图 1.2 传导螺旋 2 毕业设计(论文)按照螺旋副摩擦性质的不同,螺旋传动又可分为滑动摩擦螺旋传动(简称滑动螺旋)、滚动摩擦螺旋传动(简称滚动螺旋)和静压滑动螺旋传动(简称静压螺旋)。滑动螺旋传动应用较广,其特点是结构简单,制造方便,成本低;易于实现自锁;运转平稳。缺点在于当低速或进行运动微调时可能出现爬行现象;摩擦阻力大,传动效率低(一般为 3050);螺纹间有侧向间隙,反向时有空行程;磨损较大。广泛应用于机床的进给、分度、定位等机构,如压力机、千斤顶的传力螺旋等。滚动螺旋也称滚珠丝杠,其特点是摩擦阻力小,传动效率高(90以上);运转平稳,低速时不爬行,启动时无抖动;螺旋副经调整和预紧可实现高精度定位精度和重复定位精度;传动具有可逆性,如果运用于禁止逆转的场合,需要加设防逆转机构;不易摩擦,使用寿命长。缺点为结构复杂,制造困难;抗冲击能力差。应用于精密和数控机床、测试机械、仪器的传动和调整螺旋,车辆、飞机上的传动螺旋。滚动螺旋传动特点:传动效率高,传动精度高,起动阻力矩小,传动灵活平稳,工作寿命长。滚动螺旋传动应用于机床、汽车、拖拉机、航空军工等制造业。滚动螺旋传动按滚珠循环方式分为: 内循环:滚珠始终和螺杆接触,两个封闭循环回路有两个反向器,三个封闭循环回路有三个反向器。特点:流动性好,效率高,经向尺寸小。外循环:分离,工艺性好,分为螺旋式,插管式,挡珠式 静压螺旋传动螺杆与螺母被油膜隔开,不直接接触。具有摩擦阻力小,传动效 ;螺母的结构复杂;运转平稳,无爬行现象;传动具有可逆性(不需率高(达 99)要时应加设防逆转机构);反向时无空行程,定位精度高,轴向刚力大;磨损小,寿命长等优点。其缺点为结构复杂,制造较难,需要一套压力稳定,供油系统要求高。应用于精密机床的进给、分度机构的传动螺旋。2.2 螺旋传动的运动关系 在螺旋传动中,结构最简单应用最广泛的是滑动螺旋,本节主要介绍这种螺旋传动的设计。滑动螺旋副工作时,主要承受转矩和轴向拉力(或压力)的作用,由于螺杆和螺母的旋合螺纹间存在着较大的相对滑动,因此,其主要失效形式是螺纹牙破损。滑动螺旋的基本尺寸通常根据耐磨条件确定。对于传力螺旋还应校核螺杆危险截面 3 毕业设计(论文)的强度;对于青铜或铸铁螺母以及承受重载的调整螺旋应校核其自锁性;对于精度传动螺旋应该校核螺杆的刚度;对于受压螺杆,当其长径比很大时,应校核其稳定性;对于高速长螺杆,应校核其临界转速;要求自锁时,多采用单线螺纹,要求高效时,多采用多线螺纹。1.一般螺旋机构 一般螺旋机构当螺杆转Ψ角(rad)时,螺母轴向移动的位移 L(mm)为 LSΨ/2π 式1 式中,S 为螺旋线导程(mm)。如螺杆的转速为n(r/min),则螺母移动速度v[mm/s]为 v=Sn/60 式2 2.差动螺旋机构与复式螺旋机构 图 1.3 差动螺旋机构 图 1.3 中的螺旋机构中,B A 螺杆 1 上有 A、两段螺旋,段螺旋导程为 S(mm)A,B 段螺旋导程为 SB(mm),两者旋向相同,则当螺杆转 Ψ角(rad)时,螺母轴向移动的位移 L(mm)为 L(SASB)Ψ/2π 式3 如螺杆的转速为n(r/min),则螺母移动速度v[mm/s]为 4 毕业设计(论文)L(SASB)n/60 式4 由式(1-4)可知:当 A、B 两螺旋的导程 SA、SB 接近时,螺母可得到微小位移,这种螺旋机构称为差动螺旋机构(又称微动螺旋 机构),常用于分度机构、测微机构等。如两螺旋的旋向相反,螺母轴向移动的位移 L 为 L(SA-SB)Ψ/2π 式5 移动速度为 v=(SA-SB)n/60 式6 这种螺旋机构称为复式螺旋机构,适合于快速靠近或离开的场合。2.3 滑动螺旋传动的设计 滑动螺旋传动工作时,螺杆和螺母主要承受转矩和轴向载荷(拉力或压力)的作用,同时在螺杆和螺母的旋合螺纹间有较大的相对滑动。滑动螺旋传动的主要失效形式是螺纹磨损。因此,通常根据螺旋副的耐磨性条件,计算螺杆中径及螺母高度,并参照螺纹标准确定螺旋的主要参数和尺寸,然后再个、对可能发生的其他失效逐一进行校核。2.4 滑动螺旋的结构及材料2.4.1 滑动螺旋的结构 滑动螺旋的结构包括螺杆、螺母的结构形式及其固定和支承结构形式。螺旋传动的工作刚度与精度等和支承结构有直接关系,当螺杆短而粗且垂直布置时,如起重及加压装置的传力螺旋,可以采用螺母本身作为支承的结构。当螺杆细长且水平布置时,如机床的传导螺旋(丝杠)等,应在螺杆两端或中间附加支承,以提高螺杆工作刚度。