放缩证明数列不等式

2024-05-01

放缩证明数列不等式(共6篇)

篇1:放缩证明数列不等式

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列

满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列

.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。

即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且

. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.

【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在

(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.

(),使

成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与

矛盾;,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析

当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)

.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,即错误!未找到引用源。,

篇2:放缩证明数列不等式

主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n

1144112()

22n4n1(2n1)(2n1)2n12n1n24

2. 2)

 





 4.2n2n2n1115.n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1)n11 n(n1)2n1n(n1)2n1n2n(n1)2n1

x2xn*c(nN)例1.设函数y的最小值为,最大值为,且abnnn2x1

(1)求cn;(2)证明:

例2.证明:161

例3.已知正项数列an的前n项的和为sn,且an

2(1)求证:数列sn是等差数列; 11117 444c14c2c3cn417 12sn,nN*; an

(2)解关于数列n的不等式:an1(sn1sn)4n8

(3)记bn2sn,Tn331111Tn

,证明:1 2b1b2b3bn

例4.已知数列an满足:n2anan1; 是公差为1的等差数列,且an1nn

(1)求an;(2

2 例5.在数列an中,已知a12,an1an2anan1;

(1)求an;(2)证明:a1(a11)a2(a21)a3(a31)an(an1)3

2n1an例6.数列an满足:a12,an1; n(n)an22

5112n

(1)设bn,求bn;(2)记cn,求证:c1c2c3cn 162n(n1)an1an

例7.已知正项数列an的前n项的和为sn满足:sn1,6sn(an1)(an2);

(1)求an;

(2)设数列bn满足an(2n1)1,并记Tnb1b2b3bn,b

求证:3Tn1log2n

(a3)(函数的单调性,贝努力不等式,构造,数学归纳法)

例8.已知正项数列an满足:a11,nan1(n1)an1,anan1

记b1a1,bnn[a1

(1)求an;

(2)证明:(1

篇3:放缩法证明数列不等式常用技巧

例1(2014年广东高考文)设各项均为正数的数列{an}的前n项和为Sn,且Sn满足S2n-(n2+n-3)Sn-3(n2+n-3)Sn-3(n2+n)=0,n∈N*.

(1)求a1的值;

(2)求数列{an}的通项公式;

分析:在证明“a1+a2+a3+…+an<f(n)(或>f(n)”数列不等式时,如果左边不易直接求和,可以适当放缩为可以裂项求和或直接求和的式子进行求解.

二、等比放缩

例2(2014年全国新课标2理)已知数列{an}满足a1=1,an+1=3an+1.

三、加减放缩

点评:用放缩法证明不等式常常在等式的基础上通过对其中一边加减一个数或可判断正负的式子,达到放大或缩小的目的.

四、凑项放缩

点评:观察不等式左右两边的结构特点,再作适当配凑(分拆重组)发现规律,再与结论对照合理放缩,“凑”是达到证明目标的重要手段.

五、分类放缩

点评:要证不等式当变量取不同的值不等式也不一样时,要分类运用放缩法,最后还需合并说明.

六、基本不等式放缩

点评:基本不等式本身具有放缩的作用,若要证不等式具有基本不等式的特征时可考虑用不等式法进行放缩.

七、二项式放缩

八、构造函数放缩

例8已知n∈N*,求证:en>1+n.

证明:构造函数g(n)=en-n-1,则g'(n)=en-1.当n≥1时g'(n)>0,g(n)在[1,+∞)上是增函数,所以g(n)>g(1)=e-2>0,即en>1+n.

点评:如果把所证不等式两侧相减的结果构造成一个函数,这个函数容易求导,求导后也容易判断正负,就可以直接构造函数.另外例7也可以构造函数来解决,有兴趣的读者可以试一试.

参考文献

篇4:放缩证明数列不等式

关键词:数列型不等式;放缩法;策略

证明数列型不等式最重要的方法为放缩法. 放缩法的本质是基于最初等的四则运算,利用不等式的传递性,对照着目标进行合情合理的放缩. 但放缩程度很难把握,裂项技巧性又太强,常常因找不到放缩、裂项的途径而导致证明的失败. 如何找到放缩、裂项的一般途径呢?放缩过程中最难处理的是减小放缩的误差,这又如何处理呢?

