九年级数学圆经典题型

2022-12-24

第一篇:九年级数学圆经典题型

九年级数学圆教案4

第二十四章“圆”简介

课程教材研究所

李海东

与三角形、四边形等一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形。本章将在学生前面学习了一些基本的直线形──三角形、四边形等的基础上,进一步研究一个基本的曲线形──圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力。本章共安排四个小节和两个选学内容,教学时间大约需要17课时,具体安排如下(仅供参考):

24.1 圆

5课时 24.2 与圆有关的位置关系

6课时 24.3 正多边形和圆

2课时 24.4 弧长和扇形的面积

2课时 数学活动

小结

2课时

一、教科书内容和课程学习目标

(一)本章知识结构框图

本章知识结构如下图所示:

(二)教科书内容

本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。

本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的

认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。 在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。

“24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。 正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形

不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。

教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。

(三)课程学习目标

1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。

5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。

二、本章编写特点

(一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合 圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重

视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。

例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。

(二)注意联系实际

圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。

(三)重视渗透数学思想方法

教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。

另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。

三、几个值得关注的问题

(一)进一步培养推理论证能力

从培养学生的逻辑思维能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程,而且要求了解反证法。教学中要重视推理论证的教学,进一步提高学生的思维能力。教科书在这方面也还是很重视的。在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有一些图形的性质是直接由已有的结论经过推理论证得出的。另外,为了巩固并提高学生的推理论证能力,本章的定理证明中,除了采用了规范的证明方法外,还有一些采用了探索式的证明方法。这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。

另外,这部分内容所涉及的图形很多是圆和直线形的组合,而且题目也相对以前比较复杂,教学时应注意多帮助学生复习有关直线形的知识,做到以新带旧、新旧结合,而且要加强解题思路的分析,帮助学生树立已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。如对于圆周角定理的证明,可以先从最简单的情况──角的一边经过圆心时入手,再推广到一般情形。通过这样的训练,可以提高学生逻辑思维能力和分析解决实际问题的能力。

(二)重视知识间的联系与综合

圆是学生学习的第一个曲线形。学生由学习直线形到曲线形,在认识上是一个飞跃。在教学时,应注意充分利用学生在小学学过的圆的知识,搞好衔接。同时要注意加强圆和直线形的联系,把圆和直线形的有关问题对照讲解。如在讲“不在同一直线上的三个点确定一个圆”时,可以和“两点确定一条直线”相对照,这样可以加深学生对知识的理解。教科书在编写时,也注意从学生学习的规律出发,加强新旧知识的联系,发挥知识的迁移作用。例如,在讲圆的定义时,先回顾小学学过的定义,在分析圆上的点的特征的基础上,用集合语言重新给出描述;在学习圆及正多边形的计算时,注意将新知识与直角三角形的知识、小学学过的圆的周长与面积的知识联系起来,使新知识在学生眼里不陌生,容易接受。

圆是一种特殊曲线,它有独特的对称性。它不仅是轴对称图形、中心对称图形,而且它的任何一条直径所在直线都是它的对称轴。绕圆心旋转任意一个角度都能与原来的图形重合(旋转对称性)。圆的对称性在日常生活和生产中有着广泛的应用,因此应当让学生很好地掌握。在研究圆的有关性质时,充分利用圆的

对称性也是本章编写的一个特点。如垂径定理,弧、弦、圆心角的关系,切线长定理等,都是让学生充分利用圆的这些对称性,通过观察、实验等探究出性质,再进行证明,体现图形的认识、图形的变换、图形的证明的有机结合。这些也是教学时应当重点注意的。

(三)注意把握好教学要求

本章教学内容与以往教材内容相比,删减幅度比较大(原义教大纲教材53课时,现在17课时),教学时要注意把握好教学要求。教学内容应当限制在课标和教材所出现的范围,按照课标要求删减的内容,教学中不要再拣回,以免影响学生对基础知识的学习。对于推理论证的要求,课程标准中在本章没有明确规定。教科书中是按照整套教科书对于推理证明的要求来处理的。在本章,要求学生对于一些圆的有关性质进行证明,并利用这些性质去证明一些相关的结论。但要注意,这里的证明也要控制难度,对于一般学生,控制在教科书“综合应用”的题目难度内,对于学有余力的学生,可以要求他们完成“拓广探索”栏目的习题。

反证法的思想在七年级上册教科书代数部分就有涉及,在后续的相关章节也有应用。但当时只是渗透反证法的思想,没有作为一种方法提出。在本章,结合“过同一直线上的三点不能作圆”,正式提出了反证法,并且在后续内容,如“圆的切线垂直于过切点的半径”的证明时也有应用。由于反证法是一种间接证法,学生接受起来有一定困难。因此,教科书主要是要求让学生理解反证法的思想,后续习题也没有安排相应的习题。这里也要注意把握好对反证法的要求,不要让学生作过多过难的关于反证法的习题。

另外,圆有许多重要性质,其中最主要的是圆的对称性(轴对称和旋转不变性),教科书在证明圆的许多重要性质时,都运用了它的对称性。但是,因为用对称的定义证明问题,对学生来说比较困难,所以在本章的教学中, 一方面要重视利用圆的对称性(教科书中在使用圆的对称性);另一方面又不应要求学生严格地利用对称性写出证明过程。教学中要把握好这个要求。

(四)重视信息技术的应用

在本章的教学中,有条件的学校还是要重视信息技术工具的使用。利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来。许多计算机软件还具有测量功能,这也有利于我们在图形运动变化的过程中去发现其中不变的位置关系和数量关系,有利于发现图形的性质。

例如,本章许多图形的性质都可以利用计算机软件设置一些探究活动,让图形动起来,在这种运动变化中发现图形的性质。如弧、弦、圆心角之间的关系。

有许多计算机软件具有测量功能,可以方便地测出角的大小和线段的长度,这也有利于在运动变化中观察它们的关系,发现图形的性质。如圆周角定理。另外还可以通过计算机软件让图形动起来,在动态变化过程中去发现点与圆、直线与圆、圆与圆的位置关系,还可以通过测量,去发现这种位置关系所对应的数量关系,如直线与圆的位置关系中直线到圆心的距离与圆的半径的关系,两圆位置关系中圆心距与圆半径的关系等。

第二篇:九年级数学圆教学设计5

教学设计

(一)明确目标

首先师生一起来复习上节课点的轨迹的概念及两层含义和常见的点的轨迹前三种.

复习提问:

1.什么叫做点的轨迹?它的两层意思是什么?请结合讲过的常见点的轨迹解释两层意思.

2.上节课我们讲了常见的点的轨迹有几种?请回答出其内容.

