指数函数复习教案

2024-05-23

指数函数复习教案(精选6篇)

篇1:指数函数复习教案

复习课

刘广莹

从前有一个数学家,他和一位商人做一单交易,商人要数学家帮他,但,数学家知道他是奸的,就玩弄他.最后,数学家答应了帮他,但前提是要那为商人第一天给他1钱,第二天给他2钱,第三天给他4钱……如此类推,要给足20年。商人想到只是一钱两钱而已,便答应了。于是,便造成了一个指数函数,翻倍而上.最后,那为商人就破产了.他万万没想到,害到他家产没了的是他自己呀!

同时根据指数函数图象来看,简直可以说是直线增长的,比爆炸的威力还要大.所以,指数函数也称为爆炸函数.2、知识要点梳理:

(1)指数函数、对数函数的定义;

一般地,函数

叫做指数函数,其中是自变量,函数的定义域是.一般地,我们把函数

叫做对数函数,其中其中是自变量,函数的定义域是。

注意:函数的底数的限制条件;

‚函数的定义域;

ƒ函数的值域。

(2)指数函数的图像和性质;

0

a>1

定义域

过定点(,)

在R上是

函数

在R上是

函数

例1

已知指数函数的图象经过点,求的值。

例2

当函数y=ax-(b+1)(a>0,a≠1)的图象在第一、三、四象限时,对应的取值是多少。

例3已知函数满足,且,则与的大小关系是。

过手训练:

1.下列函数是指数函数的是

(填序号)

(1)

(2)

(3)

(4)。

2、函数的图象必过定点。

3、比较下列各组数大小:

(1)

(2)

(3)

强化训练:

1.已知是定义在R上的奇函数,且当时,求此函数的解析式。

设,求函数的最大值和最小值。

课后练习:

1.(1)若指数函数在R上是增函数,求实数的取值范围。

(2)如果指数函数是R上的单调减函数,那么取值范围是

()

A、B、C、D、(3)下列关系中,正确的是

()

A、B、C、D、2.已知函数=是奇函数,求的值。

3.回忆指数函数的图象并写出其性质:

篇2:指数函数复习教案

【摘要】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高三数学教案:函数复习教案,供大家参考!本文题目:高三数学教案:函数复习教案2013高中数学精讲精练 第二章 函数【知识导读】【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用定义法解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视数形结合思想渗透.数缺形时少直观,形缺数时难入微.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化分类讨论思想应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是不漏不重.4.掌握函数与方程思想.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.【基础练习】1.设有函数组:①,;②,;③,;④,;⑤,.其中表示同一个函数的有___②④⑤___.2.设集合,从 到 有四种对应如图所示:其中能表示为 到 的函数关系的有_____②③____.3.写出下列函数定义域:(1)的定义域为______________;(2)的定义域为______________;(3)的定义域为______________;(4)的定义域为_________________.4.已知三个函数:(1);(2);(3).写出使各函数式有意义时,的约束条件:(1)______________________;(2)______________________;(3)______________________________.5.写出下列函数值域:(1),;值域是.(2);值域是.(3),.值域是.【范例解析】例1.设有函数组:①,;②,;③,;④,.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,的定义域为,的定义域为,故不是同一函数;在②中,的定义域为,的定义域为,故不是同一函数;③④是同一函数.例2.求下列函数的定义域:①;②;解:(1)① 由题意得: 解得 且 或 且,故定义域为.② 由题意得:,解得,故定义域为.例3.求下列函数的值域:(1),;(2);(3).分析:运用配方法,逆求法,换元法等方法求函数值域.(1)解:,函数的值域为;(2)解法一:由,则,故函数值域为.解法二:由,则,,故函数值域为.【反馈演练】1.函数f(x)= 的定义域是___________.2.函数 的定义域为_________________.3.函数 的值域为________________.4.函数 的值域为_____________.5.函数 的定义域为_____________________.6.记函数f(x)= 的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.(1)求A;(2)若B A,求实数a的取值范围.解:(1)由2-0,得 0,x-1或x1,即A=(-,-1)[1,+).(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.∵a1,a+12a,B=(2a,a+1).∵B A,2a1或a+1-1,即a 或a-2,而a1,1或a-2,故当B A时,实数a的取值范围是(-,-2][ ,1).第2课 函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.【基础练习】1.设函数,则 _________;__________.2.设函数,,则 _____3_______;;.3.已知函数 是一次函数,且,,则 __15___.4.设f(x)=,则f[f()]=_____________.5.如图所示的图象所表示的函数解析式为__________________________.【范例解析】例1.已知二次函数 的最小值等于4,且,求 的解析式.分析:给出函数特征,可用待定系数法求解.解法一:设,则 解得故所求的解析式为.解法二:,抛物线 有对称轴.故可设.将点 代入解得.故所求的解析式为.解法三:设,由,知 有两个根0,2,例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出 的函数解析式.分析:理解题意,根据图像待定系数法求解析式.【反馈演练】1.若,则(D)A.B.C.D.2.已知,且,则m等于________.3.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.解:设函数 的图象上任意一点 关于原点的对称点为,则∵点 在函数 的图象上第3课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性.【基础练习】1.下列函数中:①;②;③;④.其中,在区间(0,2)上是递增函数的序号有___②___.2.函数 的递增区间是___ R ___.3.函数 的递减区间是__________.4.已知函数 在定义域R上是单调减函数,且,则实数a的取值范围__________.5.已知下列命题:①定义在 上的函数 满足,则函数 是 上的增函数;②定义在 上的函数 满足,则函数 在 上不是减函数;③定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数;④定义在 上的函数 在区间 上是增函数,在区间 上也是增函数,则函数 在 上是增函数.其中正确命题的序号有_____②______.【范例解析】例.求证:(1)函数 在区间 上是单调递增函数;(2)函数 在区间 和 上都是单调递增函数.分析:利用单调性的定义证明函数的单调性,注意符号的确定.证明:(1)对于区间 内的任意两个值,且,因为,又,则,得,故,即,即.所以,函数 在区间 上是单调增函数.(2)对于区间 内的任意两个值,且,因为,又,则,得,故,即,即.所以,函数 在区间 上是单调增函数.同理,对于区间,函数 是单调增函数;例2.确定函数 的单调性.分析:作差后,符号的确定是关键.解:由,得定义域为.对于区间 内的任意两个值,且,则又,【反馈演练】1.已知函数,则该函数在 上单调递__减__,(填增减)值域为_________.2.已知函数 在 上是减函数,在 上是增函数,则 __25___.3.函数 的单调递增区间为.4.函数 的单调递减区间为.5.已知函数 在区间 上是增函数,求实数a的取值范围.解:设对于区间 内的任意两个值,且,则,,得,,即.第4课 函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.【基础练习】1.给出4个函数:①;②;③;④.其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____.2.设函数 为奇函数,则实数-1.3.下列函数中,在其定义域内既是奇函数又是减函数的是(A)A.B.C.D.【范例解析】例1.判断下列函数的奇偶性:(1);(2);(3);(4);(5);(6)分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断.解:(1)定义域为,关于原点对称;,所以 为偶函数.(2)定义域为,关于原点对称;,故 为奇函数.(3)定义域为,关于原点对称;,且,所以 既为奇函数又为偶函数.(4)定义域为,不关于原点对称;故 既不是奇函数也不是偶函数.(5)定义域为,关于原点对称;,则 且,故 既不是奇函数也不是偶函数.(6)定义域为,关于原点对称;例2.已知定义在 上的函数 是奇函数,且当 时,求函数 的解析式,并指出它的单调区间.分析:奇函数若在原点有定义,则.解:设,则,.又 是奇函数,.当 时,.综上,的解析式为.【反馈演练】1.已知定义域为R的函数 在区间 上为减函数,且函数 为偶函数,则(D)A.B.C.D.2.在 上定义的函数 是偶函数,且,若 在区间 是减函数,则函数(B)A.在区间 上是增函数,区间 上是增函数B.在区间 上是增函数,区间 上是减函数C.在区间 上是减函数,区间 上是增函数D.在区间 上是减函数,区间 上是减函数3.设,则使函数 的定义域为R且为奇函数的所有 的值为____1,3 ___.4.设函数 为奇函数,则 ________.5.若函数 是定义在R上的偶函数,在 上是减函数,且,则使得 的x的取值范围是(-2,2).6.已知函数 是奇函数.又,,求a,b,c的值;解:由,得,得.又,得,而,得,解得.又,或1.若,则,应舍去;若,则.所以,.综上,可知 的值域为.第5 课 函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法.【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1);(2).2.作出下列各个函数图像的示意图:(1);(2);(3).解:(1)将 的图像向下平移1个单位,可得 的图像.图略;(2)将 的图像向右平移2个单位,可得 的图像.图略;(3)由,将 的图像先向右平移1个单位,得 的图像,再向下平移1个单位,可得 的图像.如下图所示:3.作出下列各个函数图像的示意图:(1);(2);(3);(4).解:(1)作 的图像关于y轴的对称图像,如图1所示;(2)作 的图像关于x轴的对称图像,如图2所示;(3)作 的图像及它关于y轴的对称图像,如图3所示;(4)作 的图像,并将x轴下方的部分翻折到x轴上方,如图4所示.4.函数 的图象是(B)【范例解析】例1.作出函数 及,,的图像.分析:根据图像变换得到相应函数的图像.解: 与 的图像关于y轴对称;与 的图像关于x轴对称;将 的图像向左平移2个单位得到 的图像;保留 的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;将 的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留 在y轴右边部分.图略.与 的图像关于x轴对称;与 的图像关于原点对称;保留 的图像在x轴上方的部分,将x轴下方的部分关于x轴翻折上去,并去掉原下方的部分;将 的图像在y轴右边的部分沿y轴翻折到y轴的左边部分替代原y轴左边部分,并保留 在y轴右边部分.例2.设函数.(1)在区间 上画出函数 的图像;(2)设集合.试判断集合 和 之间的关系,并给出证明.分析:根据图像变换得到 的图像,第(3)问实质是恒成立问题.解:(1)(2)方程 的解分别是 和,由于 在 和 上单调递减,在 和 上单调递增,因此.由于.【反馈演练】1.函数 的图象是(B)2.为了得到函数 的图象,可以把函数 的图象向右平移1个单位长度得到.3.已知函数 的图象有公共点A,且点A的横坐标为2,则 =.4.设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线 对称,则f(1)+ f(2)+ f(3)+ f(4)+ f(5)=_____0____.5.作出下列函数的简图:(1);(2);(3).第6课 二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1.已知二次函数 ,则其图像的开口向__上__;对称轴方程为;顶点坐标为,与 轴的交点坐标为,最小值为.2.二次函数 的图像的对称轴为 ,则 __-2___,顶点坐标为,递增区间为,递减区间为.3.函数 的零点为.4.实系数方程 两实根异号的充要条件为;有两正根的充要条件为;有两负根的充要条件为.5.已知函数 在区间 上有最大值3,最小值2,则m的取值范围是__________.【范例解析】例1.设 为实数,函数,.(1)讨论 的奇偶性;(2)若 时,求 的最小值.分析:去绝对值.解:(1)当 时,函数此时,为偶函数.当 时,,.此时 既不是奇函数,也不是偶函数.