对通项进行化简,先求和再放缩

例1 已知数列an=,设数列{an}的前n项和为Sn,求证:Sn<.

分析:对于这道题,思考的问题是先放缩还是先求和,看看条件中{an}的通项公式,分母中有递推式:n2,(n+2)2,那么,就可以改写成“递推相减”的形式,所以,此题应采用先求和后放缩.

这里的变量r、i与q称为控制变量,作为误差调整的手段,还要兼顾从第几项开始实施放缩. 对于前三种的处理方法,显然第三种处理方法要烦一点,从前面的分析中,我们要学会如果来选择变量控制误差,以及变量取什么值. 从目标入手,目标驱动想法,这种分析问题的意识很重要.

想法二:放缩成“裂项相消型”,如何恰到好处地放缩成“裂项相消型”,思维着力点:把原式放缩成一个具有递推关系的结构,通常是将分式结构中的分母放缩成递推式,然后裂成“递推相减”的形式.

在问题研究的过程中,放缩的方向就是朝着“可求和”数列进行放缩,在“裂项相消型”的放缩中,问题的关键是将分母朝着“递推式”进行放缩. 在控制误差方面,一方面可以考虑延后放缩,另一方面可以考虑待定系数引入参数控制误差,而引入参数的方法不唯一,所以此类问题处理也比较灵活.

构造递推不等式(等差型,等比型)

我们前面研究的“数列和”不等式的题型,条件中的通项都是给出的. 如果条件给出的是递推公式,研究“数列和”不等式,那么我们首先要考虑的是,能否将数列的通项公式求出,如果通项公式求不出,那么我们常见的想法就是从目标入手,对题目中的目标进行研究,将递推公式朝着等差数列进行放缩,或者朝着等比数列进行放缩,总之,也是朝着“可求和”的数列进行放缩. 如果是朝着等差数列进行放缩,通过对目标的研究,得到放缩的公差是多少,假设公差为d,也就是说,我们放缩成类似于:an+1≥an+d形式,那么,由递推关系,便得到:an≥a1+(n-1)d,且Sn≥na1+d. 如果是朝着等比数列进行放缩,也是通过对目标的研究,得到放缩的公比是多少,假设公比为q(q>0),也就是说,将递推公式放缩成类似于:an+1≥an·q形式,那么,同样由递推关系,我们便得到:an≥a1·qn-1,且Sn≥(1-qn). 下面举例说明.

从上述例题,看出递推放缩的数列与不等式的综合题,解决的关键在于放缩,放缩是一种不等变形,没有目标的指向,很难有效放缩,如果我们将其放缩成等差数列、等比数列,再从目标研究,放缩的公差、公比是多少,那么放缩的指向性明显加强,从而降低了此类问题的解决难度. 此外,根据对目标的分析,确定放缩的目标,可以利用比较法(作差或作商)来解决,在思维上也降低了难度.

本文对数列与不等式的综合题的处理方法作了分析与研究,数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其他多种数学思想方法. 处理数列型不等式最重要的方法就是放缩法. 放缩过程中,我们需要考虑是先求和还是先放缩,如果通项能求和,这样问题还是容易处理,如果通项不能求和,就需要先放缩再求和,朝着“可求和”的数列进行放缩,常见的是朝“等比型”和“裂项相消型”进行放缩,在放缩过程中经常会出现放缩过大,那么需要减少误差,在两种减小误差的方法中,相对而言引入恰当参数控制误差方便一些. 当然,我们也可以根据数列的特征,构造函数,利用函数的单调性等方法进行放缩. 对于条件给出的是递推公式的数列不等式,我们应该朝着等差数列或等比数列进行放缩,但如果我们能对目标进行恰当的分析,找到需要放缩的目标,直接采用比较法将问题解决,相当方便一些. 只有正确把握了放缩法的方法思路和规律特征,我们在证明数列型不等式的压轴题时,就会豁然开朗,快速找到突破口.

