数列极限存在的证明

2024-05-20

数列极限存在的证明(精选14篇)

篇1:数列极限存在的证明

例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;

n

xn1xn(Ⅱ)计算lim。n

xn

解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得

0x2sinx1x1,设0xn,则

0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。

n

记alimxn,由xn1sinxn得

x

asina,所以a0,即limxn0。

n

(Ⅱ)解法1 因为

sinxlimx0

x

1xlime

x0

1sinxlnx2x

lime

x0

1cosx1



2xsinxx

xsinx6x2

xcosxsinx

lime

x0

2x3

lime

x0

e

又由(Ⅰ)limxn0,所以

n

1xn

xn1sinxnxn2

limlimnnxxnn

sinx

limx0x

解法2 因为

1xxe

sinxx

sinxx

sinxx1x

xsinxx



x3,又因为

limsinxx1sinxx,lim1x0x36x0x

xnxsinxxe,sinx6所以lim,ex0x1

11xlimn1nxnxnsinxnlimnxn

sinxlimx0xxn1x e1

6.

篇2:数列极限存在的证明

求极限我会

|Xn+1-A|<|Xn-A|/A

以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1<4,设x(k)<4,则

x(k+1)=√<√(2+3*4)<4。

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。Lim就省略不打了。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

篇3:用论证法来证明数列极限的研究

首先, 针对学生高中所接触的极限的通俗定义来切入。即当n无限增大时, xn趋向于A。这种通俗的定义方法只能定性而不能定量来描述数列的极限过程, 如何把这两句话转化为ε-N精确定义是关键, 也就是说如何刻画“无限增大”和“无限趋向”这两种定性语言。首先看“xn趋向于A”这句话, 也就是说xn和A很接近, 那么我们任意的给定一个很小的正数ε, 都有|xn-A|比我们给定的ε还要小, 这里用到了ε的任意性;再看“当n无限增大时”这句话, 并不是n从第一项或者第二项就满足|xn-A|<ε的, 也就是说不是一开始就能保证数列{xn}逼近A, 而是找到一项N, 从第N项之后的那些xn满足|xn-A|<ε, 所以这里的N是存在性, 只要能说明N存在即可。注意到N的选取是受到ε的制约的, ε越小, 则N越大, 从而把极限的通俗定义转化为定量的精确定义。

下面将数列极限的定义叙述出来:当n>N时, 有|xn-A|<ε。由上面定义可以看出证明极限存在的步骤: (1) 从|xn-A|<ε中反解出n成立的条件; (2) 取出N。所以如何寻找N是证明的一个重点。在多数证明极限存在的题中, |xnA|<ε并不是直接可以解出来的, 将|xn-A|<ε适当放大到合适的g (n) , 通过g (n) <ε寻找N, 这样放缩后解题更为简单。下面用例子来说明如何放缩成最为合适的g (n) 。

在上述证明过程中, 不等式放大的地方需要注意以下问题。

其次, 在极限定义式中, ε是任意的, 可以任意大也可以任意小, 但是, 定义中我们主要强调的ε是的任意小性。因此通常限定0<ε<1, 但不能限定ε>1。

总之, 对于数列极限, 特别是用ε-N定义来证明时, 在证明过程中用到缩放时, 要层层剖析, 由浅入深, 注意放缩的技巧, 把握ε-N定义证明的内涵。

参考文献

[1]罗守山.高等数学[M].国家行政学院出版社, 2008.

[2]同济大学应用数学系.高等数学 (第六版) [M].北京:高等教育出版社, 2007.

[3]华东师范大学数学系.数学分析 (第三版) [M].北京:高等教育出版社, 2001.

篇4:谈数列极限定义的教学设计

【中图分类号】O171-4

极限是高等数学最重要的概念之一,它是研究微积分学的必备工具。怎样合理有效地讲授数列极限的定义,才能让学生真正理解和掌握其思想方法,而不只是简单地理解定义和形式地掌握使用方法?重要的是如何引导学生从数列极限的描述性定义向“ ”定义的过渡和转化。下面从七个环节对数列极限定义的教学过程进行设计。

一、无穷数列本质是整标函数

无穷数列 可以看作自变量只取正整数 的一类特殊函数,称为整标函数,即 ,其中 称为数列的通项或一般项。数列作为整标函数,也具有有界性和单调性。

二、从几何问题到代数问题,引出极限思想

先介绍我国魏晋时期大数学家刘徽利用圆的内接正多边形来推算圆的面积的方法-----割圆术。首先作圆的内接正六边形,再作圆的内接正八边形、内接正十边形…,从数值角度而言,当边数无限增大时,内接正多边形的面积无限接近于圆的面积。再介绍公元前四世纪,我国古代哲学家庄周著作《庄子·天下篇》所引用一句话“一尺之锤,日取其半,万事不竭”,从数值角度而言每天截去一半所余的尺数为一等比数列 ,然后启发学生思考如何从数列 的变化趋势解释“万世不竭”的本质。通过讲授分析得出结论:“当 越来越大时, 越来越接近0,但永远不等于0,即万世不竭。”进而提出问题:对于数列 ,主要研究当 无限增大时,数列 无限接近于哪个数?这就是所谓极限存在性问题。

三、归纳给出数列极限的描述性定义

由第二环节现归纳出数列极限的描述性定义:“如果 无限增大时,数列 无限接近于一个常数 ,则称 为该数列的极限,记作 或 。否则,称 发散。

四、将描述性定义转化为“ ”定义

一般情况下描述性定义容易理解但并不精确,因此必须将“无限增大”、“无限接近”这些定性描述用数学语言转换为定量描述。然后以数列 为例来探究怎样用精确的数学语言来阐述“当 无限增大时, 无限接近于常数1”变化趋势。首先,“ 无限接近于常数1”就是要 可以任意小,也就是可以小于预先任意给定的、无论怎样小的正数;“ 无限增大”就是要 充分大,大到足以保证 小于这个预先给定的、无论怎样小的正数。具体而言,就是对于任意给定的 ,无论怎样小,相应地总能找到一个大于或等于 的正整数 ,即 ,使当 时的一切 都满足 。