螺母结构有整体螺母、组合螺母和剖分螺母等形式。整体螺母结构简单,但由磨损而产生的轴向间隙不能补偿,只适合在精度要求较低的场合中使用。对于经常双向传动的传导螺旋,为了消除轴向间隙并补偿旋合螺纹的磨损,通常采用组合螺母或剖分螺母结构。传动用螺杆的螺纹一般采用右旋结构,只有在特殊情况下采用左旋螺纹。2.4.2 螺杆与螺母常用材料 螺杆和螺母材料应具有较高的耐磨性、足够的强度和良好的工艺性。螺杆与螺 5 毕业设计(论文)母常用材料见表 1.2。表 1.2 螺杆与螺母常用材料 螺纹副 材料 应用场合 轻载、低速传动。材 Q235 Q275 45 50 料不热处理 重载、较高速。材料 40Gr 65Mn 螺杆 需经热处理,以提高 20GrMnTi 耐磨性 9Mn2V GrWMn 精密传导螺旋传动。38GrMoAl 材料需经热处理 ZcuSn10P1 一般传动 ZcuSn5Pb5Zn5 重载、低速传动。尺 螺母 寸较小或轻载高速传 ZcuAL10Fe3 动,螺母可采用钢或 ZcuZn25AL6Fe3Mn 铸铁制造,内空浇铸 巴士合金或青铜2.5 耐磨性计算 耐磨性计算尚无完善的计算方法,目前是通过限制螺纹副接触面上的压强p作为计算条件,其校核公式为 p=F/A=F/лd2hzFP/πd2hH≤p 式7 ;A 式中,F 为轴向工作载荷(N)为螺纹工作表面投影到垂直于轴向力的平面 ;d上的面积(mm)2 为螺纹中径mm;P 为螺距mm;h 为螺纹工作高度mm,矩形 6 毕业设计(论文)与梯形螺纹的工作高度 h0.5P锯齿形螺纹高度 h0.75PzH/P 为螺纹工作圈数,H为螺纹高度mm,p为许用压强MPa,见表 1.7 表 1.7 滑动螺旋传动的许用压强p 螺纹副材料 滑动副速度/mmin-1 许用压强/MPa 低速 1825 lt3.0 1118 钢对青铜 612 710 gt15 12 钢-耐磨铸铁 612 68 lt2.4 1318 钢-灰铸铁 612 47 钢-钢 低速 7.513 淬火钢-青铜 612 1013 注:lt2.5 或人力驱动时,p可提高 20;螺母为剖分式时,p应降低 15-20。为便于推导设计公式,令 H/d2,代入式(1-7)整理后得螺纹中径的设计公式为 d2≥ FP / o h p 式8 对矩形、梯形螺纹,h0.5P,则 d2≥0 F / o p 式9 对锯齿形螺纹,h0.75P,则 d2≥0.65 F / o p 式 10 值根据螺母的结构选取。对于整体式螺母,磨损后间隙不能调整,通常用于轻载或精度要求低的场合,为使受力分布均匀,螺纹工作圈数不宜过多,宜取1.2~2.5;对于剖分式螺母或螺母兼作支承而受力较大,可取 2.5~3.5;传动精度高或要求寿命长时,允许 4。根据公式计算出螺纹中径 d2 后,按国家标准选取螺纹的公称直径 d 和螺距 P。由于旋合各圈螺纹牙受力不均,故 z 不宜大于 10。7 毕业设计(论文)2.6 螺母螺纹牙的强度计算 螺纹牙多发生剪切与弯曲破坏。由于一般情况下螺母材料的强度比螺杆低,因此只需校核螺母螺纹牙的强度。假设载荷集中作用在螺纹中径上,可将螺母螺纹牙视为大径 D 处展开的悬臂梁,螺纹牙根部 aa 处的弯曲强度校核公式为 σb 3Fh/πDbz≤σb 式 11剪切强度校核公式为 τF/zπDb≤τ 式 12 式中,F、h、z 同式(1-7);D 为螺母螺纹的大径mm;b 为螺母螺纹牙根部宽度mm;可由国家标准查得,也可取矩形螺纹 b0.5P,梯形螺纹 b0.65P,锯齿形螺纹 b0.74P;σ、b、τ分别为螺母螺纹牙的许用弯曲应力和许用切应力MPa,见表 1.8 表 1.8 滑动螺旋副材料的许用应力项目 许用应力/ MPa钢制螺杆 σσS/35 σS 为材料的屈服极限/ MPa 材料 许用弯曲应力σb 许用切应力τ 青铜 4060 3040螺母 耐磨铸铁 5060 40 铸铁 4555 40 钢(1.01.2)σ 0.6σ注:静载荷许用应力取大值。若螺杆与螺母的材料相同,由于螺杆螺纹的小径 d1 小于螺母螺纹的大径 D,故应校核螺杆螺纹牙的强度,这时公式中的 D 应改为 d1。2.7 螺杆强度校核 螺杆受轴向力 F 及转矩 T 的作用,危险截面上受拉(压)应力σ和扭转切应力τ。根据第四强度理论,τ螺杆危险截面的强度校核公式为 式 13 式中,d1 为螺杆螺纹的小径(mm);σ为螺杆材料的.