上节课我们学习了常用点的轨迹的三种,我们教科书中有五种常见的轨迹.本节课我们来进一步学习常见点的轨迹的后两种.教师板书“点的轨迹之二”.

(二)整体感知

首先引导学生学习点的轨迹的定义,解释由定义得到的两层意思,提问学生来解释上节课常见的三个轨迹的两层意思.

圆是图形——这个图形是轨迹.

它符合的两层含义:圆上每一个点都符合到圆心O的距离等于半径r的条件,反过来到定点O的距离等于r的每一个点都在圆上.所以圆是到定点的距离等于定长的点的轨迹.

接着教师引导学生解释线段垂直平分线,角的平分线的两层意思,然后正确地回答出这两个点的轨迹.

在复习圆、线段的垂直平分线、角的平分线的基础上可进一步了解其它的两个点的轨迹、由于第

四、第五个点的轨迹学生比较生,这样还要指导学生复习点到直线的距离,特别是在两条平行线内取一点到这两条直线的距离都相等,这一点的取法应在教师的指导下来完成.

(三)重点、难点的学习与目标完成过程

在学生学习常见的五种轨迹的后两种轨迹没有感性、直观的印象之前,教师首先帮助学生复习已有的知识:点的轨迹的定义、定义的两层意思、前三个常见的轨迹等,这种复习不是简单的重复,而是让学生结合所学的三个轨迹来解释定义中的两层意思.这样对后两个点的轨迹的教学起到了奠基的作用. 提问:已知直线l,在直线l外取一点P,使P到直线l的距离等于定长d,这一点怎么取,具有这个性质的点有几个?在教师的指导下学生动手来完成.由师生共同找到在已知直线l的两侧各取一点P、P′,到直线l的距离都等于d.教师再提出问题,现在分别过点P、P′作已知直线l的平行线l

1、l2,那么直线l

1、l2上的点到已知直线l的距离是否都等于已知线段d呢?学生的回答是肯定的,这时反过来再问,除直线l

1、l2外平面上还是否有点到已知直线l的距离等于d呢,学生一时并不一定能答上来,经过学生讨论研究,最终学生还是能正确回答的,这就是说到已知直线l的距离等于定长d的点只有在直线l

1、l2上.

这时教师引导学生归纳出第四个轨迹,教师把轨迹4板书在黑板上: 轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于d的两条直线.

现在我们来研究相反的问题,已知直线l1∥l2,在l

1、l2之间找一点P,使点P到l

1、l2的距离相等,这样一点怎样找?有前面问题的基础在教师的指导下都能找到点P,再过点P作l1的平行线l,这时提出问题:

1.直线l上的点到直线l

1、l2的距离是否都相等;

2.到平行线l1,l2的距离都相等的点是否都在直线l上?有前一个问题的铺垫和前四个基本轨迹的启发,学生很快地回答出第五个轨迹的两层意思,而且回答是非常肯定的.总结归纳出第五个轨迹:

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

接下来为了使学生能准确的把握轨迹

4、轨迹5的特征,教师在黑板上出示一组练习题:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.

对于这两个题教师要求学生自己画图探索,然后回答出点的轨迹是什么,学生对于这两个轨迹比较生疏回答有一定的困难,这时教师要从规律上和方法上指导学生怎么回答好一些,抓住几处重点词语的地方:如轨迹4中的“平行”、“到直线l的距离等于定长”、“两条”,或轨迹5中的“平行”、“到两条平行线的距离相等”、“一条”.这样学生回答的语言就不容易出现错误.

接下来做另一组练习题: 判断题:

1.到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.

( )

2.和点B的距离等于2cm的点的轨迹,是到点B的距离等于2cm的圆.

( )

3.到两条平行线的距离等于5cm的点的轨迹,是和这两条平行线的平行且距离等于5cm的一条直线.

( )

4.底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.

( )

这组练习题的目的,训练学生思维的准确性和语言表达的正确性. 这组习题的思考,回答都由学生自己完成,学生之间互相评议,找出语言的问题,加深对点的轨迹的进一步认识和规范化的语言表述.

(四)总结扩展

本节课主要讲了点的轨迹的后两个.从知识的结构上可以知道:

从方法上能准确地回答点的轨迹和能把所要回答的轨迹问题辨认出属于哪一个常用的基本轨迹.

从能力上学生通过旧知识的学习,学生自己能归纳出五个基本轨迹,使学生学习数学知识的能力又有了新的提高.

对于基本轨迹的应用还要逐步加深,特别是在今后学习立体几何、解析几何时要用到这些知识.所以常见五个基本轨迹要求学生必须掌握.

(五)布置作业 略 板书设计

第三篇:九年级数学上册《圆》教案新人教版

一. 教学内容: 圆综合复习

(一)

二. 重点、难点:

1. 重点:圆的有关性质和圆有关的位置关系,正多边形与圆、弧长、扇形面积。 2. 难点:综合运用以上知识解题。

三. 具体内容:

1. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

3. 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。 半圆(或直径)所对的圆周角是直角,

的圆周角所对的弦是直径。

。 4. 点和圆的位置关系,设⊙O半径为,点P到圆心的距离则有:点P在⊙O外;点P在⊙O上

;点P在⊙O内 5. 不在同一直线上的三个点确定一个圆。

6. 直线和圆的位置关系,设⊙O半径为,直线到圆心O的距离为则有:直线和⊙O相交

;直线和⊙O相切

;直线和⊙O相离 7. 切线的性质和判定:经过半径的外端并且垂直于这条半径的直线是圆的切线,圆的切线垂直于过切点的半径。

8. 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

9. 圆和圆的位置关系,如果两圆的半径分别为和两圆外离;两圆外切;两圆内含

(

)圆心距为

,则有:

;两圆内切

;两圆相交

 10. 弧长、扇形面积:在半径为R的圆中,

圆心角所对的弧长为,则

1lR2

【典型例题】

[例1] 如图正方形ABCD边长为4cm,以正方形一边BC为直径在正方形ABCD内作半圆,再过A点作半圆的切线,与半圆切于F点,与CD交于E点,求

的面积。

1

解:设,则

∵ CD、AE、AB均为⊙O切线

∴ ∴ 在中,

[例2] 已知⊙O1与⊙O2交于A、B两点,且点O2在⊙O1上,(1)如图1,AD是⊙O2直径,连结DB并延长交⊙O1于C,求证:CO2⊥AD;(2)如图2如果AD是⊙O2的一条弦,连结DB并延长交⊙O1于C,那么CO2所在直线是否与AD垂直?证明你的结论。

图1

图2 解:(1)连结AB

∵ AD是⊙O2直径

∴ ∴ ∴

(2)CO2与AD仍垂直,连结O2A,O2B,O2D,AC ∵

∵ ∴

2 ∵ ∴

∴ CA=CD 为等腰三角形

∴ CO2为角平分线

∴ CO2所在直线垂直于AD

[例3] 已知⊙O中,AB为直径,OC⊥弦BE于D,交⊙O于C,若⊙O半径为5,BE=8,求AD的长?