由于 的任意性,上述不等式就精确地刻画了数列 随 无限增大(记作 )而无限接近于常数1这一变化趋势。也就是说,我们用 的数量关系把“当 无限增大时, 无限接近于常数1”的含义作了精确的描述。数列的极限概念就是来源于对数列进行这种变化趋向的研究,而运用 的数量关系就能对极限概念作精确的阐述,于是就给出数列极限的“ ”定义 。

五、几何解释

将“ ”定义的数学语言转化为几何语言:不管 多么小,总能找到一个正整数 從 项开始后面的所有项 都落在点 的 邻域内,而此邻域外最多只有有限项 。通过对极限定义的几何解释,使学生利用数形结合形式进行理解和掌握。

六、“ ”定义的进一步说明

为了更好理解“ ”定义,作以下几点说明。

(1)数列的敛散性与其前有限项的大小无关,而是由后面无限多项的大小而定。

(2) 具有三重性。一是任意性,它不是一个固定的常数,是用来刻画 无限接近于常数 的程度;二是固定性, 一旦给定就固定下来,以便去寻找与之有关的自然数 。三是表达式的多样性,定义中若取 、 、 也可。

(3) 的相应性。 依赖于 ,但并不唯一,因此也不是 的函数。事实上, 未必一定是正整数,若取正数显然也成立。当 给定后,才能找到与之有关的 ,当 满足 时,才有 ,一般情况下寻找到 即可。

(4)不等号的推广。由 的多样性和 的不唯一性,在“ ”定义中,若把“ ”变为“ ”,或把“ ”变为“ ”也成立。

七、举例说明如何使用“ ”定义证明极限

利用“ ”定义证明 ,关键是对于任意给定的正数 ,寻找一个与之有关的正整数 使得当 时恒有 。那么怎么寻找 呢?首先从这个关于 和 的不等式 出发,解出 的形式,其中涉及不等式适当放大的技巧,此时取 即可。事实上,若取 或其他也可,并不唯一。然后利用此方法证明几个常见极限,要求学员达到熟能生巧、举一反三的能力。

以上从七个环节介绍了数列极限定义的教学设计,采用两个学时授课,而收敛数列的性质下次课再讲授。在此教学过程中,将数列极限的“ ”定义内容进行了合理优化,学生充分理解和掌握极限的本质,而不是简单地理解定义和形式地掌握使用方法,同时为函数极限的讲授提供了有力的帮助,并奠定了坚实的基础。

参考文献

[1] 同济大学数学系. 高等数学[M].上册.第六版.高等教育出版社,2007:26.

基金项目:陕西省教育厅科研计划项目(编号:2013JK1098)

篇5:一道数列极限证明题的应用与推广

pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。术论坛

一道数列极限证明题的应用与推广

《嚣汪褥蔻蹇等专学校

赵建红 云鬻嚣泼

87毒l OO》

摘要:参政文献【I】的一道教列极限证明题!鳃√吖+吼“+„+%”一max{口l,口2,„%}引入。将她命题推广到函数极限上,用其结论将玩牛拳

一些名援乃熏奎蛋寿夔考研名麓轻松辫决,井ll八了l;‘下庀令令惹;

(1’璺豫积’O)+磊’O)+„+无。O)芦*m缸{口l,吩,„,靠。;

(2)!臻p∞O)+∥∞O)十„+厶’似O谚丽;m戕{口l,口2,„,‟)。井婶即型的极限计算以麓慰:@O)+^O)+„+厶O沙南印

酗(。+∞+„+m乒型秘城艰哥薯馋了擐译。

关键词:数列极限 考拼 应用

中图分类号j0242

文献标识码}A

文章编謦。1674一098x(2008)03(e)一0132一02

1艨题垂现:(《数学分斩》(牮东师大第兰舨)p34)

溉厅i丽=一{口1,咚,„‟}。

2轻松解题

命题一:设d1,口2,口3,„„,口。是m个正数,证明:

解:南命题二有:熙瓣。{2::::要j芝鬈::

穰5、竣函数,O)=鞋瓣叠+|∥,„„„„2005年全阑繇摇高 ’7㈣’’’数

一、数= 3.2辩推广到函数裔以下结论:

证明:设A一趟a】【{口1,拉2,„%},由于:∥≤q”+啦”+„÷‟8≤删”烫H知;鎏厅瓦丽=_=m勰‟啦,„口擗}。

究嫩入学试题。

所以;爿兰承Fi≧干面s4沥而照瓶=l,敝由两边夹法

黼一∥盼壁衙骺撩:

命题三:设ZO),正O),„,六O)是m个函数,并且满慰条件(1)

f倒1j计算极瞬im每l+矿(a>O)-.„„?1998、1999年北京大学研Z冬)≥o,(2)耋氅ZO)=每≥o,粪《:

热U。O)+五„O)+„+厶’O骖=瑚x{啦,口2,„,%)

l黧o<牙≤l时;

鬃:虫命题一有:薹口≥l隧:氅《l+矿=8

lim∥I+矿=l。H—瑚

淀秘:’?暨ZO)=吩,所以有对讹,>o’菊,》o使得当

%一曩sx≤而+6,时,有:q—e;《ZO)≤q+£,而平O)≥o,所以: 如一£,芗≤F◇)s矗+£;y’

【馕2】求下歹}l极限:爨冬”+扩+c“罗◇≥魏6≥o'c≥o)。„„2000第巾辩院试蘧。

解:由命题一有:擞0”+扩+矿歹=㈣{口,6,c}?

