数列不等式放缩法

2022-07-15

第一篇:数列不等式放缩法

放缩法(不等式、数列综合应用)

“放缩法”证明不等式的基本策略

近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略。

1、添加或舍弃一些正项(或负项)

1、已知an2n1(nN*).求证:an1a1a2...n(nN*). 23a2a3an

1ak2k11111111证明: k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232k

aa1a2n1111n11n1...n(2...n)(1n), a2a3an1232222322

3an1aan12...n(nN*). 23a2a3an1

2若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到.2、先放缩再求和(或先求和再放缩)

2、函数f(x)=4x

14xk,求证:f(1)+f(2)+…+f(n)>n+

12n11(nN*).

2证明:由f(n)= 4n14n=1-111 14n22n

22

11得f(1)+f(2)+…+f(n)>1112221122n 11111n(1n1)nn1(nN*). 424222

此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。

3、先放缩,后裂项(或先裂项再放缩)

k

3、已知an=n ,求证:∑<3.

k=1ak

n

证明:∑

k=

1n

n

2ak

k=

1n

<1+∑

k=

2n

(k-1)k(k+1)

=1k2n

<1+∑

k=2

(k-1)(k+1) (

k+1 +k

-1 )=1+ ∑(

k=2

n

11

-)

(k-1)

(k+1)

=1+1+

1 <2+<3.

(n+1) 2

2本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;

n

1

1例

4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k

1n

证明 0a1

n

11112,an1an,a2a12,a3.当k1时,0ak2a3, 241616

(akak1)ak

2k1

1n11(akak1)(a1an1). 16k11632

本题通过对因式ak2放大,而得到一个容易求和的式子

5、逐项放大或缩小

(a

k

1n

k

ak1),最终得出证明.n(n1)(n1)

2an例

5、设an22334n(n1)求证: 22122n1

2证明:∵ n(n1)nnn(n1)(n)

22

2n

1∴ nn(n1)

13(2n1)n(n1)(n1

)2

an∴ 123nan, ∴

222

2n1

本题利用n,对an中每项都进行了放缩,从而得到可以求和的数列,达到化简

的目的。

6、固定一部分项,放缩另外的项;

6、求证:

11117 122232n2

4证明:

111

1

n2n(n1)n1n

11111111151171()(). 122232n22223n1n42n4

此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分

别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

7、利用基本不等式放缩

7、已知an5n

41对任何正整数m,n都成立.1,只要证

5amn1aman. 因为 amn5mn4,aman(5m4)(5n4)25mn20(mn)16, 故只要证

5(5mn4)125mn20(mn)16 即只要证

20m20n37

因为aman5m5n85m5n8(15m15n29)20m20n37, 所以命题得证.

本题通过化简整理之后,再利用基本不等式由aman放大即可.

8、先适当组合, 排序, 再逐项比较或放缩 例

8、.已知i,m、n是正整数,且1(1+n)

i

i

n

m

证明:(1)对于1

Aimmm1Aimnn1mi1ni

1,同理, mmmnnnmini

由于m

nkmk

, 

nm

AinAim

所以ii,即miAinniAim

nm

(2)由二项式定理有:

22nn

(1+m)n=1+C1nm+Cnm+…+Cnm, 22mm(1+n)m=1+C1mn+Cmn+…+Cmn,

由(1)知

mAin

i

>nAim

i

(1

Cim

AimiAin

,Cn= i!i!

∴miCin>niCim(1

00222211

∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,…, mmm+1m1mmCmCn>0,…,mnCnn>nCm,mn>0, 2222nn1mm∴1+C1nm+Cnm+…+Cnm>1+Cmn+Cmn+…+Cmn,

即(1+m)n>(1+n)m成立.以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.

第二篇:放缩法证明数列不等式经典例题

放缩法证明数列不等式

主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n

1144112()

22n4n1(2n1)(2n1)2n12n1n24

2.  2

)

 





 4.

2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.

n22(n1)n11 n(n1)2n1n(n1)2n1n2n(n1)2n1

x2xn*c(nN)例1.设函数y的最小值为,最大值为,

且abnnn2x1

(1)求cn;(2)证明:

例2.