(2)由于 在 上的最小值为,在 内的最小值为.例2.函数 在区间 的最大值记为,求 的表达式.分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况.解:∵直线 是抛物线 的对称轴,可分以下几种情况进行讨论:(1)当 时,函数,的图象是开口向上的抛物线的一段,由 知 在 上单调递增,故;(2)当 时,,有 =2;(3)当 时,函数,的图象是开口向下的抛物线的一段,若 即 时,若 即 时,【反馈演练】1.函数 是单调函数的充要条件是.2.已知二次函数的图像顶点为,且图像在 轴上截得的线段长为8,则此二次函数的解析式为.3.设,二次函数 的图象为下列四图之一:则a的值为(B)A.1 B.-1 C.D.4.若不等式 对于一切 成立,则a的取值范围是.5.若关于x的方程 在 有解,则实数m的取值范围是.6.已知函数 在 有最小值,记作.(1)求 的表达式;(2)求 的最大值.解:(1)由 知对称轴方程为,当 时,即 时,;当,即 时,;当,即 时,;综上,.(2)当 时,;当 时,;当 时,.故当 时,的最大值为3.7.分别根据下列条件,求实数a的值:(1)函数 在在 上有最大值2;(2)函数 在在 上有最大值4.解:(1)当 时,令,则;当 时,令,(舍);当 时,即.综上,可得 或.(2)当 时,即,则;当 时,即,则.综上,或.8.已知函数.(1)对任意,比较 与 的大小;(2)若 时,有,求实数a的取值范围.解:(1)对任意,故.(2)又,得,即,得,解得.第7课 指数式与对数式【考点导读】1.理解分数指数幂的概念,掌握分数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质;3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算.【基础练习】1.写出下列各式的值:;____4____;;___0_____;____1____;__-4__.2.化简下列各式:(1);(2).3.求值:(1)___-38____;(2)____1____;(3)_____3____.【范例解析】例1.化简求值:(1)若,求 及 的值;(2)若,求 的值.分析:先化简再求值.解:(1)由,得,故;例2.(1)求值:;(2)已知,求.分析:化为同底.例3.已知,且,求c的值.分析:将a,b都用c表示.【反馈演练】1.若,则.2.设,则.3.已知函数,若,则-b.4.设函数 若,则x0的取值范围是(-,-1)(1,+).5.设已知f(x6)= log2x,那么f(8)等于.6.若,则k =__-1__.7.已知函数,且.(1)求实数c的值;(2)解不等式.解:(1)因为,所以,由,即,.(2)由(1)得:由 得,当 时,解得.当 时,解得,所以 的解集为.第8课 幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数,,的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型.【基础练习】1.指数函数 是R上的单调减函数,则实数a的取值范围是.2.把函数 的图像分别沿x轴方向向左,沿y轴方向向下平移2个单位,得到 的图像,则.3.函数 的定义域为___R__;单调递增区间;值域.4.已知函数 是奇函数,则实数a的取值.5.要使 的图像不经过第一象限,则实数m的取值范围.6.已知函数 过定点,则此定点坐标为.【范例解析】例1.比较各组值的大小:(1),,;(2),,其中;(3),.分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性.解:(1),而,例2.已知定义域为 的函数 是奇函数,求 的值;解:因为 是奇函数,所以 =0,即又由f(1)=-f(-1)知例3.已知函数,求证:(1)函数 在 上是增函数;(2)方程 没有负根.分析:注意反证法的运用.证明:(1)设,,又,所以,,则故函数 在 上是增函数.(2)设存在,满足,则.又,【反馈演练】1.函数 对于任意的实数 都有(C)A.B.C.D.2.设,则(A)A.-23.将y=2x的图像(D)再作关于直线y=x对称的图像,可得到函数 的图像.A.先向左平行移动1个单位 B.先向右平行移动1个单位C.先向上平行移动1个单位 D.先向下平行移动1个单位4.函数 的图象如图,其中a、b为常数,则下列结论正确的是(C)A.B.C.D.5.函数 在 上的最大值与最小值的和为3,则 的值为___2__.6.若关于x的方程 有实数根,求实数m的取值范围.解:由 得,7.已知函数.(1)判断 的奇偶性;(2)若 在R上是单调递增函数,求实数a的取值范围.解:(1)定义域为R,则,故 是奇函数.(2)设,当 时,得,即;当 时,得,即;综上,实数a的取值范围是.第9课 对数函数及其性质【考点导读】1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题.【基础练习】1.函数 的单调递增区间是.2.函数 的单调减区间是.【范例解析】例1.(1)已知 在 是减函数,则实数 的取值范围是_________.(2)设函数,给出下列命题:① 有最小值;②当 时,的值域为;③当 时,的定义域为;④若 在区间 上单调递增,则实数 的取值范围是.则其中正确命题的序号是_____________.分析:注意定义域,真数大于零.解:(1),在 上递减,要使 在 是减函数,则;又 在 上要大于零,即,即;综上,.(2)① 有无最小值与a的取值有关;②当 时,成立;③当 时,若 的定义域为,则 恒成立,即,即 成立;④若 在区间 上单调递增,则 解得,不成立.例3.已知函数,求函数 的定义域,并讨论它的奇偶性和单调性.分析:利用定义证明复合函数的单调性.解:x须满足 所以函数 的定义域为(-1,0)(0,1).因为函数 的定义域关于原点对称,且对定义域内的任意x,有,所以 是奇函数.研究 在(0,1)内的单调性,任取x1、x2(0,1),且设x1得 0,即 在(0,1)内单调递减,【反馈演练】1.给出下列四个数:①;②;③;④.其中值最大的序号是___④___.2.设函数 的图像过点,则 等于___5_ _.3.函数 的图象恒过定点,则定点 的坐标是.4.函数 上的最大值和最小值之和为a,则a的值为.5.函数 的图象和函数 的图象的交点个数有___3___个.6.下列四个函数:①;②;③;④.其中,函数图像只能是如图所示的序号为___②___.7.求函数 , 的最大值和最小值.解:令,则,即求函数 在 上的最大值和最小值.故函数 的最大值为0,最小值为.8.已知函数.(1)求 的定义域;(2)判断 的奇偶性;(3)讨论 的单调性,并证明.解:(1)解:由,故的定义域为.(2),故 为奇函数.(3)证明:设,则,.当 时,故 在 上为减函数;同理 在 上也为减函数;当 时,故 在,上为增函数.第10课 函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法.【基础练习】1.函数 在区间 有_____1 ___个零点.2.已知函数 的图像是连续的,且 与 有如下的对应值表:1 2 3 4 5 6-2.3 3.4 0-1.3-3.4 3.4则 在区间 上的零点至少有___3__个.【范例解析】例1.是定义在区间[-c,c]上的奇函数,其图象如图所示:令,则下列关于函数 的结论:①若a0,则函数 的图象关于原点对称;②若a=-1,-2③若a0,则方程 =0有两个实根;④若,则方程 =0有三个实根.其中,正确的结论有___________.分析:利用图像将函数与方程进行互化.解:当 且 时,是非奇非偶函数,①不正确;当,时,是奇函数,关于原点对称,③不正确;当,时,由图知,当 时,才有三个实数根,故④不正确;故选②.例2.设,若,.求证:(1)且;(2)方程 在 内有两个实根.分析:利用,进行消元代换.证明:(1),由,得,代入 得:,即,且,即,即证.【反馈演练】1.设,为常数.若存在,使得,则实数a的取值范围是.2.设函数 若,则关于x的方程 解的个数为(C)A.1 B.2 C.3 D.43.已知,且方程 无实数根,下列命题:①方程 也一定没有实数根;②若,则不等式 对一切实数 都成立;③若,则必存在实数,使④若,则不等式 对一切实数 都成立.其中正确命题的序号是 ①②④.4.设二次函数,方程 的两根 和 满足.求实数 的取值范围.解:令,则由题意可得.故所求实数 的取值范围是.5.已知函数 是偶函数,求k的值;解: 是偶函数,由于此式对于一切 恒成立,6.已知二次函数.若ac,且f(1)=0,证明f(x)的图象与x轴有2个交点.证明:的图象与x轴有两个交点.第11课 函数模型及其应用【考点导读】1.能根据实际问题的情境建立函数模型,结合对函数性质的研究,给出问题的解答.2.理解数据拟合是用来对事物的发展规律进行估计的一种方法,会根据条件借助计算工具解决一些简单的实际问题.3.培养学生数学地分析问题,探索问题,解决问题的能力.【基础练习】1今有一组实验数据如下:1.99 3.0 4.0 5.1 6.121.5 4.04 7.5 12 18.01现准备用下列函数中的一个近似地表示这些数据满足的规律,① ② ③ ④其中最接近的一个的序号是______③_______.2.某摩托车生产企业,上生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0 1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润 =(出厂价-投入成本)年销售量.(Ⅰ)写出本预计的年利润y与投入成本增加的比例x的关系式;(Ⅱ)为使本的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?解:(Ⅰ)由题意得y = [ 1.2(1+0.75x)-1(1 + x)] 1000(1+0.6x)(0 1)整理得 y =-60x2 + 20x + 200(0 1).(Ⅱ)要保证本的利润比上有所增加,当且仅当即 解不等式得.答:为保证本的年利润比上有所增加,投入成本增加的比例x应满足0 0.33.【范例解析】例.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)解:(Ⅰ)由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0300.(Ⅱ)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即当0200时,配方整理得h(t)=-(t-50)2+100,所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上:由10087.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大【反馈演练】1.把长为12cm的细铁丝截成两段,各自围成一个正三角形,则这两个正三角形面积之和的最小值是___________.2.某地高山上温度从山脚起每升高100m降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则此山的高度为_____17_____m.3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15 x 2和L2=2 x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为____45.6___万元.4.某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm2.问x、y分别为多少时用料最省?解:由题意得 xy+ x2=8,y= =(0则框架用料长度为l=2x+2y+2()=(+)x+ 4.当(+)x= ,即x=8-4 时等号成立.此时,x=8-4,故当x为8-4 m,y为 m时,用料最省.

