带式运输机上的单级圆柱齿轮减速器设计说明书

2024-04-14

带式运输机上的单级圆柱齿轮减速器设计说明书(精选5篇)

篇1:带式运输机上的单级圆柱齿轮减速器设计说明书

带式运输机上的单级圆柱齿轮减速器设计说明书 2008年12月23日 星期二 01:26 P.M.一种单级圆柱齿轮减速器,主要由主、从动变位齿轮、轴承、挡圈、端盖、主、副壳体、花键轴、内花键套法兰、压盖、轴承座组成。

其特点是主动变位齿轮是台阶式的,一端部齿轮与从动变位齿轮联接,另一端部与轴承、挡圈固定联接,轴承的外套与轴承座联接,轴承座与副壳体表面联接固定。

此减速器由于主、从齿轮采用变位齿轮,主动变位齿轮的另一端部增加轴承、轴承座,改变过去的悬臂状态,加强齿轮的工作强度,提高了减速器的寿命。

下面是设计说明书:

修改参数:输送带工作拉力:2300N 输送带工作速度:1.5m/s 滚筒直径:400mm 每日工作时数:24h 传动工作年限:3年

机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录 设计任务书……………………………………………………1 传动方案的拟定及说明………………………………………4 电动机的选择…………………………………………………4 计算传动装置的运动和动力参数……………………………5 传动件的设计计算……………………………………………5 轴的设计计算…………………………………………………8 滚动轴承的选择及计算………………………………………14 键联接的选择及校核计算……………………………………16 连轴器的选择…………………………………………………16 减速器附件的选择……………………………………………17 润滑与密封……………………………………………………18 设计小结………………………………………………………18 参考资料目录…………………………………………………18 机械设计课程设计任务书

题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 一. 总体布置简图

1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二. 工作情况: 载荷平稳、单向旋转 三. 原始数据

鼓轮的扭矩T(N•m):850 鼓轮的直径D(mm):350 运输带速度V(m/s):0.7 带速允许偏差(%):5 使用年限(年):5 工作制度(班/日):2 四. 设计内容

1.电动机的选择与运动参数计算; 2.斜齿轮传动设计计算 3.轴的设计

4.滚动轴承的选择

5.键和连轴器的选择与校核; 6.装配图、零件图的绘制 7.设计计算说明书的编写 五. 设计任务

1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书一份 六. 设计进度

1、第一阶段:总体计算和传动件参数计算

2、第二阶段:轴与轴系零件的设计

3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制

4、第四阶段:装配图、零件图的绘制及计算说明书的编写 传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。

本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。电动机的选择

1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。

2.电动机容量的选择 1)工作机所需功率Pw Pw=3.4kW 2)电动机的输出功率 Pd=Pw/η η= =0.904 Pd=3.76kW 3.电动机转速的选择

nd=(i1’•i2’…in’)nw 初选为同步转速为1000r/min的电动机 4.电动机型号的确定

由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求

计算传动装置的运动和动力参数 传动装置的总传动比及其分配 1.计算总传动比

由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:

i=nm/nw nw=38.4 i=25.14 2.合理分配各级传动比

由于减速箱是同轴式布置,所以i1=i2。因为i=25.14,取i=25,i1=i2=5 速度偏差为0.5%<5%,所以可行。各轴转速、输入功率、输入转矩

项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮 转速(r/min)960 960 192 38.4 38.4 功率(kW)4 3.96 3.84 3.72 3.57 转矩(N•m)39.8 39.4 191 925.2 888.4 传动比 1 1 5 5 1 效率 1 0.99 0.97 0.97 0.97

传动件设计计算

1. 选精度等级、材料及齿数 1)材料及热处理;

选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。2)精度等级选用7级精度;

3)试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4)选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计

因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥

1)确定公式内的各计算数值(1)试选Kt=1.6(2)由图10-30选取区域系数ZH=2.433(3)由表10-7选取尺宽系数φd=1(4)由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62(5)由表10-6查得材料的弹性影响系数ZE=189.8Mpa(6)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;(7)由式10-13计算应力循环次数