篇2:螺旋千斤顶工作原理

设计计算说明书

专业年级

设 计 者

指导教师

成绩

2010年11月1日

-******12

设计任务书

设计题目:螺旋千斤顶

千斤顶结构简图:

设计条件:

1、最大起重量F = 40kN;

2、最大升距H =200mm;

3、低速。

设计工作量:

绘制出总装配图一张,标注有关尺寸,填写标题栏及零件明细表; 编写设计计算说明书一份。

表2-1 而作为传动类螺纹的主要有矩形、梯形与锯齿形,常用的是梯形螺纹。

梯形螺纹牙型为等腰梯形,牙形角α=30º,梯形螺纹的内外螺纹以锥面贴紧不易松动。故本实验选梯形螺纹,它的基本牙形按GB/T5796.1—2005的规定。

三、零件尺寸的计算

3.1、螺杆

3.1.1、螺杆直径及螺纹的计算

按耐磨性条件确定螺杆中径d2。求出d2后,按标准查表选取相应公称直径d、螺距p及其它尺寸。

螺杆直径:

d2对于矩形和梯形螺纹,h=0.5P,则:

FP

h[p]-56

iId1A4

I为螺杆危险截面的轴惯性矩:Id1464,mm4

当螺杆的柔度s<40时,可以不必进行稳定性校核。计算时应注意正确确定。

3.1.5、螺杆柔度

(1)计算螺杆危险截面的轴惯性矩I和i 3.1427103I==6464iId32710=4A43d344=2.6104mm4

=6.75mm(2)求起重物后托杯底面到螺母中部的高度l l=H+5p+(1.4~1.6)d

=200+5×6+1.5×34=281mm 查表得=2.00(一端固定,一端自由),E=200GPa。将以上数据代入临界载荷条件,得:

2EI22001092.61083Fcr16210N 232(l)(228110)所以,ScrFcr1624.6Ss=4.0 =F403.2、螺母

3.2.1、螺母设计与计算

根据课本中的说明,螺纹的高度Hd2。上文中已经说明,=1.4,d2=31mm,所以H=44mm。而螺纹工作圈数n=符合这一要求的。H7.2,取8圈。需要说明的是,螺纹的工作圈数不宜超过10圈,8圈显然是P3.2.2、螺母螺纹牙的强度计算

螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。

如图所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。假设螺母每圈螺纹所承受的平均压力为

F,并作用在以螺纹中u径D2为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为

F[] Dbu螺纹危险截面a-a的弯曲强度条件为

 6Fl[b] 2Dbu4010311.95MPa 经计算,351030.634610386401031.510326.9MPa 3323510(0.65610)8又经查表得[]=35MPa,[]=50MPa,对比可知均满足强度要求。

3.2.3、安装要求

螺母压入底座上的孔内,圆柱接触面问的配合常采用

H8H或8等配合。为了安装简便,r7n7需在螺母下端和底座孔上端做出倒角。为了更可靠地防止螺母转动,还应装置紧定螺钉,紧定螺钉直径常根据举重量选取,一般为6~12mm。2.4.1 螺母的相关尺寸计算 查手册D=d+1=35mm 内螺纹小径D1=d-7=28mm D3=(1.6~1.8)D

=1.7×35=59.5mm D4=(1.3~1.4)D3 =1.3×59.5=77.35mm H=44mm

10底座结构及尺寸如图.图中

H1=H+(14~28)mm =200+20=220mm H-a=44-14.5=29.5mm D=d+1(查手册)=34+1=35

D6=D3+(5~10)mm =61+6=67mm D7=D6+D8=

220H1=67+=121mm 554F2D7 π[]p44010

3=1112=194.0mm 3.142取10mm,则S=×(1.5~2)=20mm

式中:[]p——底座下枕垫物的许用挤压应力。对于木材,取[]p=2~2.5MPa。

参考文献:

篇3:螺旋千斤顶工作原理

1 故障现象

扫完平片, 点击断层扫描选项后, 出现“扫描准备中……”, 但等待一段时间也不出现曝光对话框。重启系统, 故障依旧。

2 查看系统日志

退出扫描界面, 点击“系统维护”→点击“系统日志”, 显示事件类型:System-Error;事件描述:Hardware Error;发生时间:2010-02-14-10:01→点击“Hardware Error”, 查看详细信息, Component:collimator;Severity:Fatal;ErrorCode:0x332610;Explanation:上切片越过后极限位;PossibleCause:上切片位置检置板到切片驱动板电缆故障;上切片位置检置板故障;上切片电动机及电缆故障。ServiceMeasures:按照上切片诊断流程进行排查;排查或重新连接上切片步进电动机及电缆;排查或重新连接上切片电动机驱动器及电缆。UpdataHistory:2010-02-14-10:01:26。