解:连结AE

∵ OC⊥BE于D

∴ BD=DE

∵ BE=8

∴ BD=DE=4 ∵ OB=5 OC⊥BE

∴ 在

中,

中位线

∴ OD=3

∵ OA=OB,BD=DE

∴ OD为∴ AE=2OD=6

∵ AB为⊙O直径

∴ ∴ 在 中,[例4] 蒙古包可以近似地看作由圆锥和圆柱组成,如图已知现要用毛毡搭建20个这样的蒙古包,至少需要用多少平方米毛毡?

,底面圆面积为,

解:∵ ∴ ∴ ∴

又 ∵

3 答:至少需要 平方米毛毡。

[例5] 如图,PA、PB切⊙O于A、B,AC为⊙O直径,(1)连接OP,求证:OP//BC;(2)若,则AC的长是多少?

证明:(1)连结AB,交OP于D

∵ PA、PB切⊙O于A、B ∴ ∴ 解:(2)∵ ,PA=PB

∴ PO⊥AB

∵ AC为⊙O直径

即BC⊥AB

∴ PO//BC

又 ∵ PA为⊙O的切线

[例6] 问题:要将一块直径为2m的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面,操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图);方案二:在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图)。 探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O

1、O2,圆锥底面的圆心为O3,试判断以O

1、O

2、O

3、O为顶点的四边形是什么样的特殊四边形,并加以证明。

图甲

图乙

解:(1)圆锥的半径为

(2)如图乙,连结OO

1、OO

2、O2O

3、O1O

3、O1O2,设⊙O1与⊙O2的半径为

⊙O3半径为

∵ ⊙O1与⊙O2外切于D

∴ OD⊥O1O2

设⊙O1与AB切于C,连结O1C ∴ O1C⊥AB

∴ 四边形O1COD为正方形

∴ OD=

∴ 圆柱底面半径为米

∵ ,

∴ 圆锥底面半径为米

(3)四边形为正方形

由(2)知,

同理

∴ 四边形OO1O2O3为菱形

∵ ,∴

∴ 四边形

为正方形

【模拟试题】

1. ⊙O的半径为5,O点到P点的距离为6,则点P(

)

A. 在⊙O内

B. 在⊙O外

C. 在⊙O上

D. 不能确定 2. 下列命题中正确的是(

)

A. 直线上一点到圆心的距离等于圆的半径,则此直线是圆的切线 B. 圆心到直线的距离不等于半径,则直线与圆相交

C. 直线和圆有唯一公共点,则直线与圆相切 D. 线段AB与圆无交点,则直线AB与圆相离 3. ⊙O的半径为,圆心O到直线的距离为

A.

B.

,若与⊙O只有一个公共点,则

D.

与的关系为(

)

C. 4. 如图1,PA切⊙O于A,OP⊥弦AB,若PA=4,⊙O半径为3,则AB的长等于(

)

A.

B.

C.

D. 不能求得

图1 5. 如图2,AB、AC分别切⊙O于B、C,AB=20,DE是⊙O的切线与AB、AC分别交于D、E两点,则的周长是(

)

A. 20

B. 40

C. 60

D. 80

图2 6. 两圆半径分别为5cm和4cm,公共弦长为6cm,则两圆的圆心距等于(

)cm。

A.

B.

C.

D.

7. 两个同心圆,已知小圆的切线被大圆所截得部分的长等于6,那么两圆所围成的圆环面积为(

)

A.

B.

C.

D.

8. 如图3,正方形ABCD的边长是2,分别以B,D为圆心,2为半径画弧,则图中阴影部分的面积为(

) A.

B.

C.

D.

6

图3 9. 如图4,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形的边长为(

)

A. 34cm

B. 32cm

C. 28cm

D. 30cm

图4 10. 在直线同侧有三个圆两两外切,且这三个圆都与相切,其中一圆的半径为4,另两圆半径相等,则这两个等圆的半径为(

)

A. 24

B. 20

C. 18

D. 16

【试题答案】

1. B

2. C

3. B

4. A

5. B

6. C

7. A

8. B

9. D

10. D

第四篇:2017九年级数学圆教学设计3.doc

教学过程 (一)明确目标

首先师生一起复习已学过的线段垂直平分线或角的平分线的性质,提醒学生线段垂直平分线上的点,到线段的两个端点有什么性质.学生很快得出“相等”,如果再换一点看有什么特征.从而帮助学生归纳出“线段垂直平分线上的点到线段两个端点的距离相等”.当学生都承认这个事实后教师再提出:如果线段AB外有一点D,且满足DA=DB.那么这个点D会在什么位置上呢?让学生充分研究,在教师指导下得出,如果DA=DB,那么点D必在线段AB的垂直平分线上.有了以上感性认识教师提出:本节课我们就来研究具有这种性质的点的有关问题,——轨迹.

(二)整体感知

首先引导学生复习用集合的观点定义圆的方法,“圆是到定点的距离等于定长的点的集合.”这就使学生理解点动成线的这一事实.再复习从定义可看出圆上的点具有两个性质:

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r); (2)到定点距离等于定长的点都在圆上.

这时再引导学生把“到定点的距离等于定长”这一事实看成是条件,那么所得符合这个条件的点都应该在圆上.这时就可给轨迹这个概念下定义了.有了这个定义学生就很容易得出第一个点的轨迹:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.”

有了这些知识,在复习线段的垂直平分线、角的平分线的概念的基础上,很快就能得出第二个、第三个点的轨迹来.

(三)重点、难点的学习与目标完成过程

在学生对三种点的轨迹没有感性、直观的印象之前就抽象出学生难以理解的点的轨迹概念,学生就会感到糊涂.为此我们首先帮助学生学习已有的知识:圆的定义、线段的垂直平分线的性质、角的平分线的性质.这种复习不应是简单的重复,而是应该接轨迹概念的要求进行.

提问:从集合的观点,圆是怎样定义的?绝大多数学生都能说出“圆是到定点的距离等于定长的点的集合”.这就是说圆是由一些点组成的,那么这些点都满足什么条件呢?学生经过讨论后能说出:“到定点的距离等于定长”就可以了.前面我们还学习了圆的内部的点、圆上的点、圆外部的点,从这个观点看,满足到定点距离等于定长的点是否都在圆上,学生的回答是肯定的.这就完成了轨迹的两条性质,把它写在黑板的最左边.