3鞘俸撵广 3.'推广到函数列上有以下结论

取口引n麒{口I,吃,鸭,„%},则有:∑@一£,y≤∑z。O)≤∑@+e,y 融=蕊霸敦,£2,£,„£。},羹《蠢:

0一£y≤(口f一£,y g∑Z’O)曼埘(口+£y

命题二:设ZO)'正O),„,^O)是m个函数,并麒满足条件(1)

Z◇)≥e,《2)熙Z0)=g≥o,绷:

予麓:0一£罗茎@一鬈罗≤∑∥O)≤癣◇+£罗,‘

舰以“O)+以40)+„+厶40殄=燃如,啦,„,‟)

证盟:设口=懈溉,吃,„%},由于:

矿≤Z60)+左”e)+„+矗”O)≤施4,’

因憩,有:Q—e)sf宝zzo汗《o+£)搬÷‘

\扣l,■、o

所以:口兰彤F石FZ≦西ij了了丽《口掂,而熙蛎=l,故由

嚣逑夹法剐知:

此时,当点专%时j就有:口一£《l∑z10)14≤口+£,也即;

溉积。O)+五’◇)+..一歹?O莎=越ax如,吼,„,‟}

艘翌研“O)+矗40)+„+五”O涉刮岫ax如,嘭,„,冁)

例3、计算憋掣l+,O芝o)。

„„„„2000年添南师范大学

命题四:设ZO),以O),„,厶O)是m个函数。并且满怒条件(1)

解.自命题二有:照丽=髋::愁1.

例4、熙可l+2”sill”善。

„小„„„„内蒙古大学

z◇)≥移,f2)溉z∞。碑猢,f3)溉妒∞=枷魁

曼娶p∽o)+∥o’o)+。+∥o’(x)户:n嫩舀,口:,„,口卅l’1 32乖≥l主支刨案斤导报Science and TechnoIogyovation H9raId

万方数据

学术论纭

Sei∞c§∞d下ec‟logy括弧ov毒瑕嚣甍磊;曩

20鹋∞.∞、I

证明:‘?溉zO)。口』,所以有澍V£,>o,36。》o使得当Inn

南一鑫;s石≤.岛+鑫,鲢,考:壤一£,≤Z0)≤碡+8,蠢争冬)≥8 所以:(口f一£。,“’《∥“’O)s“+e,“’

取口mm戡敏,口2,鸭,„%},则有{。

例6,求极限bm厶+矿F„„„„„1999年四川联合大举 J—}撵、▲,麟:耄参邋三,舀、纛骞:

b+∥T::————』~:!熟G_I譬南之

Iim

∑@一£。罗“’s∑∥“’O)≤∑@+£,罗啪

l‘l JoI ‘oI

取£=往曲靶I,£2,£,„£。),则有#

参考文献

【l】华衰魉大数学系编。数学分辑,(篡三鹱)。M。褰教猛毽叛,200,p34—36。

Q一£罗铆s如一£。罗雌≤∑r社’O)兰搬0+£罗仁’ 手惹;◇一£罗㈣≤瓴一£,罗∽≤∑斧鳓冬)≤辨◇+£罗m,M

【2】薛嘉庆.历届考研数举真题解析大垒.东北大举出版社,2006,pl—18.

【3】钱吉橼等生编。数学分耪题艇精糌。豢文书局,2003,p26、33、37.40;57,107.

【4】董义琳等.数学分析的范例与习作.瓣南稃技出版我,1996,p25—70.

因她有下式:o—e)≤f妻F∽o费丽≤妇+e》南

\酬,15】薛嘉庆.赢等数学题麾横编。(理工类)。东北大学如版鼓,200 1. 16】G。浚籁驻著.数学与猜想《会待援溪模式l。耱攀窭籁茬。17】范培华,李永.2006举考研数学全韶.国家行政学院出版社. 【8】2006年众国研究生入学考试数学考试大纲.教宵部制订.高教社

出版,2005.。

北时,当j一穗时,就骞:口一e≤(娄F∞。习;丽≤口+£

即:

毁留∞o)+歹尹’o)●..‘+譬∞0疹b;二

《上揍l 31页》

。,和落实科学发展魂和藏确的政绩麓。都是 为了解决发展什么和怎样发展得更好的问解决自身发展审存在的突嬲矛盾和闻籁。一

定要大力弘扬求真务实精神,大兴求真务实之 风,按客观规橼办事,不盲翻攀比,不搞旄架 予,不急功逅禊,笈一切王传经霉起实践豹捡 狻,历史的捻验和群众静徐验。领导予都要

分考虑誊物联系的广滋性,在发展巾注重解决 存在的突出矛盾和悯题,实现城乡、区域,经济巷会.A与自然等不霾方嚣的良牲互 动。同时,妥善处理好各种誊l益关系,充分调 动

一切积极因素。特别要高度重视和关心农 民,城市低收入居民和其他困难群众的利 益,楚金捺入民赣蔫熬颡富裕购蠢囊稳步兹 迸。;

题,都是掇高党的领导水平和执政水平,提蹇全党潮志特爨是备缀领导干部瓣执致

能力静雨簌要求。实践}正明,一个映乏正

确的政绩观的干部,往往同时也缺笺科学

以自己的示范和带动作用,使科学发展观深入

人心,成为广火干部群众的自觉行动,更好地 毙全面建设小壤社会豹伟大攀韭不断攘巍翦

发展观,瓶违背科学发展现的所谓政绩,只毙建发袋陷入富区秘溪区。当翦瓣立正 确静改绩畿。遥韬需要落实好囊巾央,国 务院提出的带能减排政绩一票否决制,维 护好人民的生存,发展空间。总之,贯彻落实辩学发展现,领搏手部

逡?,不断夺取众瑟建设冬藤社会事鼗的新鞋

刹,早日实现寓强,民主,文明,和谐的社

2.3坚持以人为本 以人为本是科学发展观的本质和核 心,俸境了我们党的执政宗旨。坚持以入

秀本,虢楚要蹙实税、维护稻发襞入民静 根本利箍作为一切■作的出发点和落脚 点,在经济发展的基础上。不断掇高人民群 众的物赁文化生活水平,为充分发挥人的衾主义现代化国家奋斗融标。