3 上切片工作原理

PHILIPS MX6000CT切片系统由上切片系统、下切片系统、形状过滤器系统组成。上切片系统包括上切片、上切片位置检测板、上切片电动机、磁性尺等。上切片在系统中作用是:通过改变上切片厚度来实现X线从形状过滤器穿过以后到人体的剂量。

上切片在运动过程中, 基准位和极限位是由上切片位置检测板 (见图1) 来检测的。上切片的挡位有:0.8、1、2.5、5、7、10 mm, 上切片各挡位位置是通过磁性尺和读头 (见图2) 得到的。磁性尺有2组差分信号A、/A, B、/B, 它们是用来计算上切片移动的距离以及判断上切片的移动方向。磁性尺的供电电源电压是+24 V, 它的分辨率为0.01 mm。

PHILIPS螺旋CT具有焦点跟踪的功能。

“球管”的焦点由于重力和热量的原因会导致偏移, 对检测器尤其是多排检测器产生很明显的影响, 所以需要在扫描过程中进行实时地焦点跟踪并移动上切片来补偿焦点的偏移量。

上切片挡位采用多条狭缝获取, 焦点跟踪探测器兼任Monitor通道, 在上切片的上方采用双排探测器, 与数据采集同时进行。

整个焦点偏移的工作由控制切片的FPGA和位移运算用单片机共同完成, 其中的单片机采用的是ATMEL公司的ATMEG8515。切片控制部分设置有焦点跟踪始能位, 只有在当始能位有效且当前整机曝光处于数据采集状态时, 才可以进行焦点跟踪。

由FPGA负责接收从DASI/O采集到Monitor板的A、B通道值, 并按间隔要求计算出∑A、∑B, 通过RAM接口方式, 将数据以及上层软件设置的系数传送给单片机, 由单片机根据多项式及给定的系数计算出焦点跟踪切片需要移动的具体范围。然后, 单片机再通过RAM接口方式将状态码传送给FPGA, 从而控制切片的运动, 补偿焦点偏移产生的影响。根据计算上切片的调整范围在±0.59 mm。因此, 不论是上切片进行位置调整还是更换上切片都必须进行相关的“校正”工作。

4 故障分析和解决

点击“硬件测试”→“控制”→“测试功能”→“状态”→点击“确认”→测试信息:

M2.201高压正常。球管温度∕散热器流量开关正常

………

M7.F347上切片厚度为110.7 mm。

M8.90B8滤光尺位置为体位, 下切片厚度为5.0 mm。

M9.8262切片系统出错, 上切片超过后极限位。

………

M17.217床码偏移量:535。

………

说明上切片位置有偏差, 超过后极限位。进一步检测分析:

(1) 点击“硬件测试”→“控制”→“测试功能”→“命令”。

(2) 点击“硬件测试”→“设备”→“准直器”→“下切片厚度”→输入:0.8。

(3) 点击“测试功能”中的“确认”。测试信息栏显示:设置下切片参数—成功。

(4) 点击“测试功能”→“状态”→点击“确认”, 显示:M8.90B8滤光尺位置为体位, 下切片厚度为0.8 mm。

重复 (1) → (4) “下切片厚度”→输入几, 设置下切片参数—成功后下切片厚度显示就是几。重复 (1) → (4) , 将“下切片厚度”改选为“上切片厚度”, 输入数字后, 测试信息栏显示:设置上切片参数—成功, 同时也观察到上切片在运动, 但上切片厚度与输入数字不一致, 发生错误, 说明上切片步进电动机、电缆、电动机驱动器及其连接都是好的。

调节上切片系统, 发现有几次在测试中上切片运动的位置与输入的厚度一致, 但显示的位置数字却是错的, 因此怀疑读头不好。更换读写器EMIXI 1-000-08.2-2-1, 重复 (1) → (4) 测试, 正常:

M7.C80上切片厚度为2.5 mm;

M8.90B8滤光尺位置为体位, 下切片厚度为5.0 mm;

M9.4300上、下切片及滤光尺已到位。

安装读写器时, 在读写器与读写器下方的磁性尺之间垫上2张A4纸, 安装后将A4抽出, 固定好后其间隙要保证一张A4纸能自由插入抽出。安装挡片时, 保证挡片在光电三极管中间移行, 防止碰撞摩擦损坏器件。

上切片系统硬件故障解决后还必须进行校正。进入CTsoft程序→“系统维护界面”→“自动校正”→“更换上切片磁性尺读头”。这里必须进行2个校正, 即上切片偏移和空气校正, 2个校正要分开做。做校正前, 系统要求必须预热至40%。如果顺利, 一般整个过程大约30min, 如果失败必须从头做, 因此选择手动校正。校正完毕退出程序前必须关闭阳极。校正完毕须重启系统, 这样校正参数才能写入生效。

参考文献

[1]陈康.医疗设备维护与维修管理工作的探讨[J].中国医学装备, 2005, 2 (8) :17-18.

