数列不等式求和证明

2022-08-25

第一篇:数列不等式求和证明

用放缩法证明数列求和中的不等式

近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放缩度,并能自我调整,因此应加强此类题目的训练。

高考题展示:

(2006年全国卷I)设数列an的前n项的和

Sn412an2n1,n1,2,3, 333

n32n

,证明:Ti (Ⅰ)求首项a1与通项an;(Ⅱ)设Tn,n1,2,3,2Sni1

nn解:易求an42(其中n为正整数)

4124122Snan2n14n2n2n12n112n13333333

nn232311Tnn1Sn2212n122n12n11

所以:

T22ii1n3113112n112 (2006年福建卷)已知数列an满足a11,an12an1(nN*). (I)求数列an的通项公式; (II)证明:an1a1a2n...n(nN*). 23a2a3an12解:(I)易求an221(nN*).

ak2k12k11k1,k1,2,...,n, (II)证明:ak1212(2k1)22aaan12...n. a2a3an12ak2k11111111k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232kaaan1111n11n112...n(2...n)(1n), a2a3an12322223223an1aan12...n(nN*). 23a2a3an12

111115S ,证明:nn2122232n23

1 点评:两个高考题向我们说明了数列求和中不等关系证明的两种方法:1.每一项转化为两项差,求和后消去中间项(裂项法)与放缩法的结合;2.用放缩法转化为等比数列求和。 题1. 已知数列an中an

放缩一:1111(n2) 2nn(n1)n1n

111111111111111()() 222222222123n123455667n1n13121113121238924005111. =136400n36400360036003Sn

点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节? 放缩二:111111(),(n2) n2n21(n1)(n1)2n1n1

111111111111111()() 122232n2122222435n2nn1n151111151115()(). 4223nn142233Sn

点评:此种方法放大幅度较

(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近原式? 放缩三:1111111()2(),(n1) 211111n2n12n1n2(n)(n)nn42222

Sn111111111111512()12()122232n235572n12n132n13本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。

n2n

题2.已知数列an中ann,求证:ai(ai1)3. 21i1

2i12i2i111方法一:ai(ai1)i. iiiii1i1i2121(21)(22)(21)(21)2121

ai(ai1)

i1n

211111111()()()33.121223n1nn(21)21212121212121

方法二:

2i1111ai(ai1)i.(i2) (21)22i22i22i2i22i1

2i22

11111ai(ai1)22n12(1n1)3n13. 22222i1

点评:方法一用的是放缩法后用裂项法求和;方法二是通过放缩转化为等比数列求和,从数值上看方法二较方法一最后结果的精确度高(3

明的结果3。

同类题训练:

1.已知数列a

n中an,Sn是数列的前n

项和,证明:1)Sn n113),但都没超过要证nn12122.点列P(2n,23n)到直线系ln:22nxy2n0中相应直线的距离为dn,

求证:d1d2dn1.

第二篇:数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边

数学归纳法可以证

也可以如下做 比较有技巧性

n^2=n(n+1)-n

1^2+2^2+3^2+......+n^

2=1*2-1+2*3-2+....+n(n+1)-n

=1*2+2*3+...+n(n+1)-(1+2+...+n)

由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/

3所以1*2+2*3+...+n(n+1)

=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3

[前后消项]

=[n(n+1)(n+2)]/3

所以1^2+2^2+3^2+......+n^2

=[n(n+1)(n+2)]/3-[n(n+1)]/2

=n(n+1)[(n+2)/3-1/2]

=n(n+1)[(2n+1)/6]

=n(n+1)(2n+1)/6

2)1×2+2×3+3×4+...+n×(n+1)=?

设n为奇数,

1*2+2*3+3*4+...+n(n+1)=

=(1*2+2*3)+(3*4+4*5)+...+n(n+1)

=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)

=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)

=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)

=n(n+1)(n+2)/3

设n为偶数,

请你自己证明一下!