已知线段AB,求作AB的垂直平分线ML,学生都会作,作完后再问:如果在直线ML上任取一点D,这一点到线段AB两个端点的距离如何?学生很快就能证明出DA=DB.由于D点在线段AB的垂直平分线上任取的,这个任意性说明什么问题.要求学生用数学语言把它概括出来.教师点拨学生说出线段垂直平分线上的点到线段两个端点的距离相等.再问学生到线段AB两个端点的距离相等的点应该在什么位置上?由前一个例子,学生能回答出“在线段垂直平分线上”.

已知∠AOB,求作角的平分线OM,问学生:在角的平分线OM上任取一点D,过D点分别作角的两边OA,OB的垂直线,垂足分别为E、F,请同学们观察,这两条垂线段DE,DF有什么特征?学生通过思考,能回答出DF=DE.再问学生如果在∠AOB内任取一点D′,过D′分别作OA,OB的垂线,垂足分别为E′,F′,且D′E′=D′F′,那么点D′应在什么位置上呢?让学生讨论回答.通过以上三个问题的复习学生的回答是肯定的.

有了以上的充分准备现在我们来研究轨迹的问题.

首先用一根细绳,一端固定在黑板上,另一端拴上粉笔,教师在黑板上慢慢的让粉笔动拉紧绳子,让学生仔细观察,这样给学生以点动成线的感觉,在动的过程中教师指出拉紧绳子的是条件——轨,笔画出来的线就是印迹——迹,这就是数学上的轨迹问题.

符合某一条件——拉紧绳子;所有点组成的图形——画出的圆,叫做符合这个条件的点的轨迹(这里指画出的图而言).由于前面的准备讲轨迹所含的两层意思:

1.图形上任何点都符合条件;

2.符合条件的点都在圆形上时就显得水到渠成了.

下面就是按照轨迹的定义及我们复习的圆、线段的垂直平分线、角的平分线让学生自己归纳、整理出三种常见的点的轨迹,教师只能指导、点拨,决不能代替.因为这正是锻炼学生归纳、整理、概括、迁移等能力的好机会.

学生回答轨迹,教师板书在黑板上:

轨迹1:到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.

轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线. 轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线. 为了使学生能进一步深入地掌握常见的前三种轨迹,巩固练习下面几个小题:

练习:画图说明满足下列条件的点的轨迹: (1)到定点A的距离等于5cm的点的轨迹; (2)到∠AOB的两边距离相等的点的轨迹; (3)经过已知点A、B的圆O,圆心O的轨迹.

让学生在下面画图,回答满足这个条件的轨迹是什么?让学生归纳出每一个题的点的轨迹属于哪一个基本轨迹.

(四)总结、扩展

本节课学生学习了轨迹的概念,特别是通过对三个几何知识的学习,学生自己归纳出三个基本轨迹,使学生自己学习数学知识的能力又提高了一步.

本节课主要学的知识点:

(五)布置作业 略 板书设计

第五篇:九年级数学上册第24章圆运用诊断练习

第二十四章

测试1 圆

学习要求

理解圆的有关概念,掌握圆和弧的表示方法,掌握同圆的半径相等这一性质.

课堂学习检测

一、基础知识填空 1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.

2.战国时期的《墨经》中对圆的定义是________________. 3.由圆的定义可知:

(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.

(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.

4.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.

5.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.

6.圆的________的两个端点把圆分成两条弧,每________都叫做半圆. 7.在一个圆中_____________叫做优弧;_____________叫做劣弧. 8.半径相等的两个圆叫做____________.

二、填空题

9.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆. (2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.

综合、运用、诊断

10.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点. (1)求证:∠AOC=∠BOD;

(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.

1 11.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.

拓广、探究、思考

12.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.

测试2 垂直于弦的直径

学习要求

1.理解圆是轴对称图形.

2.掌握垂直于弦的直径的性质定理及其推论.

课堂学习检测

一、基础知识填空

1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.

2.垂直于弦的直径的性质定理是____________________________________________. 3.平分________的直径________于弦,并且平分________________________________.

二、填空题

4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.

5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.

5题图

6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.

6题图

7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.

7题图

8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.

8题图

9.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.

9题图

10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.

10题图

综合、运用、诊断

11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.

12.已知:如图,试用尺规将它四等分.

13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).

14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.

15.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.

求这两条平行弦AB,CD之间的距离.

拓广、探究、思考

16.已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是中点.

(1)在CD上求作一点P,使得AP+PB最短; (2)若CD=4cm,求AP+PB的最小值.

17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥? 5

测试3 弧、弦、圆心角

学习要求

1.理解圆心角的概念.

2.掌握在同圆或等圆中,弧、弦、圆心角及弦心距之间的关系.

课堂学习检测

一、基础知识填空

1.______________的______________叫做圆心角. 2.如图,若长为⊙O周长的

m,则∠AOB=____________. n

3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.

4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.

二、解答题

5.已知:如图,A、B、C、D在⊙O上,AB=CD. 求证:∠AOC=∠DOB.

综合、运用、诊断

6.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.

7.已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为BAD=20°,求∠ACO的度数.

的中点,若∠

拓广、探究、思考

8.⊙O中,M为A.AB>2AM C.AB<2AM 的中点,则下列结论正确的是(

).

B.AB=2AM

D.AB与2AM的大小不能确定

之间的关系,9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想并证明你的猜想.

10.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E. (1)求证:AE=BF;

上滑动(点C与A,(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.

测试4 圆周角

学习要求

1.理解圆周角的概念.

2.掌握圆周角定理及其推论.

3.理解圆内接四边形的性质,探究四点不共圆的性质.

课堂学习检测

一、基础知识填空

1._________在圆上,并且角的两边都_________的角叫做圆周角.

2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________. 3.在同圆或等圆中,____________所对的圆周角____________. 4._________所对的圆周角是直角.90°的圆周角______是直径.

5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.

5题图

6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.

6题图

7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BMC=______.

上一点,则∠BPC=______;若M是 8

7题图

二、选择题

8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于(

). A.80° B.100° C.130° D.140°

9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于(

). A.13° B.79° C.38.5° D.101°

10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于(

).

10题图

A.64° B.48° C.32° D.76°

11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于(

).

A.37° B.74° C.54° D.64° 12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于(

).

A.69° B.42° C.48° D.38°

13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于(

).

A.70°

B.90°

C.110°

D.120°

综合、运用、诊断

14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.

15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.

16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.

求证:FE=EH.

17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.

拓广、探究、思考

10 18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.

求证:∠MAO=∠MAD.

19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M. 求证:∠AMD=∠FMC.

测试5 点和圆的位置关系

学习要求

1.能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系. 2.能过不在同一直线上的三点作圆,理解三角形的外心概念. 3.初步了解反证法,学习如何用反证法进行证明.