楚关键,纛锈导予舒领导拳平豹撵麓又有 赖于加强凳的执政能力建设。在党的“十七大”召开之后的相当长的时期内,领导 干部树立和落实科学发展观,既是~个重黎甏考麓镄造良舞豹繇凌,提褰久懿整裕 素质,促进入的全面发展,要保障人民的经济,政治、文化权箍,切实做副发展为了 人民;发展依靠人民、发展成果幽入民共大懿理论瀑遂,又是一磺艰巨懿实羧任务,既要有紧迫感和责任感,又要看到解决发 展不平衡问题的艰巨憔,复杂性和长期 性。还应当看到,坚持以人为本,努力满足

享,在经济茬会事务管瑾中蓦薰入、关心

入。人的全面发展怒一个长期的渐进的过 程,只有随着社会财富的不断增加和社会入涎群众黢雳要霸促进入懿垒瑟发瓣,是

一个不断发展和透步静过程,只有随着社 会财富的不断增加和社会文明的持续进文明的持续进步,才能逐步得以实现。因

筵,我嬲必矮麸办簿翔豹辜猿激越,把以太

步,这个翻标才能愈蕊充分地得剿实现。巍这个过程孛,不毙要求过急,{委期过褰。我国入瑟多,底子薄,幅爨广,差异太,在领 导工作中,各地、各部门一定要结禽自己的 实际情况,因地制宜,因时制宜地把科学发 鼹筏豹要求贯穿手各方蕊戆工作,麸办攥刭的 事情骰起,袄追纫需要解决的事请舔鹣,蕾鸯

为本的耩神体现嚣我们的各项置作中去。

树崴正确的政绩j昵。政绩观是发展现 在领导业绩上的具体体现,直接反映领导手部默政的份值取淘。辩学发鬏缆翻正确 酶致绩躐既耜互医鄹,又密韬联系。褥立j斡|壬支创掰导报science

and T9chnoIogy

lnnovation

HeraId

l 33

万方数据

一道数列极限证明题的应用与推广

作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 被引用次数: 赵建红 丽江师范高等专学校,云南丽江,674100 科技创新导报 SCIENCE AND TECHNOLOGY INNOVATION HERALD 2008,“"(9)1次

参考文献(8条)1.华东师范大学数学系 数学分析 200? 2.薛嘉庆 历届考研数学真题解析大全 2006 3.钱吉林 数学分析题解精粹 2003 4.董义琳 数学分析的范例与习作 1996 5.薛嘉庆 高等数学题库精编(理工类)2001 6.G.波利亚 数学与猜想(合情推理模式)7.范培华.李永 2006年考研数学全书 8.教育部 2006年全国研究生入学考试数学考试大纲 2005

相似文献(1条)1.期刊论文 张华珍 用定积分法巧求数列极限-安徽文学(文教研究)2006,”"(12)

本文结合历届考研试题及考研系列习题介绍求极限的一种非常实用的方法--定积分法:利用定积分定义将一类极限问题转化为定积分问题.引证文献(1条)1.余宏杰 广义幂平均值函数的极限性质及其应用[期刊论文]-科技创新导报 2009(7)

篇6:数列极限存在的证明

证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即 2+4+6+…+2k=k(k+1). 当n=k+1时,2+4+6+…+2k+(k+1)

所以n=k+1时,等式也成立.

根据(1)(2)可知,对于任意自然数n,原等式都能成立. 生甲:证明过程正确.

生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.

师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.

(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)

(二)讲授新课

师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 师:首先验证n=2时的情况.

(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.

篇7:证明极限不存在

=lim(x^2+3y^2) / (x^2+3y^2) - 8y^2 / (x^2+3y^2)

=1-lim8 / [(x/y)^2+3]

因为不知道x、y的大校

篇8:数列极限存在的证明

二元函数极限的存在性是多元函数微积分教学中的重点内容,而证明二元函数极限的不存在则是学生学习过程中普遍存在的难点. 下面通过具体例题分析如何借助同阶无穷小量来证明二元函数的极限不存在,并给出这类题目的解题技巧.

2. 实 例

例1设,证明:不存在.

解极限的类型为型未定式,故可设即x + y与x2为当x→0时的同阶无穷小量) ,其中k为任意常数且不为零,由此得y = kx2- x.

因为与k值有关,故不存在.

例2设,证明不存在.

解极限的类型为型未定式,若将x与y视为相同的变量,则x与x + y具有相同的次幂,故可设y = kx,其中k为任意常数且不为零.

因为与k值有关,故不存在.

例3设,证明:不存在.

解极限的类型为型未定式,若将x与y视为相同的变量,则xy与x2+ y2具有相同的次幂,故可设y = kx,其中k为任意常数且不为零.

因为不存在.

例4设,证明:

解极限的类型为型未定式,若将x与y3视为相同的变量,则xy3与x2+ y6具有相同的次幂,故可设y3= kx,其中k为任意常数且不为零.

因为与k值有关,故(不存在.

3. 小 结

通过上述例题可以看出,人为选取特殊的路径,即设置y的表达式,使得f( x,y) 中的分子分母为同阶无穷小量,从而利用极限结果的不唯一性证明了这类多元函数极限的不存在性.

摘要:本文通过具体的例题分析同阶无穷小量在证明二元函数极限不存在中的应用,给出了这类题目的解题技巧.

篇9:对形如数列极限求法的探究

【关键词】定义;夹逼准则;定积分定义法.

一、定积分定义法

对形如,并且可以表示为,而或的形式,此时一般用定积分求极限.

三、Stoltz公式法

对形如,却不能用定积分的定义、夹逼准则来解决的题型,有时运用Stoltz公式来求解会非常的简便,比如:

例10求极限

本例小结:当我们遇到这种n项和数列求极限的问题时,除了想到用夹逼准则、定积分定义来求解之外,有时运用Stoltz公式求解会更方便.主要方法是:将分子、分母的前n项与它们各自的前n-1项作差转化为我们所熟悉的数列极限来求解.

