高数课件-函数极限和连续

2024-05-16

高数课件-函数极限和连续(精选13篇)

篇1:高数课件-函数极限和连续

一、函数极限和连续自测题

1,是非题

(1)无界变量不一定是无穷大量

()(2)若limf(x)a,则f(x)在x0处必有定义

()

xx012x(3)极限lim2sinxlimx0

()

xx33x2,选择题

(1)当x0时,无穷小量1x1x是x的()A.等价无穷小

B.同阶但不等价

C.高阶无穷小

D.低价无穷小

x11x0(2)设函数f(x),则x0是f(x)的()x0x0A.可去间断点 B.无穷间断点

C 连续点

D 跳跃间断点

exx0(3)设函数f(x),要使f(x)在x0处连续,则a

()axx0A.2

B 1

C 0

D 1

3n25n1

()(4)lim2n6n3n2A 151

B 

C 

D  2321xsinx0x(5)设f(x),则在x0处f(x)

()

1sinx1x0xA 有定义

B 有极限

C 连续

D左连续

3(6)x1是函数yx1的()x1A 可去间断点

B 无穷间断点

C 连续

D跳跃间断点

3.求下列极限

(1)limxxsinxsin(2x)x23

(2)lim

(3)lim

x0x12xln(12x)x1e2x1(4)lim

(5)limn[ln(1n)lnn]

(6)lim(sinn1sinn)

nnx0x2x3x2(sinx3)tanx2lim()(7)lim

(8)

(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim

(11)lim

(12)lim

xaxxx0xxxax0x232x21sin(x1))(13)lim

(14)lim(2

xx1x1x24,求满足下列条件的a,b的值

1x2xab

(2)lim(3xax2x1)(1)limxx26x2tanaxx0axb2

(4)已知f(x)x(3)lim且limf(x)存在

x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续

2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型

x1x11cosxx21(1)y2

(2)y

(3)f(x)

sinxx3x23xx11x0x(4)f(x)ex1

(5)y

tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a

7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]

nn2

篇2:高数课件-函数极限和连续

第一点函数。函数的概念和性质这些都是高中已经学过的内容,这里主要是以复习的形式来回顾一下,但要提醒考生注意函数的有界性和复合函数运算,要认真理解,因为函数的有界性是新知识,并且对后面知识点的学习起到铺垫的作用,复合函数运算对后面函数的求导、积分等都一定的关系,所以请同学们认真理解。

第二点极限。说起极限,大家都会想起什么呢?是不是想起现阶段极限计算有几种,我们来复习一下:

1)四则运算。在这里要强调一点:什么时候运用四则运算,四则运算要求每个极限都存在,才能有两个函数的极限等于分别求极限之和,否则不能应用四则运算。

2)等价无穷小替换。等价无穷小替换公式可以将极限的计算化简,使得我们更快的求解结果,但这要注意几个问题,第一,什么情况下可以应用等价无穷小替换公式,并不是任何情况下都可以等价替换的.,只有在乘法和除法时可以应用的,这一点请同学们注意,有很多同学不记得这一点,上来就替换,最后算错了。第二,牢记等价无穷小替换公式,掌握它的广义化形式,不要记错公式和没有任何前提的应用广义化形式。

3)洛必达法则。说起这个法则,大家应该都很熟悉,没事“导”两下,但是这个可不是什么情况都能使用洛必达法则的,它是有条件的,三条,你还记得么?另外,洛必达法则并不是上来一个极限就用的,一般情况下是先利用等价无穷替换公式和四则运算等将极限表达式化简,最后再用洛必达法则,前提要验证是不是满足洛必达法则的三个条件,只要是想利用,就必须验证条件,而且这三个条件在历年考研真题中也考察过,请同学们注意。

4)重要极限。重要极限两个公式要牢记,也要掌握它们的广义化形式,灵活应用,会计算幂指函数极限的计算处理方法。

5)单侧极限。单侧极限这里要求在什么情况下要分侧求极限,比如分段函数,指数函数,反正切函数等这都是要分测计算极限的。

6)夹逼准则。一阶复习只需要掌握夹逼准则的内容,会简单的应用。

篇3:浅谈高数中求解函数极限的方法

关键词:高等数学,函数极限,求解

1 函数极限的相关概念及性质

函数的极限与数列的极限比较类似,可以考虑自变量x→+∞时,f(x)所呈现出的变化趋势;也可以考虑当自变量x→a时,f(x)所呈现出的变化趋势。不过与数列的极限相比而言,函数的极限复杂程度比较高,其根本原因就是由于自变量性质的变化呈现出多样性。不过通过分析可以发现,这种复杂性很多时候体现在对极限期定义叙述有所不同等方面,而在其它方面,例如极限的性质、运算以及相关的证明方法等都与数列的极限极为相似。在理解函数的极限概念时,主要有以下两个定义:

第一,设f是定义在[a,+∞)的函数,其中A为实数,在任给的ε>0的条件下,有正数M(≥a)存在,如果x>M,则有|f(x)A|<ε,此时就可以认为在x→+∞A就是函数f的极限,其表达式为:f(x)→A(x→+∞)。第二,假设f(x)函数是在点x0的某个空心邻域U0(x0;δ′)中有定义,此时A为定数,如果对于任给的ε>0,δ(<δ′)>0,使得当0<|x-x0|<δ时则|f(x)-A|<ε,则当x趋于x0时,可以称函数f以A为极限,或者也可以称作A是x→x0时f(x)的极限,其可以记为f(x)→A(x→x0)。由上述两个概念的分析过程就可以体会出函数极限的思想及性质。如果要利用函数极限进行解题,就要对函数极限各种性质进行熟练的掌握。而函数极限的性质可以总结为以下几点:第一,函数极限有局部有界性,即如果f(x)→A(x→x0),则在x0的某个去心邻域内f(x)有界;第二,函数极限表现出显著的唯一性,即当x→x0时,存在f(x)极限,则这个极限是独一无二的;第三,函数极限表现出局部保号性,即如果f(x)→A(x→x0),并且A>0或者<0,则对于任何正数r<A或者r<-A,则在x0某个去心邻域中有f(x)>r>0或者f(x)<-r<0;第四,函数极限表现出相应的迫敛性,即当函数g(x)≤f(x)≤h(x)以及limg(x)=A,limh(x)=A两个条件同时具备时,则imf(x)存在并且等于A。