课堂学习检测

一、基础知识填空

1.平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O______;d=r点P在⊙O______;d

2.平面内,经过已知点A,且半径为R的圆的圆心P点在__________________________ _______________. 3.平面内,经过已知两点A,B的圆的圆心P点在______________________________________ ____________________.

4.______________________________________________确定一个圆.

5.在⊙O上任取三点A,B,C,分别连结AB,BC,CA,则△ABC叫做⊙O的______;⊙O叫做△ABC的______;O点叫做△ABC的______,它是△ABC___________的交点. 6.锐角三角形的外心在三角形的___________部,钝角三角形的外心在三角形的__________ ___部,直角三角形的外心在________________.

7.若正△ABC外接圆的半径为R,则△ABC的面积为___________. 8.若正△ABC的边长为a,则它的外接圆的面积为___________.

9.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________. 10.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.

二、解答题

11.已知:如图,△ABC.

作法:求件△ABC的外接圆O.

11

综合、运用、诊断

一、选择题

12.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出(

). A.5个圆 B.8个圆 C.10个圆 D.12个圆 13.下列说法正确的是(

).

A.三点确定一个圆

B.三角形的外心是三角形的中心

C.三角形的外心是它的三个角的角平分线的交点 D.等腰三角形的外心在顶角的角平分线上 14.下列说法不正确的是(

).

A.任何一个三角形都有外接圆

B.等边三角形的外心是这个三角形的中心 C.直角三角形的外心是其斜边的中点

D.一个三角形的外心不可能在三角形的外部 15.正三角形的外接圆的半径和高的比为(

).

A.1∶2

B.2∶3

C.3∶4

D.1∶3

16.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实根,则点P(

). A.在⊙O的内部

B.在⊙O的外部 C.在⊙O上

D.在⊙O上或⊙O的内部

二、解答题

17.在平面直角坐标系中,作以原点O为圆心,半径为4的⊙O,试确定点A(-2,-3),B(4,-2),C(23,2)与⊙O的位置关系.

18.在直线y3x1上是否存在一点P,使得以P点为圆心的圆经过已知两点A(-3,2),2B(1,2).若存在,求出P点的坐标,并作图.

测试6 自我检测(一)

一、选择题

1.如图,△ABC内接于⊙O,若AC=BC,弦CD平分∠ACB,则下列结论中,正确的个数是(

).

1题图

①CD是⊙O的直径

②CD平分弦AB

③CD⊥AB ④=

=

A.2个 B.3个 C.4个 D.5个

2.如图,CD是⊙O的直径,AB⊥CD于E,若AB=10cm,CE∶ED=1∶5,则⊙O的半径是(

).

2题图

A.52cm

B.43cm

C.35cm

D.26cm

3.如图,AB是⊙O的直径,AB=10cm,若弦CD=8cm,则点A、B到直线CD的距离之和

13 为(

).

3题图

A.12cm B.8cm C.6cm D.4cm 4.△ABC内接于⊙O,OD⊥BC于D,若∠A=50°,则∠BOD等于(

). A.30° B.25° C.50° D.100° 5.有四个命题,其中正确的命题是(

). ①经过三点一定可以作一个圆

②任意一个三角形有且只有一个外接圆

③三角形的外心到三角形的三个顶点的距离相等 ④在圆中,平分弦的直径一定垂直于这条弦 A.①、②、③、④

B.①、②、③ C.②、③、④

D.②、③

6.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=2∶3∶6,则∠D等于(

). A.67.5° B.135° C.112.5° D.45°

二、填空题

7.如图,AC是⊙O的直径,∠1=46°,∠2=28°,则∠BCD=______.

7题图

8.如图,AB是⊙O的直径,若∠C=58°,则∠D=______.

8题图

9.如图,AB是⊙O的直径,弦CD平分∠ACB,若BD=10cm,则AB=______,∠BCD=______.

9题图

10.若△ABC内接于⊙O,OC=6cm,AC63cm,则∠B等于______.

三、解答题

11.已知:如图,⊙O中,AB=AC,OD⊥AB于D,OE⊥AC于E.

求证:∠ODE=∠OED.

12.已知:如图,AB是⊙O的直径,OD⊥BC于D,AC=8cm,求OD的长.

13.已知:如图,点D的坐标为(0,6),过原点O,D点的圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点的坐标.

14.已知:如图,试用尺规作图确定这个圆的圆心.

15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点.

求∠CAD的度数及弦AC,AD和

围成的图形(图中阴影部分)的面积S.

测试7 直线和圆的位置关系(一) 学习要求

1.理解直线与圆的相交、相切、相离三种位置关系,掌握它们的判定方法. 2.掌握切线的性质和切线的判定,能正确作圆的切线.

课堂学习检测

一、基础知识填空 1.直线与圆在同一平面上做相对运动时,其位置关系有______种,它们分别是____________ __________________.

2.直线和圆_________时,叫做直线和圆相交,这条直线叫做____________. 直线和圆_________时,叫做直线和圆相切,这条直线叫做____________. 这个公共点叫做_________.

直线和圆____________时,叫做直线和圆相离. 3.设⊙O的半径为r,圆心O到直线l的距离为d, _________直线l和圆O相离; _________直线l和圆O相切; _________直线l和圆O相交.

4.圆的切线的性质定理是__________________________________________. 5.圆的切线的判定定理是__________________________________________.

6.已知直线l及其上一点A,则与直线l相切于A点的圆的圆心P在__________________ __________________________________________________________________.

二、解答题

7.已知:Rt△ABC中,∠C=90°,BC=5cm,AC=12cm,以C点为圆心,作半径为R的圆,求:

(1)当R为何值时,⊙C和直线AB相离?(2)当R为何值时,⊙C和直线AB相切?

16 (3)当R为何值时,⊙C和直线AB相交?

8.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.

求证:⊙P与OB相切.

9.已知:如图,△ABC内接于⊙O,过A点作直线DE,当∠BAE=∠C时,试确定直线DE与⊙O的位置关系,并证明你的结论.

综合、运用、诊断

10.已知:如图,割线ABC与⊙O相交于B,C两点,E是若∠EDA=∠AMD.

求证:AD是⊙O的切线.

的中点,D是⊙O上一点,

11.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC

17 的中点.

求证:直线EF是半圆O的切线.

12.已知:如图,△ABC中,AD⊥BC于D点,AD1BC.以△ABC的中位线为直径作半2圆O,试确定BC与半圆O的位置关系,并证明你的结论.

13.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E点,直线EF⊥AC于F.

求证:EF与⊙O相切.