我们可以对通项是n项和的数列求极限进行小结:

设,求常用下列方法:

(1)根据数列的特点先求出数列的和再求极限。

(2)利用定积分的定义求解(求解的步骤和针对的题型特点在前面已总结了)。

(3)利用夹逼定理求极限,一般步骤有:①将原n项和放大、缩小:(一般是通过放大、缩小分母来实现的);②将放大、缩小后的通项进行整理、化简;③求出它们的极限;④取极限。

(4)利用Stoltz公式求解。

参考文献:

[1]钱吉林.数学分析题解精粹(第二版)[M].湖北:长江出版集团崇文书局,2009.

[2]李素峰.求数列极限的几种方法.[N].邢台学院学报,2007-6-10(2).

[3]裴礼文.数学分析中的典型问题与方法.[M].北京:高等教育出版社,1993.

作者简介:

篇10:数列极限的定义

教材:数列极限的定义

目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋

近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的“有限”到“无限”来一个飞跃。过程:

一、实例:1当n无限增大时,圆的内接正n边形周长无限趋近于圆周长

2在双曲线xy1中,当x时曲线与x轴的距离无限趋近于0

二、提出课题:数列的极限考察下面的极限

1 数列1:

110,111

102,103,,10

n,①“项”随n的增大而减少②但都大于0

③当n无限增大时,相应的项1

n可以“无限趋近于”常数0

2 数列2:123n

2,3,4,,n1,

①“项”随n的增大而增大②但都小于1

③当n无限增大时,相应的项n

n1可以“无限趋近于”常数1

3 数列3:1,11(1)n

2,3,,n,①“项”的正负交错地排列,并且随n的增大其绝对值减小

②当n无限增大时,相应的项(1)n

n

可以“无限趋近于”常数

引导观察并小结,最后抽象出定义:

一般地,当项数n无限增大时,无穷数列an的项an无限地趋近于某

个数a(即ana无限地接近于0),那么就说数列an以a为极限,或者说a是数列an的极限。(由于要“无限趋近于”,所以只有无穷数列才有极限)

数列1的极限为0,数列2的极限为1,数列3的极限为0

三、例一(课本上例一)略

注意:首先考察数列是递增、递减还是摆动数列;再看这个数列当n无限

增大时是否可以“无限趋近于”某一个数。

练习:(共四个小题,见课本)

四、有些数列为必存在极限,例如:an(1)n

或ann都没有极限。例二下列数列中哪些有极限?哪些没有?如果有,极限是几?

1.a1(1)n1(1)n

n22.an2

3.anan(aR)

n

4.a1)n135

n(n5.an5 3

解:1.an:0,1,0,1,0,1,„„不存在极限

2.a2,0,22

n:3,0,5,0,极限为0

3.an:a,a2,a3,不存在极限

4.a,33

n:32,14,极限为0

5.an

5525n:先考察,, 无限趋近于0 3:

392781∴ 数列an的极限为5

五、关于“极限”的感性认识,只有无穷数列才有极限

六、作业:习题1

补充:写出下列数列的极限:1 0.9,0.99,0.999,„„2 a1

n

2n

3 



篇11:数列极限的收敛准则

一、数列极限的收敛准则

1.数列极限的夹逼准则

a)数列{xn},{yn},{zn}满足:

i.yn#xnzn(n N0)

ii.nlimyn=nlimzn=a

则数列{xn}的极限存在,且nlimxn=a

b)例

1、求极限n!

nlimnn=0 注:n!=1鬃23Ln

1例

2、求极限lim1+2n+nnn

n(3)注:nlima=1(a>0)

骣1n

练习:

1、1n

nlimç? çç桫1+n+

1n÷÷

2÷÷ 注:运用重要极限nlim(1+n)=e2、求n?lim(其中 a1,a2,L,ak为正常数, kÎZ+.)

2.单调数列的收敛准则

a)单调增加有上界的数列必收敛;

b)单调递减有下界的数列必收敛;

通常说成:单调有界的数列必收敛。

例1. 证明lim(1

1n)n

n+=e 注:补充二项式定理

例2.

设x1=10,xn+1={xn}极限存在,并求其极限。例3.

设x1=xn+1={xn}极限存在,并求其极限。注:补充数学归纳法例

1、证明1+3+L+(2n-1)=n2 例

2、证明1+++L+<思考:

1、有界数列是否收敛?

2、数列{xn}收敛是否可推出数列xn}收敛?反之是否成立?

13、数列xn为有界数列,且limyn=0,数列数列xnyn是否收敛? n{}{}

二、收敛数列的性质

1.极限的唯一性。

2.有界性。问题:有界数列是否收敛?

3.保号性。问题:若xn>0("n N),且limxn=a,是否一定有a>0? n

4.收敛数列的子数列必收敛。

思考:(1)数列xn与yn都发散,是否数列xnyn与xn+yn也都发散?

(2)若子列x2n-1与x2n均收敛,则数列xn是否收敛?

(3)设x1>0,xn+1{}{}{}{}{}{}{}1骣1÷÷=çx+,证明数列{xn}极限存在,并求其极限。ç÷nç÷2çxn桫

nn(4)求lim2+3+4n(nn

骣12n÷÷(5)求lim ++L+÷222n÷n+n+1n+n+2n+n+n桫

(6)设数列xn满足:0ìïn2+ïï当n为奇数ïn(7)数列xn=í,则当nï1ï当n为偶数ïïnïî时,xn是

篇12:求数列极限的方法总结

数学科学学院数学与应用数学

11级电子 张玉龙 陈进进指导教师 鲁大勇

摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同 的方面罗列了它的几种求法。

关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多 样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法 还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代 换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的 四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要 重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了

1.定义法 利用数列极限的定义求出数列的极限.设{Xn}是一个数列,a 是实数,如果对 任意给定的 ε 〉0,总存在一个正整数 N,当 n〉N 时,都有 Xn ? a < ε ,我们就称 a 是数列{Xn}的极限.记为 lim Xn = a.n→∞ 例 1: 按定义证明 lim 1 = 0.n → ∞ n!解:1/n!=1/n(n-1)(n-2)…1≤1/n 1 令 1/n< ε ,则让 n> 即可, ε 存在 N=[ 立, 1 ε ],当 n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n< ε 成 1 = 0.n → ∞ n!