篇3:二次函数复习

1. 经历在具体问题中探索数量关系和变化规律的过程, 抽象出二次函数的概念, 并结合具体情境领会二次函数作为一种数学模型的意义. 能根据二次函数的表达式确定二次函数的开口方向, 对称轴和顶点坐标.

2. 能画出二次函数的图像, 根据图像和解析表达式探索并理解二次函数的主要性质. 理解一元二次方程与二次函数的关系, 并能利用二次函数的图像求一元二次方程的近似根.

3. 通过复习逐步提高观察和归纳分析能力, 体验数形结合的数学思想方法.

4. 能依据已知条件确定二次函数的解析式, 并能领悟用函数观点解决某些实际问题的基本思路.

二、中考链接

二次函数是中考命题的重点, 主要考查二次函数的图象、性质及表达式的确定, 在填空题、选择题和解答题中都有出现, 常与方程、几何等知识综合编拟压轴题.

三、知识精要整合

请大家根据所学内容完成下面的填空:

1. 二次函数的定义: 形如y = ax2+ bx + c (__________) 的函数为二次函数.

2.二次函数的图像和性质:二次函数y=ax2+bx+c的图像是一条抛物线.顶点为_______, 对称轴_______;当a>0时, 抛物线开口向上, 图像有_____, 且x>-b/ (2a) , y随x的增大而________, x<-b/ (2a) , y随x的增大而_________;当a<0时, 抛物线开口向下, 图像有_______, 且x>-b/ (2a) , y随x的增大而__________, x<-b/ (2a) , y随x的增大而___________. (3) 当a>0时, 当x=-b/ (2a) 时, 函数有最小值________;当a<0时, 当x=-b/ (2a) 时, 函数有最大值__________.