所以,

1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3

设an=n×(n+1)=n^2+n

Sn=1×2+2×3+3×4+...+n×(n+1)

=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2

=n(n+1)(n+2)/3

数列求和的几种方法

1. 公式法:

等差数列求和公式:

Sn=n(a1+an)/2=na1+n(n-1)d/2

等比数列求和公式:

Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q) (q≠1)

2.错位相减法

适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn

例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbn

Tn=a1b1+a2b2+a3b3+a4b4....+anbn

qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)

Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)

Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)

=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)

3.倒序相加法

这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)

Sn =a1+ a2+ a3+...... +anSn =an+ a(n-1)+a(n-3)...... +a1上下相加 得到2Sn 即 Sn= (a1+an)n/

24.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1

5.裂项法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:

(1)1/n(n+1)=1/n-1/(n+1)

(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]

(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5) n·n!=(n+1)!-n!

[例] 求数列an=1/n(n+1) 的前n项和.

解:an=1/n(n+1)=1/n-1/(n+1) (裂项)

则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3) =

[n(n+1)(n+2)(n+3)(n+4)]/5证明: 当n=1时,有:1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1) = 2×3×4×5×6/5假设命题在n=k时成立,于是:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) =

[k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)=

[k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)=

(k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证

7.通项化归

先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。

8.并项求和:

例:1-2+3-4+5-6+……+(2n-1)-2n(并项)

求出奇数项和偶数项的和,再相减。

第三篇:幂数列求和公式的推导及证明

我们把诸如“1k,2k,……,nk(k为自然数)”之类的数列叫做幂数列。如1,2,……,n;12,22,……,n2;13,23,……,n3;14,24,……,n4等。

下面几个公式经数学归纳法证明是正确的:

n(n+1)n2+n=1+2+……+n=, 2232n(n+1)(2n+1)2n+3n+n222+n==1+2+……,

66432n(n+1)n+2n+n3]2=13+23+……+n=[, 245436n+15n+10n-n444+n=1+2+……,

3065422n+6n+5n-n515+25+……+n=,

1276536n+21n+21n-7n+n661+2+……+n=,

426876423n+12n+14n-7n+2n717+27+……+n=,

249875310n+45n+60n-42n+20n-3n881+2+……+n=,

90810986422n+10n+15n-14n+10n-3n919+29+……+n=,

206n11+33n10+55n9-66n7+66n5-33n3+5n1+2+……+n=。

66101010我们把这几个公式叫做幂数列前n项和公式,其中前三个已出现在高中课本上。出人意料的是,这些公式并不随着

幂次数的增高而变得像我们想象的那样复杂,等号右端次数虽高,但项数并不是特别的多,因为某些项被消掉了。并且各项的系数的绝对值也都还没超过1。这些公式是怎样推导出来的呢?

下面以4次幂数列为例介绍一个推导方法。 我们先看一个展开式: n(n+1)(n+2)(n+3)=n4+6n3+11n2+6n, 由这个展开式可得n4=n(n+1)(n+2)(n+3)-6n3-11n2-6n。

取n=1,则14=1234-6-11-6,取n=2,则24=2345-623-1122-62,……

这些等式两端分别相加得

34+2345+……+n(n+1)(n+2)(n+3)]-6(13+23+14+24+……+n4=[12……+n3)-11(12+22+……+n2)-6(1+2+……+n)

为了计算中括号里边的值,我们先举一个例子:计算

101102103的值。 式子1234+2345+3456+……+100按常规算法,这300次乘法计算和99次加法计算即使使用计算器恐怕1小时之内很难完成任务。若各项都乘5,得12345+23455+34565+……+1001011021035,这样前两项相加得23456,再加第三项得34567,依此类推,加到最后一项,101102103104,故得数应是1001234+2345+3456+……+1001011021031=(100101102103104),由此猜想5