篇5:放缩证明数列不等式

江苏省包场高级中学张巧凤2261

51数列求和不等式的证明,历来是高考数学命题的热点与重点,并且往往出现在压轴题的位置上,扮演着调整试卷区分度的角色。笔者发现对这类问题的处理方法中,以放缩法较为常用,而学生在运用放缩法时普遍感到难以驾驭,本文重点谈谈通项放缩与舍项放缩两种放缩技巧在证明数列求和不等式中的应用。

1、通项放缩,转化为可以求和的数列 1、1放缩通项,利用等差数列求和

1、已知nN,求证:

(n+1)

2

n+(n+1)2n

1

352n1



222

=

n2n2

n2n1

(n1)2

n+12n1、2放缩通项,利用等比数列求和 例

2、数列an中,a1=2,an+1=(1)求数列an的通项公式;(2)设bn=

an

22an(nN+)

16n-an,若数列bn的前n项的和为Tn,求证:Tn<

12。

(1)用迭代累乘或者构造新的等比数列(2)证明:bn

an1n-11n-2an

a()即an()可以求得,1nn22n

an

16n-an

14

1n

当n=1时,T1=<2;

3当n2时,∵4n1(31)n-1=(3nCn13n-11)13n,∴bn

11n

1()

1111n11331

1()<∴Tn=+b2++bn<2n

133332321

3∴对一切正整数n,都有Tn<

141

n

n

.注:本题将数列从第二项起开始放缩,放缩成以b1为首项,为公比的等比数列,转化为等比数列求和。

事实上,也可以利用

141

n

14

4n

n-1

134

n-1,将数列放缩成以为首项,3

114

为公比的11n1()

41n4134

等比数列,易得Tn1()<<

194921,放缩的关键在于合理与适度。

1、3放缩通项,利用裂项相消求和 对于例2,也可以这样证明:bn

an

216n-an

14

1n

(21)(21)

n

n

当n=1,2时,2n2n,当n3时,2n(11)n=Cn0Cn1Cnn1Cnn2(n1)>2n ∴对一切正整数n,都有bn∴Tn

12(1

131315

12n1

(21)(21)

12n1)

n

n

(2n1)(2n1)

12n1)<

=

12n1

12n1

=(1。

注:此法将通项放缩成两项之差,转化为用裂项相消求和。1、4放缩通项,利用叠加求和 例

3、已知数列an中,a1=1,an=an-1

n=2,3,4), an-1

1求证:

an2004年重庆卷改编)证明:由递推关系式得:an2=an-12

1an-1

+2>an-1+2,即an-an-1>2,于是有a22-a12>2,a32-a22>2,…an2-an-12>2,这n-1个不等式两边相加可得

ana1>2(n-1),即an>2n-1,又an>0,故an。

1、5放缩通项,利用各项重新组合求和 例

4、数列an满足a1=1且an+1=(1+

1n+n)an+

n1).n

2(1)用数学归纳法证明an2(n2)

n1),(2)已知不等式ln(1+x)<x对x>0,成立,证明an<e(其中无理数e=2.71828…

(2005年重庆卷)

证明:(1)略.(2)由递推关系式及(1)的结论有an+1=(1+两边取对数,且由ln(1+x)<x得

+lnan

2nn+n21111+n(-)+n 故lnan+1-lnan<

n(n+1)2nn+12

n+n

1n+n)an+

n

(1+

1n+n

+

n)an,lnan+1ln(1+

+

n)+lnan<

+

上式中n分别取1,2,…,n-1求和可得

11111111

lnan-lna1<(1-)()(-)+()2n-1223n-1n222

(1-)+(1=

n

112

n-1)<2

n1)即lnan<2,故an<e(.2、写出和式,舍项放缩2、1裂项相消,各项重新组合,舍项放缩 对于例2,还可以这样证明:bn当n=1时,T1=<2;

31141

n

(21)(21)

n

n

221

(n

121

n)

当n2时,∴Tn=(1

221

121

121

121



121

n

121

n)

=1 (12)(3)(n-1n)n

22121212121212121∵

2n-1

111111

1

121

n

242(2

n-1

n

1)(21)

n

0,∴Tn

221

(

121

n)