N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8 N2=N1/5=6.64×107

(8)由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98(9)计算接触疲劳许用应力

取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95×600MPa=570MPa [σH]2==0.98×550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2)计算

(1)试算小齿轮分度圆直径d1t d1t≥ = =67.85(2)计算圆周速度 v= = =0.68m/s(3)计算齿宽b及模数mnt b=φdd1t=1×67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25×3.39mm=7.63mm b/h=67.85/7.63=8.89(4)计算纵向重合度εβ εβ= =0.318×1×tan14 =1.59(5)计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,故 KHβ=1.12+0.18(1+0.6×1)1×1 +0.23×10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。故载荷系数 K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05

(6)按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm(7)计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1)确定计算参数(1)计算载荷系数

K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96(2)根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88

(3)计算当量齿数

z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47(4)查取齿型系数

由表10-5查得YFa1=2.724;Yfa2=2.172(5)查取应力校正系数

由表10-5查得Ysa1=1.569;Ysa2=1.798(6)计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa(7)计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。2)设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1)计算中心距 z1 =32.9,取z1=33 z2=165 a =255.07mm a圆整后取255mm 2)按圆整后的中心距修正螺旋角 β=arcos =13 55’50”

3)计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4)计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5)结构设计

以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。轴的设计计算

拟定输入轴齿轮为右旋 II轴:

1.初步确定轴的最小直径 d≥ = =34.2mm 2.求作用在齿轮上的受力 Ft1= =899N Fr1=Ft =337N Fa1=Fttanβ=223N; Ft2=4494N Fr2=1685N Fa2=1115N 3.轴的结构设计

1)拟定轴上零件的装配方案

i.I-II段轴用于安装轴承30307,故取直径为35mm。ii.II-III段轴肩用于固定轴承,查手册得到直径为44mm。iii.III-IV段为小齿轮,外径90mm。iv.IV-V段分隔两齿轮,直径为55mm。v.V-VI段安装大齿轮,直径为40mm。

vi.VI-VIII段安装套筒和轴承,直径为35mm。2)根据轴向定位的要求确定轴的各段直径和长度

1.I-II段轴承宽度为22.75mm,所以长度为22.75mm。

2.II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。

3.III-IV段为小齿轮,长度就等于小齿轮宽度90mm。4.IV-V段用于隔开两个齿轮,长度为120mm。

5.V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。6.VI-VIII长度为44mm。4. 求轴上的载荷 66 207.5 63.5 Fr1=1418.5N Fr2=603.5N 查得轴承30307的Y值为1.6 Fd1=443N Fd2=189N 因为两个齿轮旋向都是左旋。故:Fa1=638N Fa2=189N 5.精确校核轴的疲劳强度 1)判断危险截面

由于截面IV处受的载荷较大,直径较小,所以判断为危险截面 2)截面IV右侧的

截面上的转切应力为

由于轴选用40cr,调质处理,所以([2]P355表15-1)a)综合系数的计算

由,经直线插入,知道因轴肩而形成的理论应力集中为,([2]P38附表3-2经直线插入)轴的材料敏感系数为,([2]P37附图3-1)故有效应力集中系数为

查得尺寸系数为,扭转尺寸系数为,([2]P37附图3-2)([2]P39附图3-3)轴采用磨削加工,表面质量系数为,([2]P40附图3-4)

轴表面未经强化处理,即,则综合系数值为 b)碳钢系数的确定 碳钢的特性系数取为,c)安全系数的计算 轴的疲劳安全系数为 故轴的选用安全。I轴:

1.作用在齿轮上的力 FH1=FH2=337/2=168.5 Fv1=Fv2=889/2=444.5 2.初步确定轴的最小直径

3.轴的结构设计

1)确定轴上零件的装配方案

2)根据轴向定位的要求确定轴的各段直径和长度

d)由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。

e)考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。

f)该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。

g)该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。h)为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。i)轴肩固定轴承,直径为42mm。

j)该段轴要安装轴承,直径定为35mm。2)各段长度的确定

各段长度的确定从左到右分述如下:

a)该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。b)该段为轴环,宽度不小于7mm,定为11mm。

c)该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。d)该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。

e)该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。

f)该段由联轴器孔长决定为42mm 4.按弯扭合成应力校核轴的强度 W=62748N.mm T=39400N.mm 45钢的强度极限为,又由于轴受的载荷为脉动的,所以。

III轴

1.作用在齿轮上的力 FH1=FH2=4494/2=2247N Fv1=Fv2=1685/2=842.5N 2.初步确定轴的最小直径 3.轴的结构设计

1)轴上零件的装配方案 2)据轴向定位的要求确定轴的各段直径和长度 I-II II-IV IV-V V-VI VI-VII VII-VIII 直径 60 70 75 87 79 70 长度 105 113.75 83 9 9.5 33.25

5.求轴上的载荷 Mm=316767N.mm T=925200N.mm 6.弯扭校合

滚动轴承的选择及计算 I轴:

1.求两轴承受到的径向载荷

5、轴承30206的校核 1)径向力 2)派生力 3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。

由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 II轴:

6、轴承30307的校核 1)径向力 2)派生力,3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。

由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 III轴:

7、轴承32214的校核 1)径向力 2)派生力 3)轴向力 由于,所以轴向力为,4)当量载荷 由于,所以,。

由于为一般载荷,所以载荷系数为,故当量载荷为 5)轴承寿命的校核 键连接的选择及校核计算

代号 直径

(mm)工作长度(mm)工作高度(mm)转矩

(N•m)极限应力(MPa)

高速轴 8×7×60(单头)25 35 3.5 39.8 26.0 12×8×80(单头)40 68 4 39.8 7.32 中间轴 12×8×70(单头)40 58 4 191 41.2 低速轴 20×12×80(单头)75 60 6 925.2 68.5 18×11×110(单头)60 107 5.5 925.2 52.4 由于键采用静联接,冲击轻微,所以许用挤压应力为,所以上述键皆安全。连轴器的选择

由于弹性联轴器的诸多优点,所以考虑选用它。

二、高速轴用联轴器的设计计算

由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为

所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)其主要参数如下: 材料HT200 公称转矩 轴孔直径,轴孔长,装配尺寸 半联轴器厚

([1]P163表17-3)(GB4323-84

三、第二个联轴器的设计计算

由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为

所以选用弹性柱销联轴器TL10(GB4323-84)其主要参数如下: 材料HT200 公称转矩 轴孔直径 轴孔长,装配尺寸 半联轴器厚([1]P163表17-3)(GB4323-84 减速器附件的选择 通气器

由于在室内使用,选通气器(一次过滤),采用M18×1.5 油面指示器 选用游标尺M16 起吊装置

采用箱盖吊耳、箱座吊耳 放油螺塞

选用外六角油塞及垫片M16×1.5 润滑与密封

一、齿轮的润滑 采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。

二、滚动轴承的润滑

由于轴承周向速度为,所以宜开设油沟、飞溅润滑。

三、润滑油的选择

齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。

四、密封方法的选取

选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。轴承盖结构尺寸按用其定位的轴承的外径决定。设计小结

由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的。

篇2:带式运输机上的单级圆柱齿轮减速器设计说明书

机械基础课程设计 一级闭式圆柱齿轮减速器 5月

目录

第一章 绪论………………………………………………………………………………………………………

第二章 课题题目及主要技术参数说明…………....…………………………………………………….

2.1 课题题目

2.2传动方案分析及原始数据

第三章 减速器结构选择及相关性能参数计算…………………………………………………………

3.1 减速器结构 3.2 电动机选择 3.3 传动比分配 3.4 动力运动参数计算

第四章 齿轮的设计计算(包括小齿轮和大齿轮)……………………………………………………….