2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则.1+ a + a2 + L+ an 例 2: 求 lim ,其中 a < 1, b < 1.n →∞ 1 + b + b 2 + L + b n 解: 分子分母均为无穷多项的和,应分别求和,再用四则运算法则求极限 1 ? a n +1 1 ? b n +1 1+ a + a2 +L + an = ,1 + b + b 2 + L + b n = , 1? a 1? b 1 ? a n+1 1 lim 1? b n →∞ 1 ? a 1? a 原式= = , n +1 = 1 1? b 1? a lim n →∞ 1 ? b 1? b 所以 lim

3.利用夹逼性定理求极限若 存 在 正 整 数 N, 当 n>N 时 , 有 Xn ≤ Yn ≤ Zn, 且 lim Xn = lim Zn = a , 则 有 n →∞ n →∞ lim Yn = a.n →∞ 例 3:求{ 解: 1+ n }的极限.n2 对任意正整数 n,显然有 1 1 + n 2n 2 < 2 ≤ 2 = , n n n n 1 2 而 → 0 , → 0 ,由夹逼性定理得 n n 1+ n lim 2 = 0.n →∞ n

4.换元法 通过换元将复杂的极限化为简单.an ?1 例 4.求极限lim n,此时 n →∞ a + 2 有,令 解:若 5.单调有界原理

4.例 5.证明数列 证: 令 我们用归纳法证明 若 ≤2 则 则 有极限,并求其极限。,易知{ }递增,且 ≤2.显然。中两 故由单调有界原理{ }收敛,设 →,则在 边取极限得 即 解之得 =2 或 =-1 明显不合要求,舍去,从而

5.6.6.先用数学归纳法,再求极限.1 ? 3 ? 5 ? L ?(2n ? 1)例 6:求极限 lim n →∞ 2 ? 4 ? 6 ? L ? 2n 1 3 5 2n ? 1 1 解: 0 < ? ? ? L ? < 2 4 6 2n 2n + 1 1 3 5 2n ? 1 S= ? ? ? L ? 2 4 6 2n 2 4 2n 设 S * = ? ?L? 则有 S< S * 3 5 2n + 1 1 S2=S*S

7.7.利用两个重要极限 lim = 1 , lim(1 +)x = e.x →0 x → +∞ x x 2 例 7:求 lim(1 +)x x → +∞ x x x 2 1 解: 原式= lim(1 +)2 ?(1 +)2 = e ? e = e 2 x → +∞ x x

8.8.利用等价无穷小来求极限 将数列化成自己熟悉的等价无穷小的形式然后求极限., lim 例 8:求 lim x→+ 而0 < S < 1 1 1 + x sin x ? 1 ex ?1 2 解:当 x → 0 的时候, x sin x → 0 , 1 + x sin x ? 1 ~ 而此时, e x ? 1 ~ x 2 ,所以 x sin x 1 原式= lim = x →0 2 x 2 2 0 ∞

9.9.用洛必达法则求极限.适用于 和 型 0 ∞ 1 ? cos x 例 9:求 lim x →0 x2 0 解: 是 待定型.0 1 ? cos x sin x 1 = lim lim = 2 x →0 x →0 2 x 2 x

10.10.积分的定义及性质 1p + 2 p + 3 p + L + n p 例 10:求 lim(p > 0)n → +∞ n p +1 1p + 2 p + 3 p + L +n p 1 n i 解: lim(p > 0)= lim ∑()p n → +∞ n → +∞ n n p +1 i =1 n p 设 f(x)= x ,则 f(x)在[0,1]内连续, 1 i i ?1 i ?x i = , 取 ξ i = ∈ [ , ] n n n n i 所以, f(ξ i)=()p n 1 1 所以原式= ∫ x p dx = 0 p +1

11.11.级数收敛的必要条件.2 x sin x.2 设 ∑ u n 等于所求极限的表达式 , 再证∑ u n 是收敛的, 据必要条件知所求表达式的 n =1 n =1 ∞ ∞ 极限为 0.例 11:求 lim n → +∞ n!nn ∞ u 1 1 n!= <1 ,则 lim n +1 = lim n n → +∞ u n → +∞ 1 e n n =1 n(1 +)n n n!所以该级数收敛,所以 lim n =0 n → +∞ n

12.12.对表达式进行展开、合并、约分和因式分解以及分子分母有理化,三角函数 的恒等变形。sin 5 x ? sin 3 x 例 12.求 lim x →0 sin 2 x 解: ? sin 5 x 2 x 5 sin 3 x 2 x 3 ? 5 3 法一:原式= lim ? ? ? ? ? ? = ? =1 x →0 3 x sin 2 x 2 ? 2 2 ? 5 x sin 2 x 2 ? 5 x + 3x 5 x ? 3x 2 cos sin 2 cos 4 x sin x 2 cos 4 x 2 2 法二:原式= lim = lim = lim =1 x →0 x → 0 2sin x cos x x → 0 2 cos x sin 2 x

13.13.奇数列和偶数列的极限相同,则数列的极限就是这个极限。(?1)x 例 13:求 lim x 的值 x→∞ 2 ?1 解:奇数列为 lim x =0 x→∞ 2 1 偶数列为 lim x =0 x→∞ 2(?1)x 所以 lim x =0 x→∞ 2

14.14.利于泰勒展开式求极限。解:设 ∑ u n = 例 14.求 lim(5 x 5 + x 4 ? 5 x 5 ? x 4)1 1 ? 1 1 1 ? 解:原式= lim x ?(1 +)5 ?(1 ?)5 ?(令 t=)x → +∞ x x x ? ? 1 ? 1 ? 1 + t + o(t)? ?1 ? t + o(t)? 1 1 ? 1? 5 ? 5 ?=2 = lim ?(1 + t)5 ?(1 ? t)5 ? = t → +0 t t 5 ? ?