3.图像的平移:将二次函数y=ax2 (a≠0) 的图像进行平移, 可得到y=ax2+c, y=a (x-h) 2, y=a (x-h) 2+k的图像. (1) 将y=ax2的图像向上 (________) 或向下 (_____) 平移|c|个单位, 即可得到y=ax2+c的图像, 其顶点是 (0, c) , 形状、对称轴、开口方向与抛物线y=ax2相同. (2) 将y=ax2的图像向左 (________) 或向右 (______) 平移|h|个单位, 即可得到y=a (x-h) 2的图像.其顶点是 (h, 0) , 对称轴是直线x=h, 形状、开口方向与抛物线y=ax2相同. (3) 将y=ax2的图像向左 (_________) 或向右 (________) 平移|h|个单位, 再向上 (_______) 或向下 (__________) 平移|k|个单位, 即可得到y=a (x-h) 2+k的图像, 其顶点是 (h, k) , 对称轴是直线x=h, 形状、开口方向与抛物线y=ax2相同.

二次函数有三种不同的表示方法, 分别是____________________.

二次函数表达式的求法: ( 1) 若已知抛物线上____________, 可利用一般式y = ax2+ bx + c求; ( 2 ) 若已知抛物线的____________, 则可采用顶点式: y= a ( x - h) 2+ k其中顶点为 ( h, k) 对称轴为直线x = h; ( 3) 若已知抛物线___________, 则可采用交点式: y = a ( x - x1) ( x - x2) , 其中与x轴的交点坐标为 ( x1, 0) , ( x2, 0) .

4. 二次函数与一元二次方程的关系:

5. 用二次函数解决实际问题时的基本思路: ( 1 ) 理解问题; ( 2 ) 分析问题中的变量和常量; ( 3) 用函数表达式表示出它们之间的关系; ( 4) 利用二次函数的有关性质进行求解; ( 5) 检验结果的合理性, 对问题加以拓展等.

另外, 二次函数常用来解决最优化问题, 这类问题实际上就是求函数的最大 ( 小) 值; 二次函数的应用包括以下方面: 分析和表示不同背景下实际问题中变量之间的二次函数关系; 运用二次函数的知识解决实际问题中的最大 ( 小) 值.

四、数学思想方法提炼

数学思想方法是从数学内容中抽象概括出来的, 是数学知识的精髓, 是知识转化为能力的桥梁. 因此, 领悟并掌握了数学思想方法就等于拿到了解题的金钥匙. 本章主要的思想方法有:

1. 数形结合思想: 将直观的图象与数学语言结合起来, 通过图象的认识、数形的转换, 培养思维的灵活性、形象性, 使问题化难为易, 化抽象为具体;

2. 函数思想: 把实际问题中的变量与变量建立一种特殊的对应关系, 并结合函数图象, 利用函数的性质解决实际问题;

3. 方程思想: 充分挖掘已知量与未知量之间的数量关系, 建立方程 ( 组) , 然后用方程的理论和解方程的方法解决问题;

4. 待定系数法: 为了确定变量间的函数关系, 先设出某些未知系数, 然后根据所给条件得出系数应满足的方程或方程组, 并通过解方程或方程组求出待定的系数.

五、2012年中考链接

考点1抛物线的平移变换

例1 ( 2012 年·四川省德阳市中考) 在同一平面直角坐标系内, 将函数y = 2x2+ 4x + 1 的图象沿x轴方向向右平移2 个单位长度后再沿y轴向下平移1 个单位长度, 得到图象的顶点坐标是 ()

A. ( - 1, 1) B. ( 1, - 2) C. ( 2, - 2) D. ( 1, - 1)

分析: 根据二次函数的平移不改变二次项的系数, 先把函数y = 2x2+ 4x + 1 变成顶点式, 再按照“左加右减, 上加下减”的规律, 把y = 2x2+ 4x + 1 的图象向右平移2 个单位, 再向下平移1 个单位. 即可求得新抛物线的顶点.

解: 函数y = 2x2+ 4x + 1 变形为y = 2 ( x + 1) 2- 1 平移后的解析式为y = 2 ( x - 1) 2- 2, 所以顶点为 ( 1, - 2) . 故选B.

点评: 抛物线平移不改变二次项的系数的值; 讨论两个二次函数的图象的平移问题, 只需看顶点坐标是如何平移得到的即可.

考点2图象与系数的关系

例2 ( 2012 年·山东泰安中考) 二次函数y = a ( x + m) 2+ n的图象如图, 则一次函数y = mx + n的图象经过 ()

A.第一、二、三象限

B.第一、二、四象限

C.第二、三、四象限

D.第一、三、四象限

解析: 由二次函数y = a ( x + m) 2+ n的图象可知其顶点在第四象限, 所以- m> 0, n < 0, m < 0, n < 0, 当m < 0, n < 0 时, 由一次函数的性质可得其图象过第二、三、四象限. 答案: C.

点评: 由二次函数的图象可确定其顶点坐标的符号; 一次函数图象的性质: 当k > 0, b > 0 时, 一次函数y = kx + b过一、二、三象限; 当k >0, b < 0 时, 一次函数y = kx + b过一、三、四象限; 当k < 0, b > 0 时, 一次函数y = kx + b过一、二、四象限; 当k < 0, b < 0时, 一次函数y = kx + b过二、三、四象限.

考点3二次函数解析式的确定

例3 (2012年·江苏泰州市中考) 如图, 在平面直角坐标系x Oy中, 边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上, 二次函数的图像经过B、C两点.