1234+2345+3456+……+n(n+1)(n+2)(n+3)1=n(n+1)(n+2)(n+3)(n+4), 5所以

234+2345+……+n(n+1)(n+2)(n+3)]14+24+……+n4=[1322-6(13+23+……+n)-11(1+2+……+n2)-6(1+2+……+n),

1其中方括号里边的值为n(n+1)(n+2)(n+3)(n+4),再把1,2,3

5次幂数列求和公式分别代入上式并化简,得

5436n+15n+10n-n441+2+……+n=。

304这个公式的正确性可用数学归纳法来证明,证明过程如 下: 6+15+10-1=1,公式显然成立;假设n=k时公式取n=1,则

306k5+15k4+10k3-k也成立,即1+2+……+k=,则n=k+1时有

304445436k+15k+10k-k444+(k+1)4= 1+2+……+(k+1)=306k5+45k4+120k3+15k2+119k+30,而306(k+1)5+15(k+1)4+10(k+1)3+(k+1)6k5+45k4+120k3+15k2+119k+30=,30306k5+15k4+10k3-k6k5+45k4+120k3+15k2+119k+304+(k+1)=所以。这3030就证明了当n=k+1时公式也成立。通过以上证明可知,n取任 3

5436n+15n+10n-n444+n=何自然数公式1+2+……都成立。

30用类似的方法可以分别推导出5至10次幂数列求和公式,并可仿照上面的方法证明。至于11次及11次以上的幂数列求和公式,相信你在读完本文后也一定能推导和证明的。

第四篇:数列不等式的证明举例

1. 已知数列an满足a11,an12an1nN 

(Ⅰ)求数列an的通项公式;

(Ⅱ)若数列bn满足4b114b214b314bn1(an1)bn,证明:bn是等差数列; (Ⅲ)证明:1112nN aa3an13

2分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩。

解:(1)an12an1,an112(an1)

故数列{an1}是首项为2,公比为2的等比数列。

an12n,an2n

1(2)4b114b214b314bn1(an1)bn,4(b1b2bnn)2nbn

2(b1b2bn)2nnbn①

2(b1b2bnbn1)2(n1)(n1)bn1②

②—①得2bn12(n1)bn1nbn,即nbn2(n1)bn1③

(n1)bn12nbn2④

④—③得2nbn1nbnnbn1,即2bn1bnbn1

所以数列{bn}是等差数列

11111(3) n1n1an21222an1

11111111111设S,则S()(S)a2a3an1a22a2a3ana22an1

21212S a2an13an1

3点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。

2. 已知函数f(x)xln1x,数列an满足0a11,

an1fan; 数列bn满足b1,bn1(n1)bn, nN*.求证:

(Ⅰ)0an1an1; 1212

an2; (Ⅱ)an12

(Ⅲ)若a1则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。

*解:(Ⅰ)先用数学归纳法证明0an1,nN.

(1)当n=1时,由已知得结论成立; (2)假设当n=k时,结论成立,即0ak1.则当n=k+1时, 因为0

又f(x)在0,1上连续,所以f(0)又由0an1, 得an1ananln1ananln(1an)0,从而an1an. 综上可知0an1an1.



x2x2

ln(1x)x, 0

22

x2

0,知g(x)在(0,1)上增函数. 由g(x)1x

又g(x)在0,1上连续,所以g(x)>g(0)=0.

an2an2

fan>0,从而an1. 因为0an1,所以gan0,即22

11n1b

(Ⅲ) 因为 b1,bn1(n1)bn,所以bn0,n1 ,

222bn

bbb1

所以bnnn12b1nn!————① ,

bn1bn2b12

an2aaaaaaaaa

,知:n1n,所以n=23n12n1 , 由(Ⅱ)an122an2a1a1a2an122, n≥2, 0an1an1. 2

a1n2a121a1a2an1

a1

222222

由①② 两式可知: bnann!.