15.15.利于无穷小量的性质和无穷小量和无穷大量之间的关系求极限。利用无穷小量与有界变量的乘积仍为无穷小量,无穷小量与无穷大量互为倒数 的关系,以及有限个无穷小的和仍是无穷小等等。1 例 15:求 lim 2 sin x 的值 x →∞ x 1 是无穷小量,而 lim sin x 是有界变量,所以 x →∞ x 2 x →∞ 1 lim 2 sin x 还是无穷小量,即 x →∞ x 1 lim 2 sin x =0 x →∞ x

16.16.利用数列的几何、算术平均值求极限。数列{ an }有极限,则它的几何平均值和算术平均值的极限与与原极限相同。解:因为 lim 例 16:求 lim n an 的值 n →∞ 解: lim n an = lim n n →∞ n →∞ an a a a a a ? 2 ? 1 ? a0 = lim n n ? 2 ? 1 ? lim n a0 n →∞ an ?1 a1 a0 an ?1 a1 a0 n →∞ 设 bn = an,因为知 lim n an =1 n →∞ an?1 an an ?1 所以,所求原式的极限就等于{ bn }的极限 即原式= lim bn = lim n →∞ n →∞

篇13:数列极限存在的证明

一、问题的提出

本例中数列极限许多学生认为是由于但这种想法似是而非, 严格地讲这是由得出来的, 同一个类型的例子基本上都是这样, 由此可见这个式子的正确使用是我们必须要掌握的。

其中[x]表示x的整数部分, 令x->+∞时, 不等式左右两侧表现两个数列的极限再利用函数极限的夹逼定理得到

接下来我们重点了解一下能不能从数列极限求函数极限研究数列极限和函数极限时, 许多学生会想到海涅定理, 根据海涅定理, 的充分必要条件是对于任意趋于+∞的数列{n}都有。

二、得到的重要结果

通过上面的分析, 我们就可以提出下面的定理。

定理1设f (x) 在[a, +∞]上有定义, (a>0) , 如果存在数列{xn}, {yn}满足对于任意x>=a, 当n<=x

证明:对于任意A>0, 由于所以存在N∈N+ (假设N≥a) , 当n>N时, 就会有|xn-A|<ε且|yn-A|<ε取X=N+1, 当x>X时, 总可以找到满足n0>N且n0≤x≤n0+1, 由条件可得xn0≤f (x) ≤yn0, 所以xn0-A≤f (x) -A≤yn0-A, 于是|f (x) -A|≤max{|xn0-A|, |yn0-A|}<ε。

在学习定积分时且遇到下面的问题:

篇14:数列有扩充 极限难度低

浙江省数学特级教师,嘉兴市数学会副会长.

推荐名言

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.

——菲利克斯·克莱因 (德国数学家,发现了“克莱因四元群”和“克莱因瓶”)

数列问题是历年自主招生考试重点考查的内容.它包含着丰富的数学思想和数学方法,形式多变,有一定的难度.在考查数列内容时,一方面会以等差、等比数列为载体考查基础知识,另一方面会以递推数列、数列极限的形式,结合函数、方程、不等式、三角函数、解析几何、立体几何等知识考查同学们的归纳猜想能力、论证能力以及综合分析能力.在解决数列问题时,除了要熟练掌握相关的概念公式,还要善于观察题设特征,联想有关的数学知识和方法,迅速确定解题方向.在论证问题时,还有可能用到数学归纳法.

一、等差数列与等比数列问题

例1 (2009年北京大学自主招生考试第2题) 已知由整数组成的无穷等差数列中依次有三项:13,25,41.求证:2009为其中一项.

解析: 设等差数列{an}中依次有三项am=13,an=25,ak=41,公差为d(d≠0). 要证明2009是{an}中的一项,就要证明存在正整数p使ap=2009.由等差数列的通项公式可得25-13=12=(n-m)d,41-25=16=(k-n)d. 若ap=2009,则ap=2009=13+(p-m)d,即1996=(p-m)d. 又1996=16+12×165,将(p-m)d=1996,(n-m)d=12,(k-n)d=16代入,可得(p-m)d=(k-n)d+165(n-m)d,整理得p=k+164n-164m. ∵ n>m,由m,n,k都是正整数可知p也是正整数,∴ 2009为{an}中的一项.

例2 (2011年复旦大学自主招生考试试题) 设含有4个数的数列各项为a1,a2,a3,a4.前3个数构成一个等比数列,其和为k;后3个数构成一个等差数列,其和为9,且公差不为0.对于任意固定的k,若满足条件的数列的个数大于1,则k应满足

A. 12k>27B. 12k<27C. 12k=27D. 其他条件

解析: 我们可以先根据“后3个数构成一个等差数列,其和为9”设出后3个数,再由“前3个数构成一个等比数列”推出第1个数,最后根据“前3个数之和为k”建立等量关系.

设后3个数为a2=3-d,a3=3,a4=3+d. 由前3个数构成一个等比数列可得a1=. 由题意可得+3-d+3=k,整理得d2-9d+27-3k=0. ∵ 满足条件的数列的个数大于1, ∴ Δ>0,解得12k>27. 选A.

点评: 例2的突破口在于如何设这4个数,难点在于如何将这4个数转化为关于d的二次方程,从而由 Δ>0求出k的取值范围.