( 1) 求该二次函数的解析式;

( 2) 结合函数的图像探索: 当y > 0 时x的取值范围.

分析: 用待定系数法将已知两点的坐标代入二次函数解析式, 即可求出b, c的值, 然后通过解一元二次方程求抛物线与x轴的交点坐标, 由图象法求得函数值y为正数时, 自变量x的取值范围.

解: (1) 由题意可得:B (2, 2) , C (0, 2) , 将B、C坐标代入得:c=2, b=4/3, 所以二次函数的解析式是

(2) , 得:x1=3, x2=-1, 由图像可知:y>0时x的取值范围是-1<x<3

点评: 本题考查了二次函数解析式的求法及利用图象法求解一元二次不等式, 渗透了数形结合思想. 其中本题的解法将三个“二次”和谐地结合起来, 突显二次函数的纽带作用, 通过函数, 将方程、不等式进行了综合考查.

考点4二次函数的实际应用

例4 ( 2012 年·哈尔滨中考) 小磊要制作一个三角形的钢架模型, 在这个三角形中, 长度为x ( 单位: cm) 的边与这条边上的高之和为40 cm, 这个三角形的面积S ( 单位: cm2) 随x ( 单位: cm) 的变化而变化.

( 1) 请直接写出S与x之间的函数关系式 ( 不要求写出自变量x的取值范围) ;

( 2) 当x是多少时, 这个三角形面积S最大? 最大面积是多少?

分析: 本题考查确定函数解析式, 二次函数最值. 三角形的边x和高的和是40, 可表示该边上的高位40 - x, 根据三角形面积公式是底乘高除2 可写出, 这个二次函数的顶点坐标分别对应x及S的最大值.

所以当x = 20cm时, 这个三角形的面积最大, 最大面积是200cm2.

点评: 二次函数是中考考查的必考内容之一, 本题是综合考查二次函数的最值问题, 需要考生熟悉二次函数的相关基本概念和配方法即可解题. 要注意解题过程的完整性.

考点5用函数观点看方程、不等式

例5 ( 2012 年·山东泰安中考) 二次函数y = ax2+ bx的图象如图, 若一元二次方程ax2+ bx + m = 0有实数根, 则m的最大值为 ()

A.-3 B.3

C.-5 D.9

解析: 方法一: 图象法, 由ax2+ bx + m = 0 得ax2+ bx = - m, 一元二次方程ax2+ bx + m = 0 有实数根, 得函数y = ax2+ bx与函数y = - m有交点, 所以- m≥ - 3, m≤3;

方法二:因为一元二次方程ax2+bx+m=0有实数根, 所以b2-4 am≥0, 由y=ax2+bx的图象可得顶点纵坐标, , b2=12 a, 所以12 a-4 am≥0, 解得m≤3.答案:B.

点评: 本题考查了二次函数的图象与一元二次方程的根之间的关系, 既可以用图象法, 也可以用算术法, 开拓了学生的思维.

例6 ( 2012 年 · 四川省资阳市中考) 如图是二次函数y = ax2+ bx + c的部分图象, 由图象可知不等式ax2+ bx + c < 0的解集是 ()

A. - 1 < x < 5B. x > 5

C. x < - 1 且x > 5D. x < - 1 或x > 5

解析: 由二次函数的对称性, 在已知了对称轴直线和与x轴的一个交点坐标 ( 5, 0) 即可得出另一个交点坐标 ( - 1, 0) ; 再由不等式ax2+bx + c < 0 的解集即指x轴下方图像所对应的x取值. 故选D.

点评:本题主要考查了函数图象与不等式之间的关系, 利用数形结合思想不难选出D选项, 但本题如果对数形结合思想的不理解或不能熟练运用, 有可能会采取代入对称轴直线及与x轴交点坐标的方法运算, 将会花去考生大量时间, 故解决本题的关键是熟练初中数学的常见数学思想方法.

考点6几何函数题

例7 (2012年·甘肃兰州中考) 若x1、x2是关于x一元二次方程ax2+bx+c=0 (a≠0) 的两个根, 则方程的两个根x1、x2和系数a、b、c有如下关系:.把它们称为一元二次方程根与系数关系定理。如果设二次函数y=ax2+bx+c (a≠0) 的图象与x轴的两个交点为A (x1, 0) , B (x2, 0) .利用根与系数关系定理可以得到A、B两个交点间的距离为:

参考以上定理和结论, 解答下列问题:

设二次函数y = ax2+ bx + c ( a > 0 ) 的图象与x轴的两个交点A ( x1, 0) , B ( x2, 0) , 抛物线的顶点为C, 显然△ABC为等腰三角形.

(1) 当△ABC为等腰直角三角形时, 求b2-4ac的值;

(2) 当△ABC为等边三角形时, 求b2-4ac的值.

分析: (1) 当△ABC为直角三角形时, 由于AC=BC, 所以△ABC为等腰直角三角形, 过C作CD⊥AB于D, 则AB=2CD.根据本题定理和结论, 得到, 根据顶点坐标公式, 得到, 列出方程, 解方程即可求出b2-4ac的值;

( 2) 当△ABC为等边三角形时, 解直角△ACD, 得, 据此列出方程, 解方程即可求出b2- 4ac的值.

解: (1) 当△ABC为等腰直角三角形时, 过C作CD⊥AB于D, 则AB=2CD.

∵抛物线与x轴有两个交点,

( 2) 如图, 当△ABC为等边三角形时, 由 ( 1) 可知,

点评: 本题考查了等腰直角三角形、等边三角形的性质, 抛物线与x轴的交点及根与系数的关系定理, 综合性较强.