因为a1

点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

3. 已知数列an满足a1

(Ⅰ)求数列an的通项公式an; (Ⅱ)设bn

an1

1(n2,nN). ,ann

41an1

21an

,求数列bn的前n项和Sn;

(Ⅲ)设cnansin

(2n1)

,数列cn的前n项和为Tn.求证:对任意的nN,2

Tn

4. 7

分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。 解:(Ⅰ)又

1211

,(1)n(1)n(2(1)n1],

anan1anan1

11n

1,数列(1)3是首项为3,公比为2的等比数列.

a1an

(1)n11nn1

. (1)3(2), 即ann1an321

(Ⅱ)bn(32n11)294n162n11.

1(14n)1(12n)Sn96n34n62nn9.

1412(2n1)

(1)n1, (Ⅲ)sin

2(1)n11

.cnn1nn1

3(2)(1)321

1111当n3时,则Tn 2n1

31321321321

n21

[1(1]1111111) 23n11

47322813232111111147484[1()n2]. 286228684847

T1T2T3,对任意的nN,Tn.

7点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列an的通项 4. 已知函数f(x)=

52x

,设正项数列an满足a1=l,an1fan.

168x

(1)写出a

2、a3的值;(2)试比较an与

的大小,并说明理由;

4n

51n

(3)设数列bn满足bn=-an,记Sn=bi.证明:当n≥2时,Sn<(2-1).

44i

1分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

52an7

3解:(1)an1,因为a11,所以a2,a3.168an84(2)因为an0,an10,所以168an0,0an2.

5

548(an)an

552an53, an1

4168an432(2an)22an

55

因为2an0,所以an1与an同号,

44

515555

因为a10,a20,a30,„,an0,即an.

444444

531531

(an1)bn1 (3)当n2时,bnan

422an1422an1

31bn12bn1,

224

所以bn2bn122bn22n1b12n3,

(12n)

1111

所以Snb1b2bn(2n1)

421242

点评:本题是函数、不等式的综合题,是高考的难点热点。

3n

第五篇:放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数) ③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。 ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。 。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值; (3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。. 错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。 (2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。 (3)设,求证:.

类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。. (1)求证:错误!未找到引用源。时,错误!未找到引用源。; (2)求证:错误!未找到引用源。 (错误!未找到引用源。); (3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。. (1)当错误!未找到引用源。时, ①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由. (2)当错误!未找到引用源。时,设错误!未找到引用源。, ① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。, (2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。 (3)分子分母同加常数:错误!未找到引用源。 (4)错误!未找到引用源。

错误!未找到引用源。 可推广为:错误!未找到引用源。

错误!未找到引用源。 实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。, 错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.

2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中, 错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。, 错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时, 错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值. 【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列

的前项和为,满足

.数列

满足(1)求数列(2)若和,,且.

的通项公式; ,数列的前项和为,对任意的

,(

,都有

,求实数的取值范围;

(3)是否存在正整数,,使,请说明理由.

)成等差数列,若存在,求出所有满足条件的,,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中, 错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。, 错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由. (2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时, 错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列

,设数列的前项和分别为的通项公式; ,使得

,称数列

. 都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.

为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.

7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立. (1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。 ;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.

8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。. (1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.

9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足 (n+1) bn=an+1错误!未找到引用源。,(n+2) cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值; (2)若错误!未找到引用源。成等差数列, ①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数) ③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。 ,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。 。 注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值; (3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。, 若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。, 而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。, 故错误!未找到引用源。,解得错误!未找到引用源。,

再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。. 错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。 (2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。 (3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。. 试题解析:(1)由已知得错误!未找到引用源。. 于是当错误!未找到引用源。时,错误!未找到引用源。. 又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。. 所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。. (2)因为错误!未找到引用源。,错误!未找到引用源。, 所以错误!未找到引用源。. 因此,错误!未找到引用源。.