证明:161

例3.已知正项数列an的前n项的和为sn,且an

2(1)求证:数列sn是等差数列; 11117 444c14c2c3cn417 12sn,nN*; an

(2)解关于数列n的不等式:an1(sn1sn)4n8

(3)记bn2sn,Tn

2 331111Tn

,证明:1 2b1b2b3bn

例4. 已知数列an满足:n2anan1; 是公差为1的等差数列,且an1nn

(1) 求an;(2

2 例5.在数列an中,已知a12,an1an2anan1;

(1)求an;(2)证明:a1(a11)a2(a21)a3(a31)an(an1)3

2n1an例6. 数列an满足:a12,an1; n(n)an22

5112n

(1)设bn,求bn;(2)记cn,求证:c1c2c3cn 162n(n1)an1an

例7. 已知正项数列an的前n项的和为sn满足:sn1,6sn(an1)(an2);

(1)求an;

(2)设数列bn满足an(2n1)1,并记Tnb1b2b3bn, b

求证:3Tn1log2n

(a3)(函数的单调性,贝努力不等式,构造,数学归纳法)

例8. 已知正项数列an满足:a11,nan1(n1)an1 , anan1

记b1a1,bnn[a1

(1)求an;

(2)证明:(1

2111](n2)。 222a2a3an11111)(1)(1)(1)4 b1b2b3bn4

第三篇:放缩法证明数列不等式的基本策略

广外外校姜海涛

放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从而向结论转化,其难度在于放缩的合理和适度。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧从而充满思考性和挑战性。为了帮助更多的学生突破这一难点,我们从以下几个方面对放缩法证明数列不等式的基本策略进行分析。

一、常见的放缩方法

常见的放缩方法法有:

1.“添舍”放缩:对不等式一边添项或舍项以达到放大和缩小的效果;

2.分式放缩:分别放缩分子、分母或者同时放缩分子分母以达到放缩的效果;

3.利用重要的不等式或结论放缩:把欲证不等式变形构造,然后利用已知的公式或恒不等式进行放缩,例如均值不等式、柯西不等式、绝对值不等式、二项式定理、贝努力公式、真分数性质等。

4.单调性放缩:挖掘不等式的结构特征和函数内涵来构造单调数列或单调函数,利用单调性、值域产生的不等关系进行放缩。

二、常见的放缩控制

当我们选择了正确的放缩方法后,却往往会在放缩的过程中不知不觉间失控,导致放缩的过大或过小,达不到欲证的目标。那么如何控制好放缩的尺度呢?

例1.求证:11117 122232n2

4分析1:不等式左边不能直接求和,我们希望通过合适的放缩后可以求和。 1111 (n2) ”的方法向右端放大, n2n(n1)(n1)n

111111171111()()()22 则左边11223n1nn41223(n1)n若采取“

很明显,放得有点大了,导致传递性失败,不等式链中断,放缩失败。那怎么办呢?

1.调整放缩的“量”的大小

分析2:分析1中“放”的有点过大,因为11,放大了1111,所以可以22212432318

通过调整放大的“量”来控制放缩的效果。在

减少1,即11分母减少了n,我们可以把分母只n2n(n1)11111()n2),这样放的量就少了。 22nn12n1n

11111111111111117)=1+(1)<1+(1)= 证明:左边<1()()()+(2132435n1n122nn1224

2.调整放缩的“项”的起点

分析3:分析1中从第二项开始放缩,放的最终有点大。可以调整放缩的项数,从第三项开始放缩。 证明:左边1111117171111()() 423n1n4n4423(n1)n

由此可见,调整成功。显然从第三项开始放缩所得的结果比从第二项开始放缩所得的结果又更小些。以此类推,当放缩的项数越少,放缩后的结果就会越来越精细,越来越逼近目标。

除此之外,还可以调整放缩的次数,通过多次放缩的调整来达到效果;有时也可以根据欲证式子

的结构特点,把相邻的项分组捆绑后进行放缩,也可以达到控制放缩合理和尺度的效果。

三、常见的问题类型

数列型不等式的一边常与求和有关,所以可以通过放缩后求和(或求和后放缩)来达到欲证的目标。 一. 放缩与“公式法求和”

选择恰当的放缩方法,通过“通项”的适度放缩使之转化为等差或等比数列,从而利用求和达到简化....证题的目的。

n(n1)(n1)

2sn例2

.设Sn 22

分析:此数列通项为ak因为kk

n

k(k1),k1,2,n.k(k1)

1,kk(k1)k 22

k(k1)

n

n(n1)(n1)21

snkSn(k),即 222k1k1

例3.求证:

1111

2 1!2!3!n!