4.1闭式齿轮传动设计

4.1.1闭式齿轮选材

4.1.2闭式齿轮的设计计算与强度校核 4.1.3闭式齿轮的结构设计数据: 4.2开式齿轮传动

4.2.1齿轮选材

4.2.2齿轮的设计计算与强度校核

第五章 轴的设计计算(从动轴)…………………………………………………………………………….

5.1Ⅰ轴(电动机轴)的尺寸设计

5.1.1Ⅰ轴的材料和热处理的选择 5.1.2Ⅰ轴几何尺寸的设计计算 5.2Ⅱ轴(输出轴)的尺寸设计和强度校核

5.2.1Ⅱ轴的材料和热处理的选择 5.2.2Ⅱ轴几何尺寸的设计计算 5.2.3Ⅱ轴的强度校核

第六章 轴承、键和联轴器的.选择……………………………………………………………………….

6.1 轴承的选择及校核 6.2 6.3 联轴器的选择

…………...

7.1 润滑的选择确定 7.2 密封的选择确定 7.3箱体主要结构尺寸计算

7.4减速器附件的选择确定

第八章 总结…………………………………………………………………………………………………… 参考文献

第一章 绪 论

本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、 规范的实践训练。通过这次训练,使我们在众多方面得到了锻炼和培养。主要体现在如下几个方面:

(1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。(2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。(3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。(4)加强了我们对Office软件中Word功能的认识和运用。

第二章 课题题目及主要技术参数说明

2.1课题题目: 一级闭式圆柱齿轮减速器 2.2传动方案分析及原始数据: ? 设计要求:

带式运输机连续单向运转,载荷较平稳,空载启动,运输带速允许误差为50%。使用期限为,大修期三年,小批量生产,两班制工作。

- 2 -

? 原始数据:A11

运输带卷筒所需功率P/(kW):5.8; 运输带卷筒工作转速n (r/min):88 卷筒中心高H (mm):300

? 设计任务:

1) 减速器装配图1张(A0或A1图纸);

2) 零件工作图2~3张(传动零件、轴、箱体等,A3图纸);

3) 设计计算说明书1份,6000~8000字。说明书内容应包括:拟定机械系统方案,进行机

构运动和动力分析,选择电动机,进行传动装置运动动力学参数计算,传动零件设计,轴承寿命计算、轴(许用应力法和安全系数法)、键的强度校核,联轴器的选择、设计总结、参考文献、设计小结等内容。

? 结构设计简图:

- 3 -

图1 带式输送机传动系统简图

? 设计计算说明书

第三章 减速器结构选择及相关性能参数计算

- 4 -

- 5 -

- 6 -

- 7 -

第四章 齿轮的设计计算

- 8 -

- 11 -

- 12 -

- 13 -

- 14 -

- 15 -

第五章 轴的设计计算

- 17 -

第六章 轴承、键和联轴器的选择

- 18 -

- 19 -

- 20 -

- 21 -

- 22 -

- 23 -

第七章

减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算及装配图

- 24 -

- 25 -

- 26 -

总结

- 27 -

- 28 -

- 29 -

桂林电子科技大学机电工程学院 0800150231张成伟

篇3:带式运输机上的单级圆柱齿轮减速器设计说明书

如图1所示, 为一个单级直齿圆柱齿轮减速器。其输入功率N=280KW, 输入转速n1=980r/min, 传动比i=5, 小齿轮为实体结构, 大齿轮为腹板式结构 (带有四个减重孔) , 两齿轮各部分尺寸的符号如图2所示, 用传统设计方法的设计结果为:齿宽B1=B2=13cm, 小齿轮齿数Z1=21, 模数m=0.8cm, l1=42cm, ds1=12cm, ds2=16cm。现要求在保证承载能力的条件下, 通过优化上述有关参数, 使减速器轴系部件的体积达到最小。