综合①②③得,错误!未找到引用源。. 类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。. (1)求证:错误!未找到引用源。时,错误!未找到引用源。; (2)求证:错误!未找到引用源。 (错误!未找到引用源。); (3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。, 则有:错误!未找到引用源。 错误!未找到引用源。 例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。. (1)当错误!未找到引用源。时, ①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由. (2)当错误!未找到引用源。时,设错误!未找到引用源。, ① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围. 【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。, (2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。 (3)分子分母同加常数:错误!未找到引用源。 (4)错误!未找到引用源。

错误!未找到引用源。 可推广为:错误!未找到引用源。

错误!未找到引用源。 实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。, 错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由. 【答案】(1)错误!未找到引用源。 (2)错误!未找到引用源。 (3)当错误!未找到引用源。为偶数时, 错误!未找到引用源。 都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。 ,使得错误!未找到引用源。 成立, 因为错误!未找到引用源。 , 错误!未找到引用源。 , 所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。 ,和②:错误!未找到引用源。 , 对于①只要错误!未找到引用源。 就可以; 对于②,

当错误!未找到引用源。 为奇数时,满足错误!未找到引用源。 ,不成立,

当错误!未找到引用源。 为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。 令错误!未找到引用源。 , 因为错误!未找到引用源。

即错误!未找到引用源。 ,且当错误!未找到引用源。 时, 错误!未找到引用源。 ,

所以当错误!未找到引用源。 为偶数时,②式成立,即当错误!未找到引用源。 为偶数时, 错误!未找到引用源。成立 . 2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中, 错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。, 错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时, 错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值. 【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立, 只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立, 即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,

错误!未找到引用源。, 错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。, 设错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。 错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时, 错误!未找到引用源。,即错误!未找到引用源。, 当错误!未找到引用源。时, 错误!未找到引用源。,即错误!未找到引用源。, 错误!未找到引用源。,

因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,

,且

.

的前项和为,满足

.数列(1)求数列(2)若和的通项公式; ,数列的前项和为,对任意的

,(

,都有

,求实数的取值范围;

(3)是否存在正整数,,使,请说明理由.

【答案】(1)(2)

)成等差数列,若存在,求出所有满足条件的,,若不存在,

(3)不存在

(2)由(1)得于是所以

两式相减得所以由(1)得因为对 即所以恒成立, ,都有,

, 恒成立,

, 记所以因为从而数列于是, ,

为递增数列,所以当.

(

),使

成等差数列,则

时取最小值

(3)假设存在正整数即 ,

若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立. ,则

矛盾; ,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中, 错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在, 错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析: (1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。. 当错误!未找到引用源。时,上式成立,

因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列, 故错误!未找到引用源。.

(3)当错误!未找到引用源。为奇数时, 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。; 当错误!未找到引用源。为偶数时,

错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。. 因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。, 错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时, 错误!未找到引用源。. 【答案】(1)不存在,理由见解析 (2)证明见解析 (3)证明见解析

当错误!未找到引用源。时, 错误!未找到引用源。,两式相减得错误!未找到引用源。,

即错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。,

当错误!未找到引用源。时, 错误!未找到引用源。,即错误!未找到引用源。,综上, 错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.

分别满足,其中,设数列都为递增数列,求数列的通项公式; (2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

,使得,称数列为“坠点数列”.

为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由. 【答案】(1)

.(2)①

,② 6.

7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立. (1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。 ;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值. 【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.

(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。. (3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,

所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。. 点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。. 8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。. (1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。. 【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时, 错误!未找到引用源。,即数列错误!未找到引用源。是等差数列. (2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然, 错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。. (3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时, 错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数, 错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上, 错误!未找到引用源。,其中错误!未找到引用源。 错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。. 9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足 (n+1) bn=an+1错误!未找到引用源。,(n+2) cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。, 错误!未找到引用源。, 错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值; (2)若错误!未找到引用源。成等差数列, ①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(3)错误!未找到引用源。,在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,组成公比为错误!未找到引用源。的等比数列,故有错误!未找到引用源。,

即错误!未找到引用源。,

上一篇:司炉工安全工作制度下一篇:苏科七年级上册数学

本站热搜