∴对一切正整数n,都有Tn<

n+1n2、2错位相减,各项重新组合,舍项放缩 例

5、数列an中,a1=2,an+1=2((1)求数列an的通项公式;(2)设bn=

nan

n)an(nN+),求证:bi<

i=

1172

4。,即ann22n

anann

2是以2为公比的等比数列,可以求得

2nn

n1

(2)证明:bn n

ann2

(1)易知

n

i=1

bi

n

112

122

132



1n2

n

n

i=1

bi

n

12

112



322n(

12321342

1)2n

1n(n1)2

1n(n1)2

nn

n+1

2

ni=1

bi

i=1

122124



1n21n2

n+1n+1)

∴bi1=

1724(14

(

342



1n(n1)2

n

1n2)<n+117242、3迭代相加,各项重新组合,舍项放缩 对于例

3、也可以这样证明:由已知得:an2=an-12于是有a22-a12

1a

11an-1

+2,即an-an-11an-11an-

222

1an-1

+2,+2,a3-a2

1a2

+2,…,an2-an-12

1an-1

+2,1a1

这n-1个等式两边相加可得an2a12=2(n-1)+(即an2=2n-1+(1an-1

+),+

1an-2



1a1)>2n-1,又an>0,故an20、(本题满分16分)

在数列an中,已知a1p0,且,nN(1)若数列an为等差数列,求p的值。(2)求数列an的前n项和Sn

n

当n2时,求证:

i1

2a

i

篇6:用放缩法证明数列求和中的不等式

近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放缩度,并能自我调整,因此应加强此类题目的训练。

高考题展示:

(2006年全国卷I)设数列an的前n项的和

Sn412an2n1,n1,2,3, 333

n32n

,证明:Ti(Ⅰ)求首项a1与通项an;(Ⅱ)设Tn,n1,2,3,2Sni1

nn解:易求an42(其中n为正整数)

4124122Snan2n14n2n2n12n112n13333333

nn232311Tnn1Sn2212n122n12n11

所以:

T22ii1n3113112n112(2006年福建卷)已知数列an满足a11,an12an1(nN*).(I)求数列an的通项公式;(II)证明:an1a1a2n...n(nN*).23a2a3an12解:(I)易求an221(nN*).ak2k12k11k1,k1,2,...,n,(II)证明:ak1212(2k1)22aaan12...n.a2a3an12ak2k11111111k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232kaaan1111n11n112...n(2...n)(1n), a2a3an12322223223an1aan12...n(nN*).23a2a3an12

111115S,证明:nn2122232n23点评:两个高考题向我们说明了数列求和中不等关系证明的两种方法:1.每一项转化为两项差,求和后消去中间项(裂项法)与放缩法的结合;2.用放缩法转化为等比数列求和。题1.已知数列an中an

放缩一:1111(n2)2nn(n1)n1n

***()()222222222123n123455667n1n***238924005111.=136400n36400360036003Sn

点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节? 放缩二:111111(),(n2)n2n21(n1)(n1)2n1n1

***()()122232n2122222435n2nn1n***5()().4223nn142233Sn

点评:此种方法放大幅度较

(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近原式? 放缩三:1111111()2(),(n1)211111n2n12n1n2(n)(n)nn42222

Sn111111111111512()12()122232n235572n12n132n13本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。

n2n

题2.已知数列an中ann,求证:ai(ai1)3.21i1

2i12i2i111方法一:ai(ai1)i.iiiii1i1i2121(21)(22)(21)(21)2121

ai(ai1)

i1n

211111111()()()33.121223n1nn(21)21212121212121

方法二:

2i1111ai(ai1)i.(i2)(21)22i22i22i2i22i1

2i22

11111ai(ai1)22n12(1n1)3n13.22222i1

点评:方法一用的是放缩法后用裂项法求和;方法二是通过放缩转化为等比数列求和,从数值上看方法二较方法一最后结果的精确度高(3

明的结果3。

同类题训练:

1.已知数列a

n中an,Sn是数列的前n

上一篇:“学雷锋、树新风”主题班会方案及总结下一篇:兵团党委常委班子召开专题民主生活会 增强