例3 (2009年中国科技大学自主招生考试第14题) 已知A={xx=n!+n,n∈N*},B是A在N*上的补集. (1) 求证:无法从B中取出无限个数组成等差数列;(2) 能否从B中取出无限个数组成等比数列?试说明理由.

解析: (1) 用反证法证明.设能够从B中取出无限个数组成公差为d的等差数列{am},则am=a1+(m-1)d.当n>d时, ∵ n!+n=n•[(n-1)!+1], ∴ [n!+n],[(n+1)!+(n+1)],[(n+2)!+(n+2)],…除以d所得的余数分别与n,n+1,n+2,…除以d所得的余数相同,且这些余数是逐一递增的,当余数取到d-1后,又周期性重复出现. ∴ 存在n0,使得n0!+n0被d除与am被d除的余数相同,这就说明n0!+n0是等差数列{am}中的项. 而n0!+n0∈A说明n0!+n0?埸B,∴ 假设不成立,即无法从B中取出无限个数组成等差数列.

(2) 能从B中取出无限个数组成等比数列.例如取bm=5m (m∈N*),∵ n!+n=n[(n-1)!+1],当n>5时[(n-1)!+1]不能被5整除,∴ 5m?埸A,∴ 5m∈B,数列{bm}是B中取出无限个数组成的等比数列.

点评: 解决问题(1)的关键,是理解如果某个数是等差数列{am}中的一项,那么这个数被d除所得的余数与数列中任意一项am被d除所得的余数相同. 解决问题(2)则要靠构造法找出不属于集合A但属于集合B的等比数列.

二、递推数列问题

递推数列问题主要考查三种递推数列:线性递推数列、分式型递推数列、混合型递推数列.解决递推数列问题时,如果能求出通项,一般要先求出通项;如果无法求出通项,则要研究递推数列所满足的性质.

例4(2010年“华约”自主招生考试第15题) 函数f(x)=,设x1=3,xn+1=f(xn),n∈N*. 证明: xn-2≤.

补充知识:方程f(x)=x的根叫做函数f(x)的不动点,利用不动点可求出数列的通项公式. 对于an+1=形式的递推数列{an},不动点为方程=x的解. 当方程=x有两个不同的解α,β时,将α,β分别代入an+1=,由=整理可得=k•的形式,令bn=,原问题就转化为等比数列问题. 当方程=x只有一个不动点α时,对an+1=两边同时减去α再取倒数,得=,该式可转化为=k+的形式,令bn=,原问题就转化为等差数列问题.

解析: 由题意得xn+1=,设不动点为λ,则λ=,解得λ=±2. 由xn+1-λ=-λ可得 xn+1+2=(①),xn+1-2=(②),①式除以②式可得=-3•. ∵ x1=3, ∴ 数列是首项为5、公比为-3的等比数列, ∴ =5×(-3)n-1,整理可得xn-2=.

要证xn-2≤,只需证明4×3n-1≤5×(-3)n-1-1. 至此,需讨论n的奇偶性.若n=2k(k∈N*),则5×(-3)n-1-1=5×32k-1+1≥4×32k-1;若n=2k-1(k∈N*),则只需证明4×32k-2≤5×32k-2-1,即32k-2≥1,该式显然成立. xn-2≤得证.

例5 (2009年中国科技大学自主招生考试第11题) 正数数列{xn},{yn}满足:xn+2=2xn+1+xn,yn+2=yn+1+2yn (n∈N*). 证明:存在正整数n0,对任意n>n0,xn>yn恒成立.

补充知识:我们把二次方程x2=c1x+c2称为数列递推式an=c1an-1+c2an-2 (n≥3,n∈N*)的特征方程. 设x1,x2是此特征方程的两根(即特征根),则当x1≠x2时,an=α1+α2;当x1=x2时,an=(β1+β2n). 其中待定常数α1,α2,β1,β2均由初始值a1,a2确定.

解析:例5中的两个递推数列都是线性递推数列,可以用特征根法求出通项公式,再根据数列的特点比较xn和yn的大小.

xn+2=2xn+1+xn对应的特征方程为x2-2x-1=0,其特征根为1-,1+. yn+2=yn+1+2yn对应的特征方程为y2-y-2=0,其特征根为-1,2. 设xn=λ1(1-)n+λ2(1+)n,yn=u1•(-1)n+u2•2n,则有xn-yn=[λ1(1-)n-u1(-1)n]+[λ2(1+)n-u2•2n]. ∵x1=λ1(1-)+λ2(1+),x2=λ1(3-2)+λ2(3+2),{xn},为正数数列,可得λ2=•x1+x2>0.同理,u2=(y1+y2)>0. ∵ 1+>2>1,λ2>0,u2>0, ∴ 当n充分大时,λ2(1+)n-u2•2n也充分大.又 λ1(1-)n-u1(-1)n∈(-λ1-u1,λ1+u1),∴存在正整数n0满足xn-yn=[λ1(1-)n-u1(-1)n]+[λ2(1+)n-u2•2n]>0,对任意n>n0,xn>yn恒成立.

三、数列极限问题

作为高等数学的基础,数列极限问题在自主招生考试中出现的频率比较高,但难度一般都不大. 求解数列极限问题一般需掌握三个最基本的极限:(1) C=C(即常数列的极限是其本身);(2) =0 (k为常数);(3) 当q<1时,qn=0.

例6 (2005年复旦大学自主招生考试第5题) (-)= .

解析:-)===1.

点评:求数列极限的基本思路是“先变形,再根据极限的运算法则求解”. 先把问题转化成为“”或者“”的类型,再借助三个基本的极限求出极限.例6通过分子有理化,把“∞-∞”类型的极限题转化成了“”的类型.

例7 (2007年清华大学自主招生考试第2题) 设正三角形的边长为a,Tn+1 是Tn的中点三角形,An为Tn减去Tn+1后剩下的三个三角形的内切圆的面积之和,求Ak.

上一篇:立足岗位做贡献,把好产品质量关下一篇:宣传册设计制作合同书