14.已知:如图,以△ABC的一边BC为直径作半圆,交AB于E,过E点作半圆O的切线恰与AC垂直,试确定边BC与AC的大小关系,并证明你的结论.

15.已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与

18 ⊙O相切?说明你的理由.

拓广、探究、思考

16.已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.

求⊙O的半径长.

测试8 直线和圆的位置关系(二) 学习要求

1.掌握圆的切线的性质及判定定理.

2.理解切线长的概念,掌握由圆外一点引圆的切线的性质. 3.理解三角形的内切圆及内心的概念,会作三角形的内切圆.

课堂学习检测

一、基础知识填空

1.经过圆外一点作圆的切线,______________________________叫做这点到圆的切线长. 2.从圆外一点可以引圆的______条切线,它们的____________相等.这一点和____________平分____________.

3.三角形的三个内角的平分线交于一点,这个点到__________________相等.

4.__________________的圆叫做三角形的内切圆,内切圆的圆心是____________,叫做三角形的____________.

5.设等边三角形的内切圆半径为r,外接圆半径为R,边长为a,则r∶R∶a=______. 6.设O为△ABC的内心,若∠A=52°,则∠BOC=____________.

二、解答题

7.已知:如图,从两个同心圆O的大圆上一点A,作大圆的弦AB切小圆于C点,大圆的弦AD切小圆于E点. 求证:(1)AB=AD;

(2)DE=BC.

19

8.已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.

9.已知:如图,△ABC.求作:△ABC的内切圆⊙O.

10.已知:如图,PA,PB,DC分别切⊙O于A,B,E点.

(1)若∠P=40°,求∠COD;

(2)若PA=10cm,求△PCD的周长.

综合、运用、诊断

11.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.

(1)若AC=12cm,BC=9cm,求⊙O的半径r; (2)若AC=b,BC=a,AB=c,求⊙O的半径r.

12.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.

13.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.

测试9 自我检测(二)

一、选择题

1.已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于(

).

1题图

A.65° B.50° C.45° D.40° 2.如图,AB是⊙O的直径,直线EC切⊙O于B点,若∠DBC=,则(

).

21

A.∠A=90°- C.∠ABD=

2题图

B.∠A=

D.∠ABD90o

123.如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D点,则DF的长为(

).

3题图

A.2 B.3 C.4 4.下面图形中,一定有内切圆的是(

). A.矩形 B.等腰梯形 C.菱形

5.等边三角形的内切圆半径、外接圆半径和高的比是(

). A.1:2:3

B.1:2:3

C.1:3:2

D.6

D.平行四边形

D.1∶2∶3

二、解答题

6.已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm. 求⊙O的面积.

22

7.已知:如图,AB是⊙O的直径,F,C是⊙O上两点,且=延长线于E点,交AB的延长线于D点.

(1)试判断DE与⊙O的位置关系,并证明你的结论;

(2)试判断∠BCD与∠BAC的大小关系,并证明你的结论.

,过C点作DE⊥AF的

8.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.

9.已知:如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E. (1)求证:AB=AC;

(2)求证:DE为⊙O的切线;

(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

23

10.已知:如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.

(1)判断△DCE的形状并说明理由; (2)设⊙O的半径为1,且OF31,求证△DCE≌△OCB. 2

11.已知:如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.

(1)求证:AT平分∠BAC;

(2)若AD2,TC3,求⊙O的半径.

测试10 圆和圆的位置关系

学习要求

1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d与两个圆的半径r1和r2之间的关系,讨论两圆的位置关系.

2.对两圆相交或相切时的性质有所了解.

课堂学习检测

一、基础知识填空

1.没有______的两个圆叫做这两个圆相离.当两个圆相离时,如果其中一个圆在另一个圆的______,叫做这两个圆外离;如果其中有一个圆在另一个圆的______,叫做这两个圆内含.

2.____________的两个圆叫做这两个圆相切.这个公共点叫做______.当两个圆相切时,如果其中的一个圆(除切点外)在另一个圆的______,叫做这两个圆外切;如果其中有一 24 个圆(除切点外)在另一个圆的______,叫做这两个圆内切.

3.______的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的______以这两个公共点为端点的线段叫做两圆的______.

4.设d是⊙O1与⊙O2的圆心距,r1,r2(r1>r2)分别是⊙O1和⊙O2的半径,则 ⊙O1与⊙O2外离d________________________; ⊙O1与⊙O2外切d________________________; ⊙O1与⊙O2相交d________________________; ⊙O1与⊙O2内切d________________________; ⊙O1与⊙O2内含d________________________; ⊙O1与⊙O2为同心圆d____________________.

二、选择题

5.若两个圆相切于A点,它们的半径分别为10cm、4cm,则这两个圆的圆心距为(

). A.14cm B.6cm C.14cm或6cm D.8cm 6.若相交两圆的半径分别是71和71,则这两个圆的圆心距可取的整数值的个数是(

). A.1

B.2

C.3

综合、运用、诊断

D.4

一、填空题

7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A由图示位置需向右平移______个单位.

7题图

8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为______cm.

二.解答题

9.已知:如图,⊙O1与⊙O2相交于A,B两点.求证:直线O1O2垂直平分AB.

9题图

10.已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O

1、⊙O2分别切于B,C点,若⊙O1

25 的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.

11.已知:如图,两圆相交于A,B两点,过A点的割线分别交两圆于D,F点,过B点的割线分别交两圆于H,E点. 求证:HD∥EF.

12.已知:相交两圆的公共弦的长为6cm,两圆的半径分别为32cm,5cm,求这两个圆的圆心距.

拓广、探究、思考

13.如图,工地放置的三根外径是1m的水泥管两两外切,求其最高点到地平面的距离.

14.已知:如图,⊙O1与⊙O2相交于A,B两点,圆心O1在⊙O2上,过B点作两圆的割线CD,射线DO1交AC于E点. 求证:DE⊥AC.

26

15.已知:如图,⊙O1与⊙O2相交于A,B两点,过A点的割线分别交两圆于C,D,弦CE∥DB,连结EB,试判断EB与⊙O2的位置关系,并证明你的结论.

16.如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).

(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式; (2)问点A出发多少秒时两圆相切?

测试11 正多边形和圆

学习要求

1.能通过把一个圆n(n≥3)等分,得到圆的内接正n边形及外切正n边形.

2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.

课堂学习检测

一、基础知识填空

1.各条边______,并且各个______也都相等的多边形叫做正多边形.

2.把一个圆分成n(n≥3)等份,依次连结各等分点所得的多边形是这个圆的______.

3.一个正多边形的______________叫做这个正多边形的中心;______________叫做正多边形的半径;正多边形每一边所对的______叫做正多边形的中心角;中心到正多边形的一边的__________叫做正多边形的边心距.