考点7创新型问题

例8 ( 2012 年·吉林省中考) 问题情境

如图, 在x轴上有两点A (m, 0) , B (n, 0) (n>m>0) .分别过点A, 点B作x轴的垂线, 交抛物线y=x2于点C, 点D.直线OC交直线BD于点E, 直线OD交直线AC于点F, 点E, 点F的纵坐标分别记为yE, yF.

特例探究

填空:

当m=1, n=2时, yE=________, yF=__________.

当m=3, n=5时, yE=___________, yF=__________.

归纳证明

对任意m, n ( n > m > 0) , 猜想yE与yF的大小关系, 并证明你的猜想

拓展应用.

( 1) 若将“抛物线y = x2”改为“抛物线y = ax2 ( a > 0) ”, 其它条件不变, 请直接写出yE与yF的大小关系.

( 2) 连接EF, AE. 当S四边形OFEB= 3S△OFE时, 直接写出m和n的关系及四边形OFEA的形状.

分析: 【特例探究】【归纳证明】都是【拓展应用】 ( 1) 的特殊情况, 因此以【拓展】 ( 1) 为例说明前三小问的思路: 已知A、B的坐标, 根据抛物线的解析式, 能得到C、D的坐标, 进而能求出直线OC、OD的解析式, 也就能得出E、F两点的坐标, 再进行比较即可.最后一小题也比较简单: 总结前面的结论, 能得出EF∥x轴的结论, 那么直角梯形OFEB的面积和△OFE的面积比例关系, 能判断出EF、OA的比例关系, 进而得出m、n的关系, 再对四边形OFEA的形状进行判定.

解: 特例探究

当m = 1, n = 2 时, A ( 1, 0) 、B ( 2, 0) 、C ( 1, 1) 、D ( 2, 4) ;

则:直线OC的解析式为:y=x;直线OD解析式为:y=2x;

∴F (1, 2) 、E (2, 2) ;即.yE=yF=2

同理:当m=3, n=5时, yE=yF=15.

归纳证明

猜想: yE= yF,

证明:yD=n2, yC=m2, 则, C (m, m2) , D (n, n2)

OD的解析式为y=nx;OC的解析式为y=mx

E在OC上, 横坐标为n, 当x = n时, yE= mn, F在OD上, 横坐标为m, 当x = m时, yF= mn

拓展应用

(1) 设yD=an2, yC=am2, 则C (m, m2) , D (n, n2)

OD的解析式为yOD=anx, yOC=amx

当x = n时, yE= amn; 当x = m时. yF= amn, ∴ yE= yF

( 2) ∵ 四边形OFEB是直角梯形, EF = n - m, OB = n, BE = mn

可得, EF = m, OA = m, ∴ EF‖OA且EF = OA. ∴ 四边形OFEA是平行四边形.

点评: 本题主要考查的是一次函数解析式的确定和二次函数的性质、图形面积的解法、平行四边形的判定等知识, 综合性较强, 本题由特殊到一般、由浅入深的引导方式进一步降低了题目的难度, 对于基础知识的掌握是解题的关键.

知识精要整合参考答案:

1.a≠0, a, b, c为常数.

2., 最低点, 增大, 减小, 最高点, 减小, 增大,

3.c>0, c<0, h<0, h>0, h<0, h>0, k>0, k<0, 表格法、图像法、表达式法.

三点坐标, 顶点坐标或对称轴方程, 与x轴的交点坐标或交点的横坐标,

篇4:“函数”复习专题

A. 第一、二、三象限 B. 第一、二、四象限

C. 第一、三、四象限 D. 第二、三、四象限

3. 已知二次函数y=x2-3x+m(m为常数)的图像与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( ).

A. x1=1,x2=-1 B. x1=1,x2=2 C. x1=1,x2=0 D. x1=1,x2=3

4. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息. 已知甲先出发2s,在跑步的过程中,甲、乙两人之间的距离y(m)与乙出发的时间t(s)之间的函数关系如图所示,给出以下结论①a=8,②b=92,③c=123,其中正确的是( ).

A. ①②③ B. 仅有①②

C. 仅有①③ D. 仅有②③

10. 随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水,某市对居民用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示. 图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图像信息,回答下列问题:

(1) 该市人均月生活用水的收费标准是:不超过5吨,每吨按______元收取,超过5吨的部分,每吨按______元收取;

(2) 请写出y与x的函数关系;

(3) 若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?

11. 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.

(1) 求抛物线的函数表达式;

(2) 经过点B,C的直线l平移后与抛物线交于点M,与x轴的一个交点为N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;

(3) 若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.

篇5:二次函数复习教案

18课时 二次函数(二)

1.理解二次函数与一元二次方程之间的关系;

2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程

一、知识梳理: 1.二次函数与一元二次方程的关系:

(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.

(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;

②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;

③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:

(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;

二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;

(3)画出此抛物线图象,利用图象回答下列问题:

①方程x2-6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;

∴抛物线的顶点坐标为(3,-1)

(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.

②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题

2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?

分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.

(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.

三、合作交流:

1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。

2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。

四、中考压轴题赏析:(分组合作)

已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;

5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.

5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后

合52∴xM+xN=k+4.

∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.

当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3

∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;

∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得

2M、N两点关于点E对称.

点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.

五、反思与提高:

1、本节课主要复习了哪些知识,你印象最深的是什么?

2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?

六、备考训练:

篇6:指数函数复习教案

(二)一、素质教育目标

(一)知识教学点:1.理解自变量的取值范围和函数值的定义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值;2.使学生在了解函数的解析表示法的基础上,进一步认识与了解函数的意义;3.能在已知函数值的情况下求出相对应的自变量的值.

(二)能力训练点:1.在确定自变量取值范围的过程中,培养学生分析问题和解决问题的能力;2.在求函数值的过程中进一步加强对学生运算能力的培养.

(三)德育渗透点:通过函数的教学,使学生体会事物是互相联系和有规律地变化着的.