11

k1,k1,2,,n. k!2

分析:通项k!k(k1)2122212k1,

11()n

111111112(1)n12012k1

11!2!3!n!22222

12

例4.已知an2n1,证明:

an1a1a2n

n 23a2a3an12

n

aakn2k12k11

分析:通项k1k1,k,不等式右边得证。

ak121222k1ak12

akak1

n

11

2111111111 k1kkkk

112232(22)232023221

2(2k)4(2k)

22

k

2k

n

ak11n1111n11n1

()()(1),不等式左边得证。k12nn

a2232323322222k1k1k1

二. 放缩与“裂项法求和”

在例1中,不等式的左边无法求和,但通过放缩产生裂项相消的求和效果后,使问题解决。例2的右

边也是利用放缩产生了裂项的效果,然后求和。下面我们再通过几道例题的证明体会裂项求和效果的运用。 例5.求证:2(n11)

1

12

1

3

1n

2n

分析:

n

1k

2kk

2kk1

2(kk1),(k2)



k1

1k

12[(2)(32)(nn1)]12(1n)2n12n 2kk

2kk1

2(k1k)

1k

n



k1

1k

2[(2)(2)(n1n)]2(1n1)2(n11)

n

1n111

例6.已知an(),bn,证明:bk2n

31an1an13k1

分析:bn

111n

1

3n3n13n113n11111nn1nn12nn1 1313131313131

3n1

113n3n1

n

111111111

bk2n[(12)(23)(nn1)]2n(n1)2n

333333333k1bn2

例7.已知f(1)2,f(n1)f(n)f(n),求证:

k1

n

11

f(k)12

分析:f(n1)f(n)[f(n)1],

1111

,

f(n1)f(n)[f(n)1]f(n)f(n)1

111

,

f(n)1f(n)f(n1)

n



k1

111111111

[][][]

f(k)1f(1)f(2)f(2)f(3)f(n)f(n1)f(1)f(n1)

由已知可得f(n)0, 

三. 放缩与“并项法求和” 例8.已知an

k1

n

111



f(k)1f(1)2

2n21117[2(1)n1],n1,证明:对任意整数m4,有 3a4a5am8

n1

分析:通项中含有 (1),把

11

整体捆绑同时结合奇偶性进行适度放缩。 anan1

1131132n12n232n12n2

证明:当n为奇数时, []

anan122n212n11222n32n12n21222n3

即当n为奇数时,当m为偶数且m>4时:

11311(n2n1),且a42, anan1222

11111111131111()()(34m3m2) a4a5ama4a5a6am1am222222

=

13111317

(1m4) 22422482

当m为奇数且m>4时:m1为偶数,

11111117

 a4a5ama4a5amam18

综上可知,对于任意整数m>4,都有

1117

 a4a5am8

例9.求证1

11111n

nn1(n2,nN) 2342212

分析:寻求合适的处理手法,可以通过分组“捆绑”进行放缩。 左边=1

11111111111111()()()(n1nn) 2345678910151621212

1

=1

11111111111111()()()(nnn) 244888816161616222

11111n(共n个)1 222222

四.利用递推关系式放缩

利用递推关系式产生的不等关系,在很多题目中可以起到很好的放缩效果。 例10.已知a13,ak2ak11(k2),求证:

1111

 1a11a21an2

分析:根据欲证不等式的结构特点,通过递推关系式构造关于1ak的不等式

ak2ak11,ak12(ak11)且a114ak1

ak1ak-11a111k1

()2(a11)22242k1

ak12ak-11ak-21a11

12131n1111

左边()()()1-n)

222222

例11.已知an2n1,证明:

1112

 a2a3an13

分析:an2n12n22(2n11)2an1, 

an

2(n2)且a11,a23, an1

n3时,an

左边

anan1a113a22n23,3()n2

an2an1an2a2

1111212

[1()2()n1](1n) 3222332

五.构造和数列后进行放缩

如果数列不等式没有直接的求和的形式,很多时候可以间接的构造和数列,然后进行放缩处理。 例12.已知

nan11111

[log2n],正数列an满足a1b0,an(n2) 23n2nan1

2b

(n2)

2b[log2n]

的递推关系式,然后利用“累加法”把欲证的不等式转化为和数列的形式 an

证明:an

分析:根据已知构造关于

0an

nan1111111

, , (n2)

anan1nanan1nnan1

111111111111

n2()()()

ananan1an1an2a2a1a1nn12b

2b1112b[log2n]