4.正n边形的每一个内角等于__________,它的中心角等于__________,它的每一个外角

27 等于______________.

5.设正n边形的半径为R,边长为an,边心距为rn,则它们之间的数量关系是______.这个正n边形的面积Sn=________.

6.正八边形的一个内角等于_______,它的中心角等于_______. 7.正六边形的边长a,半径R,边心距r的比a∶R∶r=_______. 8.同一圆的内接正方形和正六边形的周长比为_______.

二、解答题

9.在下图中,试分别按要求画出圆O的内接正多边形.

(1)正三角形

(2)正方形

(3)正五边形

(4)正六边形

(5)正八边形

(6)正十二边形

综合、运用、诊断

一、选择题

10.等边三角形的外接圆面积是内切圆面积的(

). A.3倍 B.5倍 C.4倍 D.2倍

11.已知正方形的周长为x,它的外接圆半径为y,则y与x的函数关系式是(

).

A.y2x 4B.y2x 8C.y1x 2D.y2x 2

12.有一个长为12cm的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是(

). A.10cm B.12cm C.14cm D.16cm

二、解答题

13.已知:如图,正八边形A1A2A3A4A5A6A7A8内接于半径为R的⊙O.

(1)求A1A3的长;(2)求四边形A1A2A3O的面积;(3)求此正八边形的面积S.

28

14.已知:如图,⊙O的半径为R,正方形ABCD,A′B′C′D分别是⊙O的内接正方形和外切正方形.求二者的边长比AB∶A′B′和面积比S内∶S外.

拓广、探究、思考

15.已知:如图,⊙O的半径为R,求⊙O的内接正六边形、⊙O的外切正六边形的边长比AB∶A′B′和面积比S内∶S外.

测试12 弧长和扇形面积

学习要求

掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.

课堂学习检测

一、基础知识填空

1.在半径为R的圆中,n°的圆心角所对的弧长l=_______.

2.____________和______所围成的图形叫做扇形.在半径为R的圆中,圆心角为n°的扇形面积S扇形=__________;若l为扇形的弧长,则S扇形=__________. 3.如图,在半径为R的⊙O中,弦AB与所围成的图形叫做弓形. 当为劣弧时,S弓形=S扇形-______; 当为优弧时,S弓形=______+S△OAB.

29

3题图

4.半径为8cm的圆中,72°的圆心角所对的弧长为______;弧长为8cm的圆心角约为______(精确到1′). 5.半径为5cm的圆中,若扇形面积为

25π2cm,则它的圆心角为______.若扇形面积为315cm2,则它的圆心角为______.

6.若半径为6cm的圆中,扇形面积为9cm2,则它的弧长为______.

二、选择题

7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为(

).

7题图

25π 425C.π

16A.

25π 825D.π

32B.

8.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为(

).

8题图

A.100πcm 2 B.

400πcm2 3 30 C.800πcm 2 D.

800πcm2 39.如图,△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则圆中阴影部分的面积是(

).

π 94πC.8

9A.4

8π 98πD.8

9B.4

综合、运用、诊断

110.已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,a长为半径作

2,,,求阴影部分的面积.

11.已知:如图,Rt△ABC中,∠C=90°,∠B=30°,BC43,以A点为圆心,AC长为半径作,求∠B与

围成的阴影部分的面积.

31

拓广、探究、思考

12.已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较

的长.

13.已知:如图,扇形OAB和扇形OA′B′的圆心角相同,设AA′=BB′=d.=l2.

求证:图中阴影部分的面积S1(l1l2)d. 2=l1,

测试13 圆锥的侧面积和全面积

学习要求

掌握圆锥的侧面积和全面积的计算公式.

课堂学习检测

一、基础知识填空

1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.

2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为______,扇形的弧长为______, 32 因此圆锥的侧面积为______,圆锥的全面积为______.

3.Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,以直线BC为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.

4.若把一个半径为12cm,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.

二、选择题

5.若圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为(

). A.2cm2 B.3cm2 C.6cm2 D.12cm2

6.若圆锥的底面积为16cm2,母线长为12cm,则它的侧面展开图的圆心角为(

). A.240° B.120° C.180° D.90°

7.底面直径为6cm的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为(

). A.5cm B.3cm C.8cm D.4cm 8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为(

). A.120° B.1 80° C.240°

D. 300°

综合、运用、诊断

一、选择题

9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是(

).

A.R=2r C.R=3r

B.R3r D.R=4r

10.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为(

).

A.1 2 B.

2 2 33 C.

2D.22

二、解答题

11.如图,矩形ABCD中,AB=18cm,AD=12cm,以AB上一点O为圆心,OB长为半径画恰与DC边相切,交AD于F点,连结OF.若将这个扇形OBF围成一个圆锥,求这个圆锥的底面积S.

拓广、探究、思考

12.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.

求在圆锥的侧面上从B点到P点的最短路线的长.

34

答案与提示

第二十四章

测试1 1.平面,旋转一周,图形,圆心,半径,⊙O,圆O. 2.圆,一中同长也.

3.(1)半径长,同一个圆上,定点,定长,点. (2)圆心的位置,半径的长短,圆心,半径长. 4.圆上的任意两点,线段,圆心,弦,最长. 5.任意两点间,弧,圆弧AB,弧AB. 6.任意一条直径,一条弧.

7.大于半圆的弧,小于半圆的弧. 8.等圆.

9.(1)OA,OB,OC;AB,AC,BC,AC;

;

(2)40°,50°,90°.

10.(1)提示:在△OAB中,∵OA=OB,∴∠A=∠B.同理可证∠OCD=∠ODC.

又 ∵ ∠AOC=∠OCD-∠A,∠BOD=∠ODC-∠B,∴ ∠AOC=∠BOD. (2)提示:AC=BD.可作OE⊥CD于E,进行证明. 11.提示:连结OD.不难得出∠C=36°,∠AOC=54°. 12.提示:可分别作线段AB、BC的垂直平分线.

测试2 1.轴,经过圆心的任何一条直线,中心,该圆的圆心. 2.垂直于弦的直径平分弦,并且平分弦所对的两条弧. 3.弦,不是直径,垂直于,弦所对的两条弧. 4.6.

5.8; 6.63,120.7.

o21a,a

8.2. 229.13.

10.13.

11.42. 12.提示:先将二等分(设分点为C),再分别二等分

.

13.提示:题目中的“问径几何”是求圆材的直径.答:材径二尺六寸.

14.75°或15°. 15.22cm或8cm.

16.(1)作法:①作弦BB⊥CD.

②连结AB,交CD于P点,连结PB.则P点为所求,即使AP+PB最短.

(2)23cm. 17.可以顺利通过.