2建立优化模型

2.1建立优化目标函数

如图1所示, 减速器的轴系部件主要由两个齿轮和两根轴组成。为了简化计算, 将轴视为光轴, 则有

根据结构设计经验公式, 齿轮各部分尺寸关系为

优化设计中的设计变量可取为

将目标函数整理后得

2.2确定约束条件

按单目标非线性有约束的标准型, 将约束条件给出如下 (在这里省略了推导过程)

2.2.1避免发生根切

2.2.2保证齿轮均布承载能力

2.2.3传递动力模数要求

2.2.4根据工艺装备条件

2.2.5主、从动轴直径范围

2.2.6轴的支撑跨距结构要求

2.2.7按齿轮的接触疲劳强度条件

2.2.8按齿轮的弯曲疲劳强度条件

2.2.9主动轴的刚度条件

2.2.10主动轴的弯曲强度条件

2.2.11从动轴的弯曲强度条件

总结上述, 可得本题目的优化数学模型为:

是一个具有十六个不等式约束的六维优化问题。采用Matlab的优化工具箱来求解。优化后的结果比传统设计体积减少了35.51%。

3结论

从上面的计算结果来看, 在满足结构及强度的条件下, 对单级直齿圆柱齿轮减速器轴系部件采用优化设计比传统设计体积减少了35.51%。由此可见, 优化设计在机械设计中是很重要的。

摘要:本文对单级直齿圆柱齿轮减速器轴系部件的体积为目标进行优化设计, 与传统设计方法相比较, 其体积减少了35.51%。

关键词:单级直齿圆柱齿轮减速器,优化,约束条件

参考文献

[1]薛嘉庆.最优化原理与方法[M].北京:冶金工业出版社, 1995, 12.

[2]李涛.Matlab工具箱应用指南——应用数学篇[M].北京:电子工业出版社, 2000, 5.

篇4:带式运输机上的单级圆柱齿轮减速器设计说明书

关键词:差速器;虚拟样机;动力学分析;仿真

中图分类号:S223.99 文献标识码:A 文章编号:1674-1161(2014)07-0018-04

汽車行驶时,左右车轮在同一时间内所滚过的路程通常不等,如果驱动桥的左右车轮刚性连接,则行驶时驱动轮在路面上会不可避免地滑移或滑转,不仅会加剧轮胎磨损与功率、燃料的消耗,而且可能导致转向和操作性能恶化。为防止这些现象发生,汽车左右轮间都装有轮间差速器。但是当汽车越野行驶或在泥泞、冰雪路面上行驶,一侧驱动车轮与地面的附着系数很小时,尽管另一侧车轮与地面有良好的附着,其驱动转矩也会随之减小,无法发挥潜在的牵引力,进而使汽车停驶。为保证汽车行驶,越野汽车通常装设差速锁和防滑差速器,这些结构通常比较复杂,不适用于农业机械。

农业机械的驱动系统通常不安装差速器,所以转向比较困难。轮距窄的开沟机、田园管理机等转向时,利用人力强行扭转机械使机具的左右轮在地面相对滑动。轮距相对较宽的移栽机、插秧机等,靠人力扭转机械基本不能转向。所以通常在驱动系统中采用牙嵌式转向离合器,转向时通过分离该侧的牙嵌式离合器,切断动力传递,另外一侧因动力没有被切断而继续行驶,实现大轮距农业机械转向。牙嵌式离合器转向虽然可以满足上述要求,但操作复杂、转向灵活性差、牙嵌齿轮有冲击。为此,设计一种滑动齿轮式差速器,差速时保证至少有一只动力输出轴运动,能够可靠的传递驱动力矩,且结构简单、使用方便、实用性强。