2 求解函数极限的方法

在求极限的过程中,利用一些运算方法与技巧,以相关的概念、定理和公式为依据进行快速求解。下面我们来看几种求解函数极限的方法。

2.1 利用极限的描述性定义

我们可以将极限的描述性进行如下定义:如果自变量的绝对值|x|无限增大,则函数值f(x)也会相应与常数A无限的接近,此时就可以称当x趋向无穷时函数f(x)以A为极限;或者f(x)收敛至A,可以记为A或f(x)→A(x→∞)。通过上述描述性说明就可以进行函数极限的估算,而且方法非常简单。六种基本初等函数的极限都可以按照描述性定义,与图像相结合后方便的得出。不过对于六类基本的初等函数极限需要牢固的掌握,这也是求解复杂函数极限的基础理论。但是一些极限的定义容易被混淆,在实际应用的过程中要特别注意。

2.2 运用两个重要极限求函数极限

(1)重要极限一。中,sinx和x是两个类型完全不同的函数,但是却可以通过该极限促使三角函数和一次函数之间建立起关系,二者之间的比值得以实现。而且该极限的应用范围非常广泛,在解决一些实际问题时非常有效。例如下题:

某些三角函数相关的极限可以利用该极限方便的求出。比如:

在该重要极限中,x趋近无穷,而x1趋近于0,该条件与上个重要极限一样,要同时满足上述条件才能使用。不过如果使得,因为x→∞,因此y→0,则该重要极限可以进行如下代换:

3 结语

此外,还有四则运算法则等方法,不过因为四则运算方法是最基础的方法之一,它与结构良性知识比较接近,在实际的应用过程中,只需掌握相关四则运算法则就能够将法则直接套用进去最终求解,因此此处不做赘述。总之,高等数学中极限的地位非常突出,而在数列极限与函数极限中,函数极限的作用尤其突出。

参考文献

[1]罗伟.探讨求函数极限的三种常用方法[J].数学学习与研究,2011(1).

[2]扶炜,刘松.常见的函数极限求法分析[J].教育时空,2010(4).

篇4:高数课件-函数极限和连续

关键词: 函数    极限    连续    可导

一、学生在学习高等数学的相关内容中遇到的问题

在判断一函数在某点处的极限是否存在及在该点处是否连续或可导的问题时,学生往往很纠结,经常混为一谈,甚至会出现指鹿为马的现象.

二、如何处理好学生所遇到的相关问题

要想避免把三个不同的问题混为一谈,就必须弄清以下两个充要条件和一个必要条件及导数的定义.

1.函数f(x)当x→x 时极限存在的充要条件是左极限、右极限存在且相等,即

f(x)=A?圳 f(x)= f(x)=A

注:当左、右极限都存在,但不相等,或者二者至少有一个条件不存在时,就可以断言函数f(x)在x 处的极限不存在.

2.函数f(x)在点x 处连续的充要条件是函数在该点处的左、右极限存在、相等且等于该点处的函数值,即函数f(x)在点x 处连续?圳 f(x)= f(x)=f(x ).

注:当函数在点x 存在下列三种情形之一:

(1)在x=x 处无定义;

(2)在x=x 处有定义,但 f(x)不存在;

(3)在x=x 处有定义,且 存在,但 f(x)≠f(x ),则函数f(x)在点x 处不连续.

3.函数y=f(x)在点x 处可导的必要条件是:f(x)在点x 处的左、右导数存在且相等,即f′ (x )=f′ (x ).

4.导数的定义

设函数y=f(x)在点x 的某一领域内有定义,如果极限

=  存在,则称此极限为函数y=f(x)在点x 处的导数,记作

f′(x )或y′| ,即:

f′(x )=  =

此时也称函数f(x)在点x 处可导;若极限不存在,则称函数f(x)在点x 处不可导或导数不存在.

例1:设函数

f(x)=x·sin     x>01    x=0x     x<0

判断函数f(x)在x=0处的极限是否存在及函数在x=0处是否连续?

解:因为 f(x)= x =0, f(x)= x·sin =0

即 f(x)= f(x)=0,故函数f(x)在x=0处的极限存在.

又因为f(0)=1,即: f(x)= f(x)≠f(0),故函数f(x)在x=0处不连续.

例2:选择适当的a、b值,使函数

f(x)=2x        x≤1ax+b    x>1在点x=1处既连续又可导.

解: f(x)= 2x =2, f(x)= (ax+b)=a+b

因f(x)在点x=1处连续,即: f(x)= f(x)=f(1)

故a+b=2

f′ (1)=  =  = 2(x+1)=4

f′ (1)=  =  = a=a

因f(x)在x=1处可导,即f′ (1)=f′ (1)

故a=4,于是b=-2.

所以,当a=4,b=-2时,函数f(x)在x=1处既连续又可导.

例3:判断函数

f(x)=x +1    x≤22x+3    x>2在x=2处的极限是否存在,且在x=2处是否连续、可导?

解:因 f(x)= (x +1)=5, f(x)= (2x+3)=7

即 f(x)≠ f(x)

故函数在x=2处的极限不存在,从而函数在x=2处也不连续.

因f′ (2)=  =  =  =4

f′ (2)=  =  =2

即f′ (2)≠f′ (2)

故函数f(x)在x=2处不可导.

三、结论

一般地,判断函数在某点处的极限是否存在或在该点处是否连续,所讨论的函数都是分段函数,因为一切基本初等函数、初等函数在其定义域内都是连续的,而分段函数一般不是初等函数.

综上所述,要做到能熟练解决以上所提到的问题,不至于将三者混淆起来,只需明确三者之间的共同点都是求极限的问题,而连续的条件比极限存在的条件要多加强一个,不能把只要满足了左、右极限存在且相等就看成是函数在该点处连续.判断函数在某点处是否可导,只需看是否满足左、右导数是否存在且相等即可.

参考文献:

[1]姚孟臣.大学文科高等数学.高教出版社,2010.5.

[2]薛桂兰.高等数学学习指导.高教出版社,2005.6.

[3]沈聪.高等数学.首都经济贸易大学出版社,2010.5.

篇5:高数课件-函数极限和连续

考研高数第一章 函数、极限与连续知识点

考研数学备战在即,基础阶段广大学子应该对考研数学的`基本概念、基本理论、基本方法进行重点把握,为了方便大家更好的复习,考研教育网编辑团队现将20考研数学第一章重要知识点整理如下,为大家考研数学的复习助力!