二、教学重点、难点和疑点 1.教学重点:求自变量的取值范围和已知自变量的值求函数值.因为在通常情况下,自变量是有一定的变化范围的,而且对于在一定范围内变化的自变量,函数值也有一定的变化范围.

2.教学难点:求自变量的取值范围.因为自变量的取值范围,决定了函数值的变化范围.

三、教学步骤

(一)明确目标

上节课我们学习了数学中一个很重要的基本概念——函数,这节课我们将来学习与函数有关的一些知识.

(二)整体感知 提问:1.根据上节课所学知识,请你举一个函数的例子,并写出函数表达式,同时请说明它为什么是函数.

由于这个问题较基本,而且可以因人而异,所以可选择几个中下层次的学生来回答,培养学生的参与意识及能力.在学生回答的同时,把这些式子写在黑板上,留待后用.

2.(从上面出现的函数关系式中选出较恰当的一个)请你说出这个式子中的常量与变量,自变量与函数.

由学生回答,互相评价即可.

根据上述问题中给出的函数关系式,指出:(板书)这几个函数关系式,都是利用数学式子(即解析式,在此处不必扩充解析式的定义)来表示的,我们称这种用数学式子表示函数的方法叫做解析法.

提问:上述定义里的“这种”,你认为是什么含意? 由学生讨论,适当引导学生,可找学习较好的学生回答,然后教师加以总结,除了解析法之外,函数还有其它的表示法.例如:在本章开始时,所给出的温度图表,其实就是用图象表示函数,这些我们将在以后学习.

提问:1.看函数解析式S=πR2,若单纯以式子出现,这里的自变量R的取值范围是怎样的? 2.若给出圆的面积公式S=πR2,这里的自变量R的取值范围又是怎样的? 这两个问题由学生讨论回答,在此处提出这样的问题,主要是使学生明确:在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.(教师总结)

下面我们就来看一下求自变量取值范围的例题:(出示幻灯)

例1 求下例函数中自变量x的取值范围:(1)y=2x+3;(2)

提问:①看这几道题,自变量在什么样的式子中? ②上述式子,在什么样的条件下有意义?

教师提问之后,剩下的工作可由学生自行完成,然后由学生回答,互相评价即可.

练习:1

练习2 由学生讨论完成这道题.

注意:关于x的取值范围,纠正学生中易出现的x>0这种错误,向学生解释明白(或由学生自行解释):字数一定是整数的.

上面,我们主要是讨论如何确定自变量的取值范围,那么在这样的取值范围内,函数值有没有变化呢?应怎样求出特定自变量值的情况下函数的值呢?由学生思考.

看函数y=x(30-x),当自变量x=5时,对应的函数值是多少? 由学生思考之后.口述过程.教师板书完成此题. 下面,我们来看一个例题:(出示幻灯)例3 求下列函数当x=2时的函数值:

由学生独立完成,找两名同学上黑板板演,第1名同学做(1)、(2)题;第2名同学做(3)、(4)题.然后根据学生做题的情况,总结,纠正出现的错误.

提问:求函数值的问题实际就是求什么的问题?

提这个问题主要是使学生能对所学的知识有正确地认识,而且能正确归类,便于学生理解、记忆.

这个问题由学生思考回答,若是没有思路,可以启发学生从解题的方法上找结果,总结:实际就是求代数式值的问题.

练习1,2题

由学生独立完成,教师巡回指导,口答答案即可.

刚才,我们研究了怎样由自变量的值求函数值,试想,若已知函数值应怎样求对应的自变量的值呢?

由学生讨论方法,与上述例题的方式正好相反,之后出示例题:(出示幻灯)例3 当x取什么值时,下列函数值为0:(1)y=3x-5;(2)y=2x2-5x+3. 提问:函数值为0,是什么意思?

由学生思考、总结:函数值为0,即y=0.然后由学生独立完成,找两名同学板演,最后加以总结,评价即可.

练习三:当x取什么值时,下列函数值为0:

由学生独立完成,若学生在做题时有一定的困难或有错误出现,教师应及时加以纠正.

(三)重点、难点的学习与目标完成过程 本节课的教学重点是求自变量的取值范围,为了让学生明确为何要确定自变量的取值范围,首先引出了函数的解析式,然后通过一个具体的解析式S=πR2的不同含义,使学生明确上述问题.在学生知道了为什么要确定自变量的取值范围之后,就开始通过各种不同类型的问题,让学生进一步理解自变量的取值范围实际就是使函数解析式有意义的那一部分值.同时,能使学生对不同类型的问题找到求自变量取值范围的方法,在小结中形成规律,便于学生的记忆和应用.

同时,在研究了自变量的取值范围之后,又很自然地使学生想到,随着自变量的值不同,对应的函数值也就不同,因此又引出了已知自变量的值求函数值和已知函数值求自变量的值这两个问题,使学生能很容易地接受.

(四)总结、扩展

教师提问,学生思考回答.

1.这节课我们介绍了一种什么样的表示函数的方法? 2.用解析法表示函数应注意什么问题? 3.求函数的自变量的取值范围的方法是怎样的?

对第3题,由学生先讨论之后回答,对有欠缺的部分互相补充,形成有规律而且完整的知识.

答:(1)要使函数的解析式有意义:

①函数的解析式是整式时,自变量可以取全体实数;

②函数的解析式是分式时,自变量的取值要使分母不为0;

③函数的解析式是二次根式时,自变量的取值要使被开方数是非负数.(2)对实际问题中的函数关系,要使实际问题有意义.

4.如何在给定自变量的情况下求函数值?又如何在给定函数值的情况下求自变量的值?

四、布置作业

1.教材习题3,5,6,7题

上一篇:小学卫生委员竞选稿下一篇:合规的增值税专用发票