1 滑动齿轮差速器的总体结构

滑动齿轮差速器(见图1)主要由滑动齿轮、滚轮、滚轮轴、滚轮架、弹簧、滚轮轴卡箍、支撑轴、输出轴等组成。其中支撑轴通过动力输出轴内端的圆孔定位和支撑,滑动齿轮安装在支撑轴上,滚轮通过滚轮轴安装在滚轮架上组成滚轮传动组件,滚轮传动组件相对滑动齿轮对称布置;滑动齿轮两端圆周方向均布凸台,滚轮安装在凸台凹槽一半处,当动力输出轴两端阻力矩相同时,滑动齿轮位于两滚轮架中间,动力输出轴同向等速旋转,当动力输出轴两端助力矩不同时,滑动齿轮向力矩小的一端移动,小力矩端驱动转速加快,大力矩断转速降低;当两端助力矩相差在一定程度时,大力矩端动力中断,小力矩端保持动力传递,实现差速。该差速器能产生一定的差速锁紧扭矩,特别适合低速车辆和农业机械动力传递使用。

2 滑动齿轮差速器的工作原理

滑动齿轮式差速器工作时,滑动齿轮在一定范围内左右移动,实现对两侧驱动轮的差速驱动。

2.1 直线行驶运动分析

滑动齿轮差速器的核心工作部件是滑动齿轮。在滑动齿轮的两侧端面分别对称设置凸台。凸台(见图2)由两侧斜面、底端面、顶端面、内台面、外台面组成。

初始状态时,在弹簧弹力的作用下,滑动齿轮凸台底端面与滚轮体相距半个滚轮体半径位置,滚轮体与滑动齿轮凸台斜面接触。在直线行驶时,两侧滚轮对应的驱动力矩相等,滑动齿轮处于正中心位置,等速驱动两侧车辆。直线行驶示意图如图3所示。

2.2 转向行驶运动分析

以水平公路左转向为例,如驾驶员小扭矩扭转机械,相当于在滑动齿轮中心作用一个扭矩M1(见图4)。由于扭矩M1的作用,左侧滚轮作用在凸台斜面的轴向分力大于右侧滚轮作用在凸台斜面的轴向分力,设此分力为F1。当F1的分力小于右侧弹簧在x/2位置变相的胡克力F2时,在F1的作用下,滑动齿轮开始向左侧滑动一个小于x/2的位置t,同时左侧滚轮向后移动一段距离b,右侧滚轮向前移动一段相同距离b,从而两轮走过的路程出现差别,实现小幅度转向差速。驾驶员大扭矩扭转机械时,扭矩M1增大,分力F1增加。当分力F1大于右侧弹簧在x/2位置变相的胡克力F2时,滑动齿轮滑动到右侧极限位置,使左侧滚轮向后移动距离b1,到凸台顶面并向下继续移动至下一个凸台斜面,左侧滚轮向后移动,左侧驱动力在此位置打滑,直至分力F1小于右侧弹簧在x/2位置变相的胡克力F2,停止打滑。同时右侧滚轮向前移动距离b2,右侧滚轮继续保持直线行驶,两侧动力轮走过的路程差加大,实现大幅度转向差速或原地掉头,F2即为该差速器的锁紧力。同理可实现向右转向。

3 Adams运动仿真分析

在Adams中建立复杂三维模型的难度较大,为此先在UG软件中建立模型,再导入ADAMS中进行约束和运动幅等相关参数设置和分析。建立的Adams模型如图5所示。

3.1 等速行驶(两轮阻力相同)运动仿真

对于两轮所受地面给其阻力相同的情况,可看成直线行驶,即齿轮中间位置带动两个半轴同速转动。分别给两半轴和中心轴之间添加一个固定幅,定义构建方式类型为两体一点定位。测量两轮的输出力矩,如图6所示。

3.2 差速行驶(两轮阻力不同)运动仿真

对于差速转向行驶的情况,以右转弯为例,右轮受到的阻力大于左轮受到的阻力,根据该差速器原理,中间齿轮受到右边弹簧的力大于左边弹簧的力,齿轮被压到与左边半轴啮合的更多一些,从而带动左轮更快速转动,实现差速。在软件环境中,给右轮加载一个额外的阻力矩,而左轮受力情况不变,其差速仿真结果如图7所示。测量左右轮的速度、加速度、位移等情况,如图8所示。

仿真结果表明,左轮基本保持测试形态,而右侧车轮的速度、加速度发生了大幅变化,位移不断增大,右轮位移先保持一段距离,然后后移。当转向力消除后继续前进,表明差速效果明显,将上述图形集成后如图9所示。

4 结论

仿真分析结果表明,该差速器符合低速农业机械差速转向要求。仿真结果与机构的运动原理相符合,说明UG建立的实体模型与Adams建立的数据模型真实可靠。

参考文献

[1] 陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.