篇6:函数、极限和连续试题及答案

1.选择题(正确答案可能不止一个)。(1)下列数列收敛的是()。A.xnn1n(1)n

B.xn1n(1)n

C.xnnsinD.xn2n(2)下列极限存在的有()。

A.lim1xsinx

B.xlimxsinx

C.lim11x02xD.limn2n21

(3)下列极限不正确的是()。

A.lim(x1)2

B.lim1x1x0x11 12C.lim4x2xx2

D.xlim0e(4)下列变量在给定的变化过程中,是无穷小量的有()。A.2x1(x0)

B.sinxx(x0)

2C.ex(x)

D.xx1(2sin1x)(x0)1(5)如果函数f(x)xsinx,x0;a,x0;在x0处连续,则a、b的值为(xsin1xb,x0.A.a0,b0

B.a1,b1 C.a1,b0

D.a0,b1 2.求下列极限:

(1)lim(x322x13x1);

(2)xlim2(3x2x5);

(3)lim1x(1x3);

(4)limx30x2x2x;

x28x2(5)limx3x3;

(6)lim16x4x4;

(7)limx21x2x12x2x1;

(8)lim;

x2x2。)(9)limx0cosx1x1;

(10)lim;

xxxx33x1x43x1(11)lim;

(12)lim;

x3x3xx5x4x3x33x19x33x1(13)lim;

(14)lim; 42xxxxx1x3.(15)limx03xsin2x,x023.设f(x)2x1,0x1,求limf(x),limf(x),limf(x),limf(x)。

1x0x3x1x3(x1)3,x124.证明:xsinx~x(x0)。

5.求下列函数的连续区间:

2x1,x1;(1)yln(3x)9x;

(2)y2

x1,x1.26.证明limx2x2不存在.x21xsin,x0;x7.设f(x)求f(x)在x0时的左极限,并说明它在x0时10x.sin,x右极限是否存在?

8.证明lim(n1n121n221nn2)存在并求极限值。

x21axb)0,求a、b的值。9.若lim(xx1

答案

1.(1)B;(2)BD;

(3)C;

(4)ACD ;(5)B.2.(1)-1;(2)3;(3)

21;(4);(5);(6)8;

36(7)21111;

(8);(9);(10)0;(11);(12); 323522(13)0;(14);(15)

1.9x123.limf(x)3, limf(x)不存在, limf(x)x1x03, limf(x)11.2x35.(1)[3,3);

篇7:高数复习笔记之极限与函数

2,如何判断微积分的有界性

3,极限定义做了解,性质:唯一性、保号性、四则运算,若一个极限存在另一个不存在则相加减的极限必不存在、乘除的极限可能存在也可能不存在;若两个极限都不存在那么加减乘除的极限可能存在也可能不存在。举反例:(参考书籍:数学分析中的反例);相除时,分母为0分子不为0则极限为无穷大,若分子分母全为0,极限怎么算?

4,极限的复合运算:若此函数连续则函数符号跟极限符号可以调换位置。

极限存在准则:单调有界数列必有极限;夹逼定理

两类重要极限:书上找

5:无穷大量与无穷小量(即把任何函数的极限为A的问题转化为极限为零的问题)

无穷小量的比较(视频001 2第16分钟):高阶l=0(两个趋近于0的速度前者比后者快)、同阶l不=0(两者趋近于0的速度一样快)、等价l=1(五个等价无穷小的特例:把指数、三角、对数函数转化为求解简单的幂函数)

篇8:第十三章多元函数的极限和连续性

第十三章 多元函数的极限和连续性

§

1、平面点集

一 邻域、点列的极限

定义1 在平面上固定一点M0x0,y0,凡是与M0的距离小于的那些点M组成的平面点集,叫做M0的邻域,记为OM0,。

定义2 设Mnxn,yn,M0x0,y0。如果对M0的任何一个邻域OM0,,总存在正整数N,当nN时,有MnOM0,。就称点列Mn收敛,并且收敛于

M0,记为limMnnM0或xn,ynx0,y0n。

性质:(1)xn,ynx0,y0xnx0,yny0。(2)若Mn收敛,则它只有一个极限,即极限是唯一的。二 开集、闭集、区域

设E是一个平面点集。

1. 内点:设M0E,如果存在M0的一个邻域OM0,,使得OM0,E,就称M0是E的内点。2. 外点:设M1E,如果存在M1的一个邻域OM1,,使得OM1,E,就称M1是E的外点。

3. 边界点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,其中既有E的点,又有非E中的点,就称M*是E的边界点。E的边界点全体叫做E的边界。4. 开集:如果E的点都是E的内点,就称E是开集。

5. 聚点:设M*是平面上的一点,它可以属于E,也可以不属于E,如果对M*的任何邻域OM*,,至少含有E中一个(不等于M*的)点,就称M*是E的聚点。性质:设M0是E的聚点,则在E中存在一个点列Mn以M0为极限。6. 闭集:设E的所有聚点都在E内,就称E是闭集。

7. 区域:设E是一个开集,并且E中任何两点M1和M2之间都可以用有限条直线段所组成的折线连接起来,而这条折线全部含在E中,就称E是区域。一个区域加上它的边界就是一个闭区域。三平面点集的几个基本定理

1.矩形套定理:设anxbn,cnydn是矩形序列,其中每一个矩形都含在前一个矩形中,并且

13-1

《数学分析(1,2,3)》教案

bnan0,dncn0,那么存在唯一的点属于所有的矩形。

2.致密性定理:如果序列Mnxn,yn有界,那么从其中必能选取收敛的子列。

3.有限覆盖定理:若一开矩形集合x,y覆盖一有界闭区域。那么从里,必可选出有限个开矩形,他们也能覆盖这个区域。

N4.收敛原理:平面点列Mn有极限的充分必要条件是:对任何给定的0,总存在正整数N,当n,m时,有rMn,Mm。

§2 多元函数的极限和连续

一 多元函数的概念

不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vrh。这些都是多元函数的例子。

2一般地,有下面定义:

定义1 设E是R的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。

有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xR22x2y2就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式xyR222222的x,y全体,即D{(x,y)|xyR}。又如,Zxy是马鞍面。二 多元函数的极限

2定义2

设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述1 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0yy0时,有f(x,y)A,就称A是13-2

《数学分析(1,2,3)》教案

二元函数在M0点的极限。记为limfMA或fMAMM0。

MM02定义的等价叙述2 设E是R的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有

f0f(x,y)A,就称A是二元函数在M0点的极限。记为limMMMA或fMAMM0 。注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋于M0时,f(M)MM0的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数f(x,y)xyx2y22,讨论在点(0,0)的的二重极限。

例:设二元函数f(x,y)2xyx2y或2,讨论在点(0,0)的二重极限是否存在。

0,例:f(x,y)1,xy其它y0,讨论该函数的二重极限是否存在。

二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:limxyxyx2xyysinxyx2。

例:① limx0y0② lim(xy)ln(xy)③ lim(xy)ex0y0xy2222222(xy)

例:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0coscos32sin23sin0?(注意:cos3sin在374时为0,此时无界)。

xyx22例:(极坐标法再举例):设二元函数f(x,y)y2,讨论在点(0,0)的二重极限.

证明二元极限不存在的方法.

基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关. 例:f(x,y)xyx2y2在(0,0)的二重极限不存在.

13-3

《数学分析(1,2,3)》教案

二元函数的连续性

定义3

设fM在M0点有定义,如果limf(M)f(M0),则称fM在M0点连续.