测试3 1.顶点在圆心,角.2.360m 3.它们所对应的其余各组量也分别相等 n4.相等,这两条弦也相等.

5.提示:先证

35

=

. 6.EF=GH.提示:分别作PM⊥EF于M,PN⊥GH于N. 7.55°.

8.C.

9.=

3.提示:设∠COD=α,则∠OPD=2α,∠AOD=3α=3∠BOC. 10.(1)作OH⊥CD于H,利用梯形中位线.

(2)四边形CDEF的面积是定值,S11 (CFDE)CD2CHCD69=54.

22测试4 1.顶点,与圆相交.

2.该弧所对的,一半.

3.同弧或等弧,相等. 4.半圆(或直径),所对的弦.

5.72°,36°,72°,108°. 6.90°,30°,60°,120°.

7.60°,120°.

8.C.

9.B.

10.A.

11.B.

12.A.

13.C. 14.提示:作⊙O的直径BA,连结AC.不难得出BA=83cm. 15.43cm.

16.提示:连结AH,可证得∠H=∠C=∠AFH. 17.提示:连结CE.不难得出AC52cm.

18.提示:延长AO交⊙O于N,连结BN,证∠BAN=∠DAC. 19.提示:连结MB,证∠DMB=∠CMB.

测试5 1.外,上,内.

2.以A点为圆心,半径为R的圆A上.

3.连结A,B两点的线段垂直平分线上.

4.不在同一直线上的三个点. 5.内接三角形,外接圆,外心,三边的垂直平分线. 6.内,外,它的斜边中点处.

7.

332πR.

8.a2.

9.26cm. 4310.20πcm.

11.略.

12.C.

13.D.

14.D.

15.B.

16.D. 17.A点在⊙O内,B点在⊙O外,C点在⊙O上. 18.(1,),作图略. 测试6 1.D.

2.C.

3.C.

4.C.

5.D.

6.C.

7.72°.

8.32°.

9.102cm,45°

10.60°或120°.

11.提示:先证OD=OE. 12.4cm.

13.A(23,0),提示:连结AD.

14.略. 15.∠CAD=30°,S521π(AO)26πcm2.

提示:连结OC、CD. 6测试7 1.三,相离、相切、相交.

2.有两个公共点,圆的割线;有一个公共点,圆的切线,切点;没有公共点. 3.d>r;d=r;d

5.经过半径的外端并且垂直于这条半径的直线是圆的切线.

36 6.过A点且与直线l垂直的直线上(A点除外). 7.(1)当0R606060cm时;(2)Rcm;(3)当Rcm时. 1313138.提示:作PF⊥OB于F点.证明PF=PE.

9.直线DE与⊙O相切.提示:连结OA,延长AO交⊙O于F,连结CF.

10.提示:连结OE、OD.设OE交BC于F,则有OE⊥BC.可利用∠FEM+∠FME=

90°.证∠ODA=90°. 11.提示:连结OF,FC.

12.BC与半圆O相切.提示:作OH⊥BC于H.证明OH1EF. 213.提示:连结OE,先证OE∥AC.

14.BC=AC.提示:连结OE,证∠B=∠A.

15.直线PB与⊙O相切.提示:连结OA,证ΔPAO≌ΔPBO. 16.8cm.提示:连结OA.

测试8 1.这点和切点之间的线段的长.

2.两,切线长,圆心的连线,两条切线的夹角. 3.这个三角形的三边的距离.

4.与三角形各边都相切,三角形三条角平分线的交点,内心. 5.1∶2∶23.

6.116°.

7.提示:连线OC,OE. 8.略.

9.略.

10.(1)70°;(2)20cm. 11.(1)r=3cm; (2)r12.Sabcababcab(或r,因为). abc2abc21r(abc). 21o13.提示:由A90BOC,可得∠A=30°,从而BC=10cm,AC103cm.

2测试9 1.B.

2.B.

3.A.

4.C.

5.D.

6.15πcm2.

7.(1)相切;(2)∠BCD=∠BAC.

8.70°. 9.(1)略;

(2)连结OD,证OD∥AC;

(3)DE53. 210.(1)△DCE是等腰三角形;

(2)提示:可得CEBC3. 11.(1)略;

(2)AO=2.

测试10 1.公共点,外部,内部.

2.只有一个公共点,切点,外部,内部. 3.有两个公共点,交点,公共弦.

4.d>r1+r2;

d=r1+r2;

r1-r2

d=r1-r2; 0≤d

d=0.

5.C.

6.C.

7.2或4

8.4.(d在2

37 10.26cm.提示:分别连结O1B,O1O2,O2C. 11.提示:连结AB.

12.7cm或1cm.

13.(13)m. 214.提示:作⊙O1的直径AC1,连结AB.

15.相切.提示:作⊙O2的直径BF,分别连结AB,AF. 16.(1)当0≤t≤5.5时,d=11-2t;

当t>5.5时,d=2t-11. 11; 3③第二次内切,t=11;④第二次外切,t=13.

测试11 1.相等,角.

2.内接正n边形.

3.外接圆的圆心,外接圆的半径,圆心角,距离. (2)①第一次外切,t=3;②第一次内切,t4.(n2)180360360,n,n n225.Rrn1213an,nrnan

6.135°,45°.

7.1:1:2(或2:2:3). 428.22:3.

9.略.

10.C.

11.B. 12.B.

13.(1)A1A32R;

(2)

22R

(3)22R2. 214.AB∶A′B′=1∶2,S内∶S外=1∶2. 15.AB∶A′B′=3∶2,S内∶S外=3∶4.

测试12

nπR21nπR,lR. 1.;

2.由组成圆心角的两条半径,圆心角所对的弧,

36021803.S△OAB,S扇形.

4.16π,57o19.

5.120°,216°.

6.3πcm. 53π28)a.

11.83π. 4837.A.

8.D.

9.B.

10.(12.的长等于的长.提示:连结O2D.

13.提示:设OA=R,∠AOB=n°,由l1nπ(Rd)nπR,l2,可得R(l1-l2)=l2d.而

1801801111111Sl1(Rd)l2RR(l1l2)l1dl2dl1d(l1l2)d.

2222222测试13 38 1.直角边,圆锥,顶点,底面圆周上任意一点,高.

2.扇形,l,2πr,πrl,πrl+πr2. 3.8πcm,20πcm2,288°.

4.8πcm,4cm,82cm,48πcm2. 5.C.

6.B.

7.D.

8.B.

9.D.

10.B.

11.16πcm2.

12.35cm.

提示:先求得圆锥的侧面展开图的圆心角等于180°,所以在侧面展开图上,PAB90o,PBPA2AB2326235.

39

上一篇:掘进队安全生产月总结下一篇:经济发展环境分析报告