[log2n]0,an

2b[lo2gn]an2b2b

1*

nN,定义数列:,,, {x}x0xf(x)n1n1n2

x2

例13. 已知函数f(x)

若0xk

11(k2,3,4,),证明:对任意mN*都有:xmkxk. k123

4分析:利用递推式构造关于xk1xk的不等式,利用“绝对值不等式”把xmkxk放缩为和数列的形式

由x10得x2

114

, x3 ,当k2时,0xk,

229

xkxk1xkxk1xkxk1xk2xk2111

22∴xk1xk2 2

44xk2xk12(xk2)(xk12)

∴xk1xk

*

xk1xk

xkxk1xk1xk2

xkxk1



111

x3x2()k2x3x2()k2

x3x24418

x4x3

对mN,xmkxk(xmkxmk1)(xmk1xmk2)(xk1xk)

xmkxmk1xmk1xmk2xk1xk 

1111

mk3mk4k218444

11

()k2(1m)18(1)k1118(1)k11(1)k11mk1

182744274343414

上面介绍的数列不等式主要与“求和”的形式有关。如果不等式的一边与求和没有直接的关系,也可以辨析题目的结构特征选择合适的方法进行处理,譬如“构造单调数列”放缩;构造“二项展开式”放缩;

对不等式的局部换元,然后再谋求放缩等。限于篇幅所限,本文就不做阐述了。

总之,运用放缩法进行数列不等式的证明,要认真分析条件和结论的结构特征,明确方向,防止盲目放缩。同时还要多总结、多思考,多掌握一些常用的放缩技巧,以提高分析问题和解决问题的能力。

第四篇:用放缩法证明数列求和中的不等式

近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放缩度,并能自我调整,因此应加强此类题目的训练。

高考题展示:

(2006年全国卷I)设数列an的前n项的和

Sn412an2n1,n1,2,3, 333

n32n

,证明:Ti (Ⅰ)求首项a1与通项an;(Ⅱ)设Tn,n1,2,3,2Sni1

nn解:易求an42(其中n为正整数)

4124122Snan2n14n2n2n12n112n13333333

nn232311Tnn1Sn2212n122n12n11

所以:

T22ii1n3113112n112 (2006年福建卷)已知数列an满足a11,an12an1(nN*). (I)求数列an的通项公式; (II)证明:an1a1a2n...n(nN*). 23a2a3an12解:(I)易求an221(nN*).

ak2k12k11k1,k1,2,...,n, (II)证明:ak1212(2k1)22aaan12...n. a2a3an12ak2k11111111k1.,k1,2,...,n, ak12122(2k11)23.2k2k2232kaaan1111n11n112...n(2...n)(1n), a2a3an12322223223an1aan12...n(nN*). 23a2a3an12

111115S ,证明:nn2122232n23

1 点评:两个高考题向我们说明了数列求和中不等关系证明的两种方法:1.每一项转化为两项差,求和后消去中间项(裂项法)与放缩法的结合;2.用放缩法转化为等比数列求和。 题1. 已知数列an中an

放缩一:1111(n2) 2nn(n1)n1n

111111111111111()() 222222222123n123455667n1n13121113121238924005111. =136400n36400360036003Sn

点评:此种放缩为常规法,学生很容易想到,但需要保留前5项,从第6项开始放大,才能达到证题目的,这一点学生往往又想不到,或因意志力不坚强而放弃。需要保留前5项,说明放大的程度过大,能不能作一下调节? 放缩二:111111(),(n2) n2n21(n1)(n1)2n1n1

111111111111111()() 122232n2122222435n2nn1n151111151115()(). 4223nn142233Sn

点评:此种方法放大幅度较

(一)小,更接近于原式,只需保留前2项,从第3项开始放大,能较容易想到,还能再进一步逼近原式? 放缩三:1111111()2(),(n1) 211111n2n12n1n2(n)(n)nn42222

Sn111111111111512()12()122232n235572n12n132n13本题点评:随着放缩程度的不同,前面需保留不动的项数也随着发生变化,放缩程度越小,精确度越高,保留不动的项数就越少,运算越简单,因此,用放缩法解题时,放缩后的式子要尽可能地接近原式,减小放缩度,以避免运算上的麻烦。

n2n

题2.已知数列an中ann,求证:ai(ai1)3. 21i1

2i12i2i111方法一:ai(ai1)i. iiiii1i1i2121(21)(22)(21)(21)2121

ai(ai1)

i1n

211111111()()()33.121223n1nn(21)21212121212121

方法二:

2i1111ai(ai1)i.(i2) (21)22i22i22i2i22i1

2i22

11111ai(ai1)22n12(1n1)3n13. 22222i1

点评:方法一用的是放缩法后用裂项法求和;方法二是通过放缩转化为等比数列求和,从数值上看方法二较方法一最后结果的精确度高(3

明的结果3。

同类题训练:

1.已知数列a

n中an,Sn是数列的前n

项和,证明:1)Sn n113),但都没超过要证nn12122.点列P(2n,23n)到直线系ln:22nxy2n0中相应直线的距离为dn,

求证:d1d2dn1.

第五篇:放缩法证明“数列+不等式”问题的两条途径

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。

1、 先放缩再求和

例1 (05年湖北理)已知不等式[log

n]表示不超过log

nan1nan1nan1nan

11n

1213

1n12[log

2n],其中n为不大于2的整数,

2

2n的最大整数。设数列an的各项为正且满足

2b2b[log

2

a1b(b0),an(n2,3,4),证明:an

n]

,n3,4,5

分析:由条件an

得:

1an

1an1

1n

1an1

1an1

(n2)

an1an2

1n1

……

1a2

1a1

12

以上各式两边分别相加得:

1an

1a11n

1n11n1



12

1an

1b1b

1n12



12



[logn](n3) 2

=

2b[log

2b

2

n]

 an

2b2b[log

2

n]

(n3)

本题由题设条件直接进行放缩,然后求和,命题即得以证明。

n

例2 (04全国三)已知数列{an}的前n项和Sn满足:Sn2an(1), n1

(1)写出数列{an}的前三项a1,a2,a3; (2)求数列{an}的通项公式; (3)证明:对任意的整数m4,有

1a

41a

5

1am

78

分析:⑴由递推公式易求:a1=1,a2=0,a3=2;

⑵由已知得:anSnSn12an(1)n2an1(1)n1(n>1) 化简得:an2an12(1)n1 an(1)

n

2

an1(1)

n1

2,

an(1)

n

2

32[

an1(1)

n1

23

]

故数列{

an(1)2

n

23

}是以a1

23

为首项, 公比为2的等比数列.故

an(1)

n

12n2n1n

()(2)∴an[2(1)]

333

23[2

n2

∴数列{an}的通项公式为:an

(1)].

n

⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能

够求和。而左边=

1a4

1a5



1am

3[1

221

121



12

m2

(1)

m

],如果我们把

上式中的分母中的1去掉,就可利用等比数列的前n项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

121

121

121

12

12

121

12

12

,因此,可将

121

保留,再将后面的项两两组合后放缩,即可

求和。这里需要对m进行分类讨论,(1)当m为偶数(m4)时,

1a4

1a5

1am

1a412

(3

1a51

1a61

)(

1am11

m2

1am

)

2222

1311

(1m4)

2242137



288

()

(2)当m是奇数(m4)时,m1为偶数,

1a4

1a5

1am

1a4

1a51a4

1a61a5

1am1am

1am178



78

所以对任意整数m4,有

。

本题的关键是并项后进行适当的放缩。

2、 先求和再放缩

例3(武汉市模拟)定义数列如下:a12,an1anan1,nN 证明:(1)对于nN恒有an1an成立。

(2)当n2且nN,有an1anan1a2a11成立。(3)1

12

2006

1a1

1a2



1a2006

1。

分析:(1)用数学归纳法易证。(2)由an1anan1得:

an11an(an1)

an1an1(an11)……

a21a1(a11)以上各式两边分别相乘得:

an11anan1a2a1(a11),又a12an1anan1a2a11(3)要证不等式1

12

2006

1a1

1a21



1a2006

1,

可先设法求和:

1a1

1a2



a2006

,再进行适当的放缩。

an11an(an1)

1an11

1an1

1an

1an1a1

1an11a2

1an111a2006



(

1a111

1a211

)(

1a21

1a31

)(

1a20061

1a20071

)

a11

a200711

1

a1a2a2006

1

又a1a2a2006a1

1

1a1a2a2006

2006

2

2006

1

12

2006

原不等式得证。

本题的关键是根据题设条件裂项求和。

上一篇:设计组长岗位职责下一篇:申论热点精准扶贫