MM0“语言”描述:0,0,当0

四 有界闭区域上连续函数的性质

有界性定理

若fx,y再有界闭区域D上连续,则它在D上有界。一致连续性定理

若fx,y再有界闭区域D上连续,则它在D上一致连续。

最大值最小值定理

若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。

nP0和P1是D内任意两点,f是D内的连续函数,零点存在定理

设D是R中的一个区域,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。

二重极限和二次极限

在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重极限(二重极限).此xx0yy0外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下:

若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)在yy0时的xx0极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再对y的二次极限,记为yy0limlimf(x,y)A.

yy0xx0同样可定义先y后x的二次极限:limlimf(x,y).

xx0yy0上述两类极限统称为累次极限。

注意:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。例:(二重极限存在,但两个二次极限不存在).设

11xsinysinyxf(x,y)0x0,y0x0ory0

由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y0y01y不存在知f(x,y)的累次极限不存在。

例:(两个二次极限存在且相等,但二重极限不存在)。设

13-4

《数学分析(1,2,3)》教案

f(x,y)xyx2y2,(x,y)(0,0)

由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知limf(x,y)不存在。

x0y0y0x0x0y0例:(两个二次极限存在,但不相等)。设

f(x,y)xx22yy22,(x,y)(0,0)

则 limlimf(x,y)1,limlimf(x,y)1;limlimf(x,y)limlimf(x,y)(不可交换)

x0y0y0x0x0y0y0x0上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。

定理1 设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y)。则

xx0yy0xx0yy0lim(y)limlimf(x,y)A。

yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。推论1

设(1)limf(x,y)A;(2)y,yy0,limf(x,y)存在;(3)x,xx0,limf(x,y)xx0yy0xx0yy0存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限limf(x,y)。

yy0xx0xx0yy0xx0yy0推论2 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限limf(x,y)必不存在(可xx0yy0yy0xx0xx0yy0用于否定重极限的存在性)。例:求函数fx,yxy22222xyxy在0,0的二次极限和二重极限。

篇9:函数极限连续试题

· ·····密·········· ·············································卷···线·································阅·······封········································

函数 极限 连续试题

1.设f(x)

(1)f(x)的定义域;(2)12f[f(x)]2

;(3)lim

f(x)x0x

.2.试证明函数f(x)x3ex2

为R上的有界函数.3.求lim1nnln[(11n)(12

n)

(1nn)].4.设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续.(共12页)第1页

5.求lim(2x3x4x1

x03)x.1(1x)x

6.求lim[

x0e]x.7.设f(x)在[1,1]上连续,恒不为0,求x0

8.求lim(n!)n2

n

.9.设x

axb)2,试确定常数a和b的值.(共12页)第2页

10.设函数f(x)=limx2n1axb

n1x

2n连续,求常数a,b的值.11.若limsin6xxf(x)6f(xx0x30,求lim)

x0x2

.12.设lim

axsinx

x0c(c0),求常数a,b,c的值.xln(1t3)btdt

13.判断题:当x0时,x

1cost2

0t

是关于x的4阶无穷小量.114.设a为常数,且lim(ex

x0

2aarctan1

x)存在,求a的值,并计算极限.ex1

(共12页)第3页

215.设lim[

ln(1ex)x0

1a[x]]存在,且aN,求a的值,并计算极限.ln(1ex)

16.求n(a0).n

17.求limn2(a0,b0).

ln(1

f(x)

18.设lim)

x0

3x1

=5,求limf(x)x0x2.19.设f(x)为三次多项式,且xlim

f(x)f(x)f2ax2axlim4ax4a1,求xlim(x)

3ax3a的值.(共12页)第4页

24.设连续函数f(x)在[1,)上是正的,单调递减的,且

dnf(k)f(x)dx,试证明:数列dn收敛.n

n

20.设x1,求lim(1x)(1x2)(1x4n

n)

(1x2).21.试证明:(1)(1n1111+n)1

为递减数列;(2)n1ln(1n)n,n1,2,3,.limnn

22.求n3nn!

.23.已知数列:a1

112,a222,a32,22

a42

12

1的极限存在,求此极限.22

(共12页)第5页

k1

25.设数列xn,x0a,x1b,求limn

xn.26.求lima2n

n1a2n

.28.求limx

.x1

n2

(xn1xn2)(n2),(共12页)第6页

29.设函数f(x)是周期为T(T0)的连续函数,且f(x)0,试证:

xlim1xx0f(t)dt1TT0f(t)dt.30.求lim1

1n0

x.en

(1x)n

n

31.设lim(1x)x

tetxx

dt,求的值.32.判断函数f(x)limxn1

nxn1的连续性.33.判断函数f(x.(共12页)第7页

34.设f(x)为二次连续可微函数,f(0)=0,定义函数

g(x)

f(0)当x0,试证:g(x)f(x)

x当x0连续可微.35.设f(x)在[a,b]上连续,f(a)f(b),对x(a,b),g(x)lim

f(xt)f(xt)

t0

t

存在,试证:存在c(a,b),使g(c)0.36.若f(x)为[a,b]上定义的连续函数,如果b

a[f(x)]2dx0,试证:

f(x)0(axb).37.设函数f(x)在x=0处连续,且lim

f(2x)f(x)

x0

x

A,试证:f(0)=A.(共12页)第8页

38.设f(x)在[a,b]上二阶可导,过点A(a,f(a))与B(b,f(b))的直线与曲线

yf(x)相交于C(c,f(c)),其中acb.试证:至少存在一点(a,b),使得f()=0.39.设f(x),g(x),h(x)在axb上连续,在(a,b)内可导,试证:

f(a)

g(a)

h(a)

至少存在一点(a,b),使得f(b)

g(b)h(b)=0,并说明拉格朗日中值 f()g()h()

定理和柯西中值定理是它的特例.40.试证明函数ysgnx在x[1,1]上不存在原函数.41.设函数f(x)=nf(x)的不可导点的个数.(共12页)第9页

42.设f(x(0x

),求f(x).43.设xn1(n1,2,3,),0x13,试说明数列xn的极限存在.x0

44.求函数f(x)=sin1

x21

x(2x)的间断点.2cosx

x0

45.求曲线

3的斜渐近线.(共12页)第10页

1

46.求数列nn的最小项.