篇4:螺旋千斤顶工作原理

关键词:螺旋焊管;传输设备;运管车;自动运行原理;西门子S7-300PLC

中图分类号:TP273 文献标识码:A 文章编号:1009-2374(2013)23-0105-02

螺旋焊管传输设备承担着钢管在生产线上运输的重要任务,在以往手动操作的方式下,生产效率低,安全可靠性差。而要实现精整传输设备的自动运行,关键是实现精整区运管车的自动运行。

运管车的作用是将放置在传输辊道或台架上的钢管沿着工艺方向逐根向下一工位运输,其动作过程分为“取管”、“倒管”、“放管”三个部分,并要保证最大的传输效率和空间利用率,过程十分复杂。通过正确分析运管车的动作过程,理解运管车自动运行的原理,利用合理的控制方法,就可以化繁为简,实现其自动运行。下面根据笔者对运管车运行过程的理解,对其自动运行原理进行简要的分析。

1 运管车电气控制系统硬件配置

图1 运管车控制系统组态图

精整区运管车采用西门子S7-300PLC进行分布式总线控制,主站采用西门子S7319-3PN/DP的CPU,运管车远程I/O使用ET-200S从站,包括IM151接口模块、电源模块、计数器模块、数字量输入模块和数字量输出模块,与主站通过Profibus-DP总线连接,实现分布式控制。驱动装置采用西门子MM440变频器,也采用了Profibus-DP总线控制的方式,用于控制运管车行走。

运管车从动轮上装有与车轮同轴连接的编码器,用于检测运管车的行程。

运管车车身装有“前限位检测”、“后限位检测”和“行走校正”传感器。用于控制运管车停止和编码器记数值校正。

在运管车运行范围内的入口辊道、出口辊道和放管台架工位处均装有传感器感应块,与车身上的传感器配合完成车位识别和编码器校正功能。

利用编码器的计数功能,记录下运管车在每个工位的编码值,并在此基础上计算出运管车在每一个工位的减速范围,当运管车运行至此区域时将会减速运行,保证平稳停车。运管车在减速区域运行时,若“行走校正”传感器感应到感应块,则系统发出运管车运行到位信号。在放置钢管的V型台架两侧均装有“有管检测”传感器,用于检测该台架是否放有钢管。

运管车V型托架升降动作由两个油缸完成,控制部分采用继电器驱动电磁阀来实现。

每个V型托架均有一个“上限位检测”和一个“下限位检测”传感器,当对应的两个传感器同时检测到“上限”或“下限”时则认为V型托架上升或下降到位。

2 运管车的三种运管模式

运管车自动运管过程分为“取管”、“倒管”、“放管”三种模式。

2.1 “取管”

“取管”:运管车自动将入口辊道处的钢管运输到放管台架上。若放管台架到出口辊道均无管,则自动将钢管运输到出口辊道处。

2.2 “倒管”

“倒管”:运管车自动将台架上的钢管向出口辊道方向运输,放到距出口辊道最近的放管台架上。

2.3 “放管”

“放管”:运管车自动将台架上的钢管运输到出口辊道处。

2.4 “取管”、“倒管”、“放管”动作执行的优先级

为最大限度利用空间存放钢管,提高钢管运输效率,我们规定“放管”的优先级是最高的。若出口辊道处无管且辊道没有运行,运管车优先启动“放管”程序,将台架上的钢管运输到出口辊道处。

若出口辊道上有管或辊道正在运行,则第二优先启动“取管”程序。将入口辊道处的钢管向放管台架或出口辊道上运输。

若“放管”、“取管”程序均不满足启动条件,则启动“倒管”程序。此时若台架上没有钢管可以移动,则运管车回常驻位等待。

3 运管车自动运管动作执行过程

虽然运管车动作分为“取管”、“倒管”、“放管”三种,但每个动作执行过程基本是一致的。即:

图2 运管车自动运行流程图

4 运管车运行目标位逻辑判断与执行

由上面介绍可知,运管车在三种运行模式中的运行动作都是一致的,唯一的区别就是执行动作的目标位有所不同。下面就各种模式下的目标位选择进行说明。

4.1 取管目标位

在“取管”模式下,目标位1为入口辊道位置,目标位2为运管车正向运行能将钢管放置到的最靠近出口辊道的位置。该位置通过各个台架工位钢管检测传感器信号经过逻辑判断得到。

4.2 放管目标位

在“放管”模式下,目标位1为距出口辊道最近的有管工位,目标位2则为出口辊道工位。由于运管车在进入“放管”模式时,其所在位置与目标位1的相对位置不确定,运管车的运行方向需要利用运管车当前位置的编码值与目标位1的记录编码值来判断。

4.3 “倒管”目标位

自动倒管过程较为复杂,两个目标位均需要判断

执行。

4.3.1 目标位1确定。假设放管台架共有n个管位,系统则由距出口辊道最近的管位n向管位1顺序判断倒管目标位。若管位n无管而管位(n-1)有管,则将管位n-1定为目标位1开始运行。若条件不满足,则继续判断管位(n-1)与管位(n-2)是否满足倒管条件。

4.3.2 目标位2确定。运管车到达目标位1完成举升动作后,开始向目标位2移动。目标位2为运管车能将钢管放置到距出口辊道最近的管位,由台架上有管检测传感器信号进行判断。若运行方向的管位n有管,则运管车会将钢管运输至管位(n-1)位置,以此类推。

5 结语

通过对运管车的工作过程与自动运行原理进行分析,加上PLC与变频器精确的控制与定位,即可实现运管车的自动运行。这对螺旋焊管生产线降低劳动强度,提高生产效率具有非常重要的指导意义。

参考文献

[1] 廖常初.S7-300/400PLC应用技术[M].北京:机械工业出版社,2003.

[2] 刘锴,周海.深入浅出西门子S7-300PLC [M].北京:北京航空航天大学出版社,2004.

[3] 西门子(中国)有限公司自动化与驱动公司.深入浅出西门子S7-300PLC[M].北京:北京航空航天大学出版社,2004.

[4] 西门子(中国)有限公司自动化与驱动公司.MicroMaster440变频器使用大全[S].2003.

[5] 阳宪惠.现场总线技术及其应用[M].北京:清华大学出版社,1999.

篇5:螺旋千斤顶设计计算说明书

精04 张为昭 2010010591

目录

一、基本结构和使用方法-----------3

二、设计要求---------------------3

三、基本材料选择和尺寸计算-------3

(一)螺纹材料和尺寸---------3

(二)手柄材料和尺寸---------8

(三)底座尺寸---------------9

四、主要部件基本尺寸及材料-------9

五、创新性设计-------------------9

一、基本结构及使用方法

要求设计的螺旋千斤顶主要包括螺纹举升结构、手柄、外壳体、和托举部件几个部分,其基本结构如下图所示:

AA

该螺旋千斤顶的使用方法是:将千斤顶平稳放在木质支承面上,调整千 斤顶托举部件到被托举重物合适的托举作用点,然后插入并双手或单手转动 手柄,即可将重物举起。

二、设计要求

(1)最大起重量:Fmax25kN;(2)最大升距:hmax200mm;(3)可以自锁;

(4)千斤顶工作时,下支承面为木材,其许用挤压应力:[p]3MPa;(5)操作时,人手最大可以提供的操作约为:200N。

三、基本部件材料选择及尺寸计算

(一)螺纹材料和尺寸

考虑到螺旋千斤顶螺纹的传力特性选择的螺纹类型为梯形螺纹。(1)材料选择

千斤顶螺杆的工作场合是:经常运动,受力不太大,转速较低,故材料选用不热处理的45号钢。千斤顶螺母的工作场合是:低速、手动、不重要,故材料选用耐磨铸铁HT200。(2)螺杆尺寸设计

螺旋副受力如下图所示:

1、耐磨性设计

由上图螺旋副的受力分析可知,螺纹传动在旋合接触表面的工作压力为:

pFPF d2hHZd2h其中,轴向载荷:F=25kN。螺纹高:h,由选择螺纹的公称直径确定。

为了方便满足自锁性要求,采用单头螺旋,一般旋合圈数:Z10。

为方便计算,设螺纹参数中间变量:高径比耐磨性的要求是:

p[p]

H。d2其中[p]为满足耐磨性条件时螺纹副的许用压力。对于钢-铸铁螺纹螺母材料,由于千斤顶的工作速度较低,可认为滑动速度不大于3m/s。千斤顶中螺母为整体结构,螺母磨损后不能调整,但螺母兼作支承作用,故设计时可先认为 f=2.5,则可取此时的许用压力[p]为17MPa。

由螺旋副接触表面压力公式及耐磨性公式得到耐磨性设计公式:

d2FP h[p]对梯形螺纹,h0.5,代入上式求得: Pd2³19.352mm

查国标选梯形螺纹为公称直径d为Tr36,导程P为10mm,中径d2=31mm满足要求。代入高径比计算公式:

f=HZP==2.5 d2d2求得实际旋和圈数Z=7.75。

故暂定螺纹尺寸是公称直径d为Tr36,导程P为10mm,旋合 圈数Z=7.75。

2、强度设计

已知最大载荷为25kN,则在载荷最大时,螺杆受到扭矩:

dTmax=Fmax2tan(g+rn)

2其中螺纹中径:d2=31mm; 螺纹升角:g=arctannP»5.863°; pd2当量摩擦角:rn=arctanfn; 当量摩擦系数:fn=fcosa。

2由于螺杆-螺母为钢-铸铁材料,考虑到千斤顶既有稳定自锁,又有上升运动过程,故取摩擦系数f=0.14。又由于采用梯形螺纹,故牙型角a=30°。

联立以上各式解得螺杆受到的最大扭矩:

Tmax»97.408N×m

已知小径:d1=25mm,则由第四强度理论,危险截面应力:

sca=(4Fmax2Tmax2)+3()»74.220MPa 23pd10.2d1 已知45号钢屈服强度为355MPa,载荷稳定故取许用当量应

力:

[s]=ss4=88.75MPa

则有:sca<[s],即已选定螺纹可以达到强度条件。

3、自锁性设计

千斤顶由于其用途,要求具有自锁功能。由于自锁是针对停止状态所说,故摩擦系数f可取较大值0.14,由强度设计中的计算结果,此时当量摩擦角:rn»8.247°大于螺旋升角:g=arctan

nP»5.863°,所以自锁性条件可以满足。pd25

4、稳定性设计

稳定性条件:

Sc=Fcr³[S] Fmax由于千斤顶为传力螺旋,故取安全系数[S]=3.5。

由千斤顶结构,螺杆端部结构为一端固定,一自由式支承,长度 系数m为2.0。要求最大升距hmax为200mm,由装配图测量得到此 时从支承螺母中心到千斤顶顶部的等效长度L为325mm,螺杆的 柔度:

4L104 d1已知使用45号钢且不做热处理,则临界载荷:

2EIa2Ed12Fcr89.585kN(L)2(L)264Sc3.583.5故稳定性条件可以满足。

综上所述,螺杆选择Tr36,导程P=10mm即可满足设计条件。

(3)螺母尺寸设计

由螺杆中的设计,将旋和圈数Z定为7.75。一般来说螺母只需校核螺纹牙即可,而且由于螺母材料为铸铁,强度小于螺杆材料,故只需要校核螺母螺纹牙的剪切强度、弯曲强度和抗挤压强度即可,螺杆上的螺纹牙强度则不用校核。螺母螺纹牙受力如下图所示:

1、剪切强度校核

剪切强度条件:

t=Fmax£[t] Zpdb其中旋合圈数:Z为7.75; 螺纹公称直径:d=36mm;螺纹牙根部厚度:b=0.65P=6.5mm。耐磨铸铁许用剪切应力取为:[t]=40MPa。

代入各项数据得上述剪切强度不等式成立,即剪切强度满足要求。

2、弯曲强度校核

弯曲强度条件:

sb=其中牙高:h=5.5mm;

3Fmaxh£[sb] 2Zpdb耐磨铸铁许用弯曲应力取为:[sb]=50MPa。

代入各项数据得上述弯曲强度不等式成立,即弯曲强度满足要求。

3、抗挤压强度校核

由螺母螺纹牙受力图可得平均挤压应力:

a2=Fmax»6.023MPa sp=aZpd2hZpd2h/cos2Fmax/cos 已知螺母许用挤压应力:[sp]»1.5[sb]=75MPa,显然满足

sp<[sp]的抗挤压强度准则。

4、螺母外部尺寸设计

由基本结构图可以看到,螺母的外部形状可以看作是两个半径不同的同心圆柱连接在一起,这样设计的目的是保证螺母的定位。为了保证千斤顶的正常工作,需要设计这两个圆柱的尺寸以使其在工作中不会失效。

由前述计算已知的螺母尺寸为:H=ZP=77.5mm,圆整后高度H=78mm,内螺纹大径D4=37mm。设螺母外部形状:小圆柱外径为D1=60mm,大圆柱外径为D2及小圆柱的高度为H1未知待求。

为防止大圆柱与千斤顶壳体的接触面被压坏,需要满足:

Fmax

sp=£[s]p2p(D2-D12)/4

对耐磨铸铁HT200,许用的抗压应力[sp]=设计大圆柱外径为:

1.5sb=100MPa,最后 3D280mm

为了防止大圆柱突出部分被剪断,需要满足:

t=Fmax£[t]

pD1(H-H1)对耐磨铸铁许用剪切应力为40MPa,最后设计小圆柱高度为:

H1=60mm 综上所述,螺旋千斤顶的螺纹选为公称直径d为Tr36,导程P=10mm。此

时螺母高度H=78mm,螺母外部小圆柱外径60mm,高60mm,大圆柱外径80mm。小圆柱表面与外壳体之间有基轴制配合关系,故选其公差带为h7。查标准 得:所选螺纹配合为中等旋合长度。由于千斤顶为中等精度机械设备,故查 标准得内螺纹公差带为6H,外螺纹公差带为6g。螺母外部小圆柱装配时对 精度要求不高,圆柱度公差取为9。螺母外部小圆柱与内部螺孔需要有一定 同轴度以保证千斤顶工作正常,但形位度要求不高,取同轴度公差为9。螺 母外部小圆柱轴线与大圆柱和外壳体的接触面还有垂直度的要求,也取公差 为9。整个螺母接触面都较重要,表面粗糙度Ra值选为3.2,未接触面Ra 可选为12.5以降低加工成本。

(二)手柄材料及尺寸(1)材料选择

综合考虑成本和强度,手柄的材料选用普通未经热处理的45号钢。(2)长度设计

由螺杆的强度设计可知,手柄需要提供最大97.408Nm的扭矩,则 手柄的有效作用长度应为:

TL=max»488mm

200N在实际设计中,由于手柄还要满足插入螺杆上部接头的要求,同时考虑 到千斤顶本身运动部件具有摩擦力,因此实际设计长度还要在此长度上 加上一部分,最终应设计长度为520mm。(3)直径设计

手柄在操作时会受到剪力和弯矩的作用,最大操作力为200N,最大扭矩为97.408Nm,则力的分布图如下所示:

剪力图

弯矩图

可见,危险截面在手柄与螺杆接头处。手柄的材料选为未经热处理的45号钢,设计手柄直径为D,则危险截面最大剪应力:

4200N t=23pD/4 危险截面最大弯曲正应力:

97.408N×m s=30.1D由第四强度理论,要使手柄正常工作,需要满足条件:

sca=s2+3t2£[s]

当安全系数为2时,许用应力[s]=600MPa=300MPa,代入第

s2 四强度理论计算式,并联立剪应力、切应力计算公式,求得手柄直径:

D=15mm 综上所述,手柄长520mm,直径15mm。

(三)底座尺寸

千斤顶使用时的下支承面为木材,许用挤压应力为3MPa,则由抗击压强度准则:

Fsp=max£[sp]=3MPa

S=其中S为下支承面尺寸,解上述不等式,得S³8334mm2,为满足易于组

sb装及各方向受力均匀的要求,选择下支承面为环形结构,内径尺寸为100mm可以满足准则要求,综合考虑到千斤顶本身具有的重量、体积和使用时的稳定性,将外径尺寸设计为180mm。

综上所述,下支承面设计为环形,内径100mm,外径180mm。

四、主要部件基本尺寸及材料

(1)螺杆螺纹:Tr36´10-6g,45号钢;

(2)螺母螺纹:Tr36´10-6H,HT200耐磨铸铁;(3)手柄:长度500mm,直径15mm,45号钢;

(4)底座:外径180mm,内径100mm,HT200灰铸铁。

五、创新性设计

(1)手柄加上橡胶手柄球而非普通塑料手柄球,既节约成本,又易于拆卸,减少千斤顶存放的体积;

(2)为了携带方便,给千斤顶外壳加上把手;(3)为提高外壳强度,给外壳加上肋板;

篇6:螺旋齿轮传动原理课件

1.阿基米德螺旋齿轮和圆柱形齿轮(Archimedean spiral gear and Spur gear)

输入:螺旋齿轮1启动(Z1)

输出:圆柱形齿轮18启动(Z2)

螺旋齿轮的轴必须放置在圆柱形齿轮的正面。

圆柱形齿轮的螺旋角必须与螺旋齿轮的螺旋方向一致。

输入的1启动对应输出的1/18启动(Z1/Z2)。

启动的次数可以增加。

2.阿基米德螺旋齿轮和销齿轮1(Archimedean spiral gear and Pin gear 1)

输入:螺旋齿轮1启动(Z1)

输出:销齿轮40销(Z2)

输入的1启对应输出的1/40启

启动的次数可以增加。

3.阿基米德螺旋齿轮和销齿轮2(Archimedean spiral gear and Pin gear 2)

输入:螺旋齿轮的1启动(Z1)

输出:销齿轮30销(Z2)

输入的1启对应输出的1/30启(Z1/Z2)

齿轮的两轴并不平行。

启动的次数可以增加。

4.阿基米德传动1a(Archimedean drive 1a)

阿基米德机制中绿色和橙色凸轮是相同的。

绿色凸轮输入。

两个凸轮以相同速度向相反方向旋转,类似于两个相同齿轮的齿轮传动。

如果阿基米德的凸轮有不同的齿距(P1和P2),那么传动比 = P1/P2

阿基米德机制的齿距必须足够大以防止发生故障。

一个螺旋弹簧可以代替图中的重力。

5.阿基米德传动1b(Archimedean drive 1b)

阿基米德机制中绿色和橙色凸轮是相同的。

绿色凸轮输入。

两个凸轮以相同速度向相同方向旋转,类似于两个滑轮在皮带传动中运动。

如果阿基米德的凸轮有不同的齿距(P1和P2),那么传动比 = P1/P2

阿基米德机制的`齿距必须足够大以防止发生故障。

一个螺旋弹簧可以代替图中的重力。

6.阿基米德传动1c(Archimedean drive 1c)

阿基米德机制中绿色凸轮和橙色凸轮的齿距不同(P1和P2,P1=2*P2)

绿色凸轮输入。

两个凸轮以不同的速度向不同方向旋转,类似于两个不同齿数的齿轮传动。

传动比 = 1/2。

阿基米德机制的齿距必须足够大以防止发生故障。

一个螺旋弹簧可以代替图中的重力。

7.阿基米德传动1d(Archimedean drive 1d)

阿基米德机制中绿色凸轮和橙色凸轮的齿距不同(P1和P2,P1=P2/2)

绿色凸轮输入。

两个凸轮以不同的速度向相同方向旋转,类似于两个不同的滑轮在皮带传动中运动。

传动比 = 2。

阿基米德机制的齿距必须足够大以防止发生故障。

一个螺旋弹簧可以代替图中的重力。

8.阿基米德传动2a(Archimedean drive 2a)

阿基米德槽中的绿色和橙色轮是相同的。

绿色轮输入。

两个槽之间的粉色滑块在一个固定杆的直槽中。

当粉色滑块运动到固定杆直槽中间时,两轮将以相同的速度反向旋转,类似于两个相同齿轮的齿轮传动。

如果粉色滑块不处于中间位置,那么橙色输出轮不规律旋转。

9.阿基米德传动2c(Archimedean drive 2c)

阿基米德槽中的绿色和橙色轮是相同的。

绿色轮输入。

两个槽之间的粉色滑块在一个固定杆的直槽中。

10.阿基米德螺旋齿轮和蜗杆1(Archimedean spiral gear and Worm 1)

输入:螺旋齿轮1启动

输出:蜗杆1启动

传动比:1

启动次数可以增加

11.阿基米德螺旋齿轮和蜗杆2(Archimedean spiral gear and Worm 2)

输入:螺旋齿轮2启动(Z1)

输出:蜗杆1启动(Z2)

上一篇:PEP小学英语四年级下册第二单元第一课时教案下一篇:参差不齐造句