50.求lim

x.x0

sin1

x

47.求limtan(tanx)sin(sinx)

x0tanxsinx

.48.设f(x)在[0,2]上连续,在(0,2)内有二阶导数,且lim

f(x)

x1(x1)2

1,

f(x)dxf(2),试证:存在(0,2),使得f()=(1+1)f().49.试证:若函数f(x)在点a处连续,则函数f+(x)=maxf(x),0与

f-(x)=minf(x),0在点a处都连续.(共12页)第11页

12页)第12页

篇10:多元函数的极限与连续

第16章

多元函数的极限与连续

计划课时:

0 时

第16章

多元函数的极限与连续(1 0 时)

§ 1

平面点集与多元函数

一.平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.余集Ec.1.常见平面点集:

全平面和半平面 : {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa},{(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域: X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.3. 点与点集的关系(集拓扑的基本概念):

(1)内点、外点和界点:

内点:存在U(A)使U(A)E

集合E的全体内点集表示为intE,.外点:存在U(A)使U(A)E

界点:A的任何邻域内既有E的点也有不属于E的点。E的边界表示为E

集合的内点E, 外点E , 界点不定.例1 确定集E{(x,y)|0(x1)(y2)1 }的内点、外点集和边界.例2 E{(x,y)|0yD(x), x[ 0 , 1 ] } , D(x)为Dirichlet函数.确定集E的内点、外点和界点集.(2)(以凝聚程度分为)聚点和孤立点:

聚点:A的任何邻域内必有属于E的点。

孤立点:AE但不是聚点。孤立点必为界点.例3 E{(x,y)|ysin }.确定集E的聚点集.解

E的聚点集E[ 1 , 1 ].221x 2 4.区域:

(1)(以包含不包含边界分为)开集和闭集: intE E时称E为开集 , E的聚点集E时称E为闭集.intE 存在非开非闭集.(3)有界集与无界集:

(4)

点集的直径d(E): 两点的距离(P1 , P2).(5)

三角不等式:

|x1x2|(或|y1y2|)或(P1,P2)R2和空集为既开又闭集.(2)(以连通性分为)开区域、闭区域、区域:以上常见平面点集均为区域.(x1x2)2(y1y2)2 |x1x2||y1y2|.(P1,P3)(P2,P3)

二.R2中的完备性定理:

1. 点列的极限:

设Pn(xn , yn)R2, P0(x0 , y0)R2.PnP0的定义(用邻域语言)

定义1。

limn0,N,nNPnU(P0,)或(P0,Pn)

例4(xn , yn)(x0 , y0)xnx0, yny0,(n).例5 设P0为点集E的一个聚点.则存在E中的点列{ Pn }, 使limPnP0.n

2.R2中的完备性定理:

(1)Cauchy收敛准则:

.(2).闭域套定理:(3).聚点原理: 列紧性 ,Weierstrass聚点原理.(4)有限复盖定理:

三.二元函数:

1.二元函数的定义、记法、图象:

2.定义域: 例6 求定义域:

ⅰ> f(x,y)3.二元函数求值: 例7 例8 9x2y2x2y21;ⅱ> f(x,y)lny.2ln(yx1)yf(x,y)2x3y2, 求 f(1 , 1), f(1 ,).xf(x,y)ln(1x2y2), 求f(cos , sin).4.三种特殊函数: ⑴ 变量对称函数: f(x,y)f(y,x),例8中的函数变量对称.⑵ 变量分离型函数: f(x,y)(x)(y).例如

zxye2x3y, zxy2xy2, f(x,y)(xyy)(xyx)等.(xy)2 4 但函数zxy不是变量分离型函数.⑶ 具有奇、偶性的函数

四.n元函数

二元函数 推广维空间 记作R n

作业 P9—8.§ 2 二元函数的极限

一.二重极限

二重极限亦称为全面极限

1.二重极限

定义1 设f为定义在DR上的二元函数,P0为D的一个聚点,A是确定数 若 0,0,或

2PU0(P0,)D,f(P)A则limf(P)A

PP0(x,y)(x0,y0)limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.xy20.例2 用“”定义验证极限 lim2x0xy2y0例3 x2y2,(x,y)(0,0),xyf(x,y)x2y2

0 ,(x,y)(0,0).f(x,y)0.(用极坐标变换)

P94 E2.证明

(x,y)(0,0)lim2.归结原则:

定理 1

limf(P)A, 

对D的每一个子集E , 只要点P0是E的聚点 , PP0PD就有limf(P)A.PP0PE

推论1

设E1D, P0是E1的聚点.若极限limf(P)不存在 , 则极限limf(P)也不存在.PP0PE1PP0PD

推论2

设E1,E2D, P0是E1和E2的聚点.若存在极限limf(P)A1,PP0PE1PP0PE2limf(P)A2, 但A1A2, 则极限limf(P)不存在.PP0PDPP0PD

推论3

极限limf(P)存在,  对D内任一点列{ Pn }, PnP0但PnP0, 数列{f(Pn)}收敛.通常为证明极限limf(P)不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限PP0不相等, 或证明极限与方向有关.但应注意 , 沿任何方向的极限存在且相等  全面极限存在

例4 xy ,(x,y)(0,0), 证明极限limf(x,y)不存在.f(x,y)x2y2(x,y)(0,0)0 ,(x,y)(0,0).6 例二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>

(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>

3.极限(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxy(x,y)(x0,y0)limf(x,y)的定义:

2定义2.设f为定义在DR上的二元函数,P0为D的一个聚点,若 M0,0,或

PU0(P0,)D,f(P)M则limf(P)

PP0(x,y)(x0,y0)limf(x,y)

其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3y二.累次极限

二次极限

1.累次极限的定义:

定义3.设Ex,EyR,x0,y0分别是Ex,Ey的聚点,二元函数f在集合ExEy上有定义。若对每一个yEyyy0存在极限limf(x,y)

记作(y)limf(x,y)

xx0xExx0xE若Llim(y)存在,则称此极限为二元函数f先对x后对y的累次极限

yy0yEy记作Llimlim(y)

简记Llimlim(y)

yy0xx0yEyxExyy0xx0例8 f(x,y)xy, 求在点(0 , 0)的两个累次极限.x2y2 7 例9 x2y2, 求在点(0 , 0)的两个累次极限.f(x,y)22xy11ysin, 求在点(0 , 0)的两个累次极限.yx例10 f(x,y)xsin2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1在点(0 , 0)的情况.y

⑶ 二重极限存在时, 两个累次极限可以不存在.例如例10中的函数, 由 , y)(0,0).可见全面极限存在 , 但两个累次极限均不存在.|f(x,y)|  |x||y|0 ,(x

⑷ 两个累次极限存在(甚至相等)

二重极限存在.(参阅例4和例8).综上 , 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.定理2 若二重极限

推论1 二重极限和两个累次极限三者都存在时 , 三者相等.推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 二重极限不存在.但两个累次极限中一个存在 , 另一个不存在 

二重极限不存在.参阅⑵的例.(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在 , 则必相等.xx0yy0

作业提示: P99 1、2、4

§ 3 二元函数的连续性(4 时)

一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:

定义

用邻域语言定义相对连续.全面连续.函数f(x,y)有定义的孤立点必为连续点.例1 xy22 , xy0 ,22xy

f(x,y)m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例2

f(x,y)

([1]P124 E4)0 , 其他.证明函数f(x,y)在点(0 , 0)沿任何方向都连续 , 但并不全面连续.函数的增量: 全增量、偏增量.用增量定义连续性.函数在区域上的连续性.2.二元连续(即全面连续)和单元连续 :

定义

(单元连续)

二元连续与单元连续的关系: 参阅[1]P132 图16—9.3.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.仅证复合函数连续性.二.二元初等函数及其连续性:

二元初等函数 , 二元初等函数的连续性.三.一致连续性: 定义.四.有界闭区域上连续函数的性质:

1.有界性与最值性.(证)

2.一致连续性.(证)

3.介值性与零点定理.(证)

Ex

[1]P136—137 1 ⑴—⑸,2,4,5;

P137—138

篇11:函数极限与连续习题(含答案)

(2)若

(3)若

(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2)

2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义)

3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0))

xx04、已知f(x)1

x,则limf(xx)f(x)的值是(C、1)

x0xx2

x125、下列式子中,正确的是(B、limx11)2(x1)

26、limxaxb5,则a、x11xb的值分别为(A、7和6)

7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8)

x3x38、limxa

xxaa(D、3a2)

29、当定义f(1)f(x)1x

2在x1处是连续的。1x10、lim16x12。

x27x31111、lim12、x21xxx12x31

limx2x112 3x1113、lim(x2xx21)1

x

214、lim(x2xx21)1

x2

x,0x1115、设(1)求xf(x),x1

2

1,1x2

1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。

篇12:一元函数极限与连续知识(框架)

函数基本初等函数初等函数特殊性质(4个)yf(x)合函数非初等函数复

无穷大limf(x)

xx0

极限充要条件limf(x)A 无穷小limf(x)0xx左右极限x0x0

阶性质

重要极限|极限 存在准则

间断点运算性质x0闭区间上连续limf(x)f(x0)连续limy0 充要条件左右连续

xx0

篇13:高数课件-函数极限和连续

高等数学

教学备课系统

与《高等数学多媒体教学系统(经济类)》配套使用

教师姓名:________________________

教学班级:________________________

2004年9月1至2005年1月10

高等数学教学备课系统

第一章

函数、极限与连续

第一节 函数概念

1、内容分布图示

★ 集合的概念

★ 集合的运算

★ 区间

★ 例

1★ 邻域

★ 例2

★ 常量与变量

★ 函数概念

★ 例

3★ 例

4★ 例★ 例6

★ 例7

★ 例8

★ 分段函数举例

★ 例9

★ 例 10

★ 例 11

★ 函数关系的建立

★ 例 12

★ 例 13

★ 例 14

★ 函数特性

★ 内容小结

★ 课堂练习

★习题1-1

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1解下列不等式,并将其解用区间表示.(1)|2x1|3;(2)|3x2|3;(3)0(x1)29.讲解注意:

例2将点12的邻域表示为不带绝对值的不等式.33

讲解注意:

高等数学教学备课系统

例3函数y2.讲解注意:

例4绝对值函数y|x|x,x0x,x0

讲解注意:

例5下面是几个常见的表格.(1)2002年2月21日国务院公布的利率表.如表1.1.1.表1.1.1时间年利率(%)3个月6个月1年1.711.891.982年2.253年2.525年2.79(2)国民生产总值统计表《中国统计年鉴((2001)》).如表1.1.2.表1.1.2年份生产总值(亿元)******.966850.573142.776967.280579.488189.6

讲解注意:

例6下面是几个常见的图形.(1)两位患者的心电图.见图1.1.1.图1.1.1(2)19952000年天津市人才市场状况图《天津年鉴((2001)》).见图1.1.2.高等数学教学备课系统

人数(人)55 00044 00033 00022 00011 00001995达成意向人次进场人次***92000年份图1.1.2

讲解注意:

例7下面是几个常见的公式.(1)自由落体运动的距离公式:12gt,g为常数2(2)成本函数(costfunctiong):C(x)C0C1(x),其中C0为S固定成本;C1(x)为可变成本;x为生产量.讲解注意:

例8判断下面函数是否相同,并说明理由,画图表示.(1)yx2与y|x|;(2)y1与ysin2xcos2x(3)y2x1与x2y1.讲解注意:

例9求函数y 讲解注意:

121x x2的定义域.例10设f(x)讲解注意:

1,0x12,1x2,求函数f(x3)的定义域.高等数学教学备课系统

例11求函数f(x)讲解注意:

lg(3x)sinx54xx2的定义域.例12把一半径为R的圆形铁片,自中心处剪去圆心角为的扇形后,围成一无底圆锥,试将圆锥的体积V表为的函数.讲解注意:

例13某工厂生产某型号车床,年产量为a台,分若干批进行生产,每批生产准备费为b元,设产品均匀投入市场,且上一批用完后立即生产下一批,即平均库存量为批量的一半.设每年每台库存费为c元.显然,生产批量大则库存费高;生产批量少则批数增多,因而生产准备费高.为了选择最优批量,试求出一年中库存费与生产准备费的和与批量的函数关系.讲解注意:

例14某运输公司规定货物的吨公里运价为:在a公里以内,每公里k元,超过部分每公里为数关系.讲解注意:

例15证明(1)函数y(2)函数yxx21在(,)上是有界的;4k元.求运价m和里程s之间的函5

1在(0,1)上是无界的.x2

讲解注意:

例16证明函数y讲解注意:

x在(1,)内是单调增加的函数.1x

高等数学教学备课系统

例17判断下列函数的奇偶性.(1)f(x)ex1ex1ln1x1x1x1;(2)f(x)(23)x(23)x;(3)f(x)lg(x1x2);(4)f(x)(x2x)sinx.讲解注意:

例18设f(x)满足af(x)bf|a||b|,证明f(x)是奇函数.c,其中a,b,c为常数,且(1)xx

讲解注意:

1,xQ7,求D,D(1例19设D(x)50,xQ()2).并讨论D(D(x))的性质.讲解注意:

例20若f(x)对其定义域上的一切x,恒有f(x)f(2ax),则称f(x)对称于xa.证明:若f(x)对称于xa及xb(ab),则f(x)是以T2(ba)为周期的周期函数.讲解注意:

高等数学教学备课系统

第二节 初等函数

1、内容分布图示

★ 反函数

★ 例★ 例2 ★ 复合函数

★ 例★ 例4

★ 例★ 例6

★ 例7

★ 幂函数、指数函数与对数函数

★ 三角函数

★ 反三角函数

★ 初等函数

★ 函数图形的迭加与变换

★ 内容小结

★ 课堂练习

★习题1-2

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1求函数y1114x14x的反函数.讲解注意:

例2已知1,x0sgnx0,x0,sgnx为符号函数,1,x0求y(1x2)sgnx的反函数.讲解注意:

高等数学教学备课系统

例3将下列函数分解成基本初等函数的复合.(1)ylnsin2x;(2)yearctanx2;(3)ycos2ln(21x2).讲解注意:

例4设f(x)x1,(x)x2,求f[(x)]及[f(x)],并求它们的定义域.讲解注意:

例5设求f[(x)].f(x)exx,x1,x1,x2,(x)2x1,x0x0,讲解注意:

例6设fx讲解注意:

(11x22,求f(x).xx)

例7设f(x)ln(3x)的定义域(a0).149x2,求g(x)f(xa)f(xa)

讲解注意:

高等数学教学备课系统

第三节 经济学中的常用函数

1、内容分布图示

★ 单利与复利

★ 例1

★ 多次付息

★ 贴现

★ 例2 ★ 需求函数

★ 供给函数

★ 市场均衡

★ 例

3★ 例4 ★ 成本函数

★ 例5

★ 收入函数与利润函数

★ 例6

★ 例7

★ 例8

★ 例9

★ 内容小结

★ 课堂练习

★习题1-3

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1现有初始本金100元,若银行年储蓄利率为7%,问:(1)按单利计算,3年末的本利和为多少?(2)按复利计算,3年末的本利和为多少?(3)按复利计算,需多少年能使本利和超过初始本金的一倍?

讲解注意:

例2某人手中有三张票据,其中一年后到期的票据金额是500元,二年后到期的是800元,五年后到期的是2000元,已知银行的贴现率6%,现在将三张票据向银行做一次性转让,银行的贴现金额是多少?

讲解注意:

高等数学教学备课系统

例3某种商品的供给函数和需求函数分别为qd25P10,qs2005P求该商品的市场均衡价格和市场均衡数量.讲解注意:

例4某批发商每次以160元/台的价格将500台电扇批发给零售售商,在这个基础上零售商每次多进100台电扇,则批发价相应降低2元,批发商最大批发量为每次1000台,试将电扇批发价格表示为批发量的函数,并求出零售商每次进800台电扇时的批发价格.讲解注意:

例5某工厂生产某产品,每日最多生产200单位.它的日固定成本为150元,生产一个单位产品的可变成本为16元.求该厂日总成本函数及平均成本函数.讲解注意:

例6某工厂生产某产品年产量为q台,每台售价500元,当年产量超过800台时,超过部分只能按9折出售.这样可多售出200台,如果再多生产.本年就销售不出去了.试写出本年的收益(入)函数.讲解注意:

例7已知某厂生产单位产品时,可变成本为15元,每天的固定成本为2000元,如这种产品出厂价为20元,求(1)利润函数;(2)若不亏本,该厂每天至少生产多少单位这种产品.讲解注意:

例8某电器厂生产一种新产品,在定价时不单是根据生产成本而定,还要请各销售单位来出价,即他们愿意以什么价格来购买.根据调查得出需求函数为x900P45000.该厂生产该产品的固定成本是270000元,而单位产品的变动成本为10元.为获得最大利润,出厂价格应为多少?

讲解注意:

高等数学教学备课系统

例9已知某商品的成本函数与收入函数分别是C123xx2R11x试求该商品的盈亏平衡点,并说明盈亏情况.讲解注意:

高等数学教学备课系统

第四节 数列的极限

1、内容分布图示

★ 极限概念的引入

★ 数列的意义 ★ 数列的极限

★ 例1

★ 例

2★ 例

3★ 例

4★ 例

5★ 例6 ★ 收敛数列的有界性

★ 极限的唯一性

★ 例7

★ 收敛数列的保号性

★ 子数列的收敛性

★ 内容小结

★习题1-4

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1证明limn(1)n1n1.n

讲解注意:

例2证明limqn0,其中q1.n

讲解注意:

例3用数列极限定义证明52n2.n13n3lim

讲解注意:

高等数学教学备课系统

n221.例4用数列极限定义证明lim2nnn1

讲解注意:

例5设xn0,且limxna0,求证limnnxna.讲解注意:

例6证明:若limxnA,则存在正整数N,当nN时,不等式n|xn||A|2成立.讲解注意:

例7证明数列xn(1)n1是发散的.讲解注意:

高等数学教学备课系统

第五节 函数的极限

1、内容分布图示

★ 自变量趋向无穷大时函数的极限

★ 例★ 例★ 例3 ★ 自变量趋向有限值时函数的极限

★ 例★ 例5

★ 左右极限

★ 例6

★ 例7 ★ 函数极限的性质

★ 子序列收敛性 ★ 函数极限与数列极限的关系

★ 内容小结

★ 课堂练习

★习题1-5

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1证明lim讲解注意:

sinx0.xx

例2用函数极限的X定义证明limxx21.x1

讲解注意:

例3(1)lim12xx0;(2)lim2x0.x

讲解注意:

高等数学教学备课系统

例4证明limx212.x1x1

讲解注意:

例5证明:当x00时,lim讲解注意:

xx0xx0.例6设f(x)讲解注意:

例7验证lim1x,x01,x0x2,求limf(x).x0

x0x不存在.x

讲解注意:

高等数学教学备课系统

第六节 无穷大与无穷小

1、内容分布图示

★ 无穷小

★ 无穷小与函数极限的关系

★ 例1 ★ 无穷小的运算性质

★ 例2 ★ 无穷大

★ 无穷大与无界变量

★ 无穷小与无穷大的关系

★ 例3

★ 内容小结

★习题1-6

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

1例1根据定义证明:yx2sinx当x0时为无穷小.讲解注意:

例2求lim讲解注意:

xsinx.x

x4.例3求lim3xx5讲解注意:

高等数学教学备课系统

第七节 极限运算法则

1、内容分布图示

★ 极限运算法则

★ 例1

★ 例2 –3

★ 例★ 例★ 例6

★ 例7

★ 例8

★ 例9

★ 例 10

★ 例 11 ★ 复合函数的极限运算法则

★ 例 12

★ 例 13

★ 内容小结

★ 课堂练习

★习题1-7

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1求x31xlim2x23x5.讲解注意:

例2求lim4x1x22x3.x1

讲解注意:

例3求limx21.x1x22x3

讲解注意:

★ 例 14

高等数学教学备课系统

例4求lim讲解注意:

2x33x257x34x21x.例5求lim讲解注意:

x12n222nnn

例6计算下列极限:x1lim(1x)(1x)(1x)(1x)334.讲解注意:

例7计算下列极限:12lim.x11x21x

讲解注意:

例8计算下列极限:3xlim8x36x25x1.3x2

讲解注意:

例9计算下列极限:xlim(sinx1sinx).讲解注意:

例10求lim(x2xx2x).x8

讲解注意:

高等数学教学备课系统

例11计算下列极限:3(1)limnn2sinn!;n1(2)x0limtanx12ex.讲解注意:

例12已知x1,f(x)x23x1,x31xx0x0求limf(x),limf(x),limf(x).x0x

讲解注意:

例13求极限limlnx1[x21.2(x1)]

讲解注意:

例14已知lim(5xax2bxc)2,求a,b之值.x

讲解注意:

高等数学教学备课系统

第八节 极限存在准则

两个重要极限

1、内容分布图示

★夹逼准则★例1★例2★单调有界准则★例4★limsinx1x0x★例6★例7★例9★例10 x★xlim(11x)e★例12 ★例13 ★例15 ★例16 ★例17 柯西极限存在准则★连续复制★内容小结★课堂练习★习题1-8★返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1求nlim1n211n221n2n

讲解注意:

例2计算下列极限:(1)lim(1nn23n1)n;(2)1nlimn21(n1)21(nn)2

讲解注意:

★例3★例5★例8★例11★例14★例18

高等数学教学备课系统

例3证明下列极限:n0(a1);nanan(2)lim0(a0);nn!n!(3)limn0.nn(1)lim

讲解注意:

例4证明数列xn333(n重根式)的极限存在.讲解注意:

例5设a0为常数,数列xn由下式定义:xn1axn1xn12n

(n1,2,)其中x0为大于零的常数,求limxn.讲解注意:

例6求lim讲解注意:

tan3x.x0sin5x

例7求lim讲解注意:

x01cosx.x2

例8下列运算过程是否正确:xlimxtanxtanxxtanxlimlimlim1.sinxxxsinxxxxsinx

讲解注意:

高等数学教学备课系统

例9计算lim讲解注意:

cosxcos3x.2x0x

例10计算lim讲解注意:

x21xsinxcosxx0.例11计算lim讲解注意:

x02tanx2sinx.x3

1例12求lim1xx讲解注意:

().x

例13计算下列极限:limx01x(12x);

讲解注意:

例14求lim1n(1n)n3.讲解注意:

例15求lim讲解注意:

x(x2x21)x.例16计算limxx0cosx.高等数学教学备课系统

讲解注意:

例17计算lim(ex0x1xx).讲解注意:

tan2x.例18求极限lim(tanx)x4

讲解注意:

高等数学教学备课系统

第九节 无穷小的比较

1、内容分布图示

★ 无穷小的比较

★ 例1-2

★ 例3 ★ 常用等价无穷小

★ 等价无穷小替换定理

★ 例★ 例★ 例6

★ 例7

★ 例8

★ 例9

★ 例 10

★ 例 11

★ 内容小结

★ 课堂练习

★习题1-9 ★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1证明:当x0时,4xtan3x为x的四阶无穷小.讲解注意:

例2当x0时,求tanxsinx关于x的阶数.讲解注意:

例3当x1时,试将下列各量与无穷小量x1进行比较:(1)x33x2;(2)lgx;(3)(x1)sin1.x1

讲解注意:

高等数学教学备课系统

例4求limx0tan2x.sin5x

讲解注意:

例5求limtanxsinx.sin32xx0

讲解注意:

(1x2)1/31.例6求limx0cosx1

讲解注意:

例7计算lim1tanx1tanx12x1.x0

讲解注意:

exexcosx.例8计算limx0xln(1x2)讲解注意:

例9计算lim讲解注意:

x021cosx.sin2x

例10求lim讲解注意:

x0ln(1xx2)ln(1xx2).secxcosx

例11求limx0tan5xcosx1.sin3x

高等数学教学备课系统

讲解注意:

高等数学教学备课系统

第十节 函数的连续性与间断点

1、内容分布图示

★ 函数的连续性

★ 例

1★ 例2 ★ 左右连续

★ 例3

★ 例

4★ 例5 ★ 连续函数与连续区间

★ 例6

★ 函数的间断点

★ 例7

★ 例8

★ 例9

★ 例 10

★ 例 11

★ 例 12

★ 内容小结

★ 课堂练习

★习题1-10

★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

xsin1,x0,x例1试证函数f(x)在x0处连续.x0,0,讲解注意:

例2f(x)是定义于[a,b]上的单调增加函数,x0(a,b),若xx0limf(x)存在,证明f(x)在x0连续.讲解注意:

x2,x0,()fx3例讨论在x0处的连续性.x2,x0,高等数学教学备课系统

讲解注意:

1x,x02x0在x0和x1处的连例4讨论函数f(x)0,1x2,0x1x14x,续性.讲解注意:

x4axb,x1,x2,例5设f(x)(x1)(x2)为使f(x)在x1x1,2,处连续,a与b应如何取值?

讲解注意:

例6证明函数ysinx在区间(,)内连续.讲解注意:

例7讨论函数f(x)x,x0,1x,x0,在x0处的连续性.讲解注意:

例8讨论函数2x,0x1f(x)1,x1x11x,在x1处的连续性.讲解注意:

1,x0,x例9讨论函数f(x)在x0处的连续性.,0,xx

讲解注意:

高等数学教学备课系统

例10求下列函数的间断点,并判断其类型.若为可去间断点,试补充或修改定义后使其为连续点.x2x|x|(x21),f(x)0,x1及0x1

讲解注意:

xsin1,x0,x例11研究f(x)在x0的连续性.ex,x0,

讲解注意:

xx2enx例12讨论f(x)lim的连续性.n1enx

讲解注意:

高等数学教学备课系统

第十一节 连续函数的运算与性质

1、内容分布图示

★ 连续函数的算术运算

★ 复合函数的连续性

★ 例1★ 初等函数的连续性

★ 例

3★ 例★ 例4

闭区间上连续函数的性质 ★ 最大最小值定理与有界性定理

★ 零点定理与介值定理

★ 例5

★ 例6

★ 例7

★ 内容小结

★ 课堂练习★习题1-11 ★ 返回

2、讲解注意:

3、重点难点:

4、例题选讲:

例1求nlimcos(x1x).讲解注意:

例2求limln(1x)x0x.讲解注意:

例3求limx1sinex1.讲解注意:

★ 例8

高等数学教学备课系统

例4求lim(x2ex01xx1).讲解注意:

例5证明方程x34x210在区间(0,1)内至少有一个根.讲解注意:

例6证明方程内的两个实根.1110有分别包含于(1,2),(2,3)x1x2x3

讲解注意:

例7设函数f(x)在区间[a,b]上连续,且f(a)a,f(b)b证明:(a,b),使得f().讲解注意:

上一篇:中秋主题班会活动方案下一篇:金融机构名词解释