[2] 杜中华,王兴贵,狄长春.用Pro/E和ADAMS联合建立复杂机械系统的仿真模型[J].机械,2002,29(增刊):153-154.

[3] 李三群,贾长治,武彩岗,等.基于虚拟样机技术的齿轮啮合动力学仿真研究[J].系统仿真学报,2007,19(4):901-902.

[4] 龙凯,程颖.齿轮啮合力仿真计算的参数选取研究[J].计算机仿真,2002,19(6):87-88.

[5] 曲红.FD420 型集装箱叉车转向机构优化设计[J].叉车技术,2004(1):25-26.

[6] 李军,邢俊文,覃文洁.ADAMS实例操作教程[M].北京:北京理工大学出版社,2002.

篇5:单级齿轮减速器机械优化设计范文

机械优化设计

课题名称:单级齿轮减速器的优化设计 学院:机电工程系

专业班级:机械设计及其自动化143 学号 学生: 指导老师:

青岛理工大学教务处 2016年11月27日

《单级齿轮减速器的优化设计》说明书

摘要

机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。常用的机械优化设计方法包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主要性能指标。

机械优化设计的目的是以最低的成本获得最好的效益,是设计工作者一直追求的目标,从数学的观点看,工程中的优化问题,就是求解极大值或极小值问题,亦即极值问题。本文从优化设计的基本理论、优化设计与产品开发、优化设计特点及优化设计应用等方面阐述优化设计的基本方法理论。

关键词: 机械优化设计;优化方法;优化应用。

II

目录

摘要.........................................................II 1设计任务.....................................................1 2 齿轮的传统设计..............................................2 3优化设计的数学模型...........................................7

3.1确定设计变量和目标函数................................................7 3.2确定约束条件..........................................................7 Matlab计算机程序............................................9 5结果分析....................................................11 参考文献.....................................................12

《单级齿轮减速器的优化设计》说明书

1设计任务

设计如图2-40所示的单级直齿圆柱齿轮减速器,其齿数比u3.2,工作寿命要求10年两班制,原动机采用电动机,工作载荷均匀平稳,小齿轮材料为40Cr,调质后表面淬火,齿面硬度HB=235~275,[H]1531MPa,[F]1297.5MPa,大齿轮材料为45钢,调质,齿面硬度为HB=217~255,[H]2513MPa,[F]2251.4MPa,载荷系数k=1.3,P=28KN,n=1440rad/min要求在满足工作要求的前提下使两齿轮的重量最轻。

《单级齿轮减速器的优化设计》说明书 齿轮的传统设计

一、按齿面接触疲劳强度设计(1)由式子试算小齿轮分度圆直径,即

d131)

2KH1T1d*u1ZHZEZ2*()[H] u[H]确定公式中的各参数值

1.试选KH11.3

2.计算小齿轮传递的转矩。

T19.55106P/n9.5510628/1440Nmm18.569104Nmm

3.查表并查图选取齿宽系数d1,区域系数ZH2.5,材料的弹性影响系数ZE189.8MPa,4.计算接触疲劳强度用重合度系数Z*a1arccos[z1cos/(z12ha)]arccos[24cos20/(2421)]29.841*a1arccos[z2cos/(z22ha)]arccos[77cos20/(7721)]23.666

[z1(tana1tan`)z1(tana2tan`)]/2

[24(tan29.841tan20)77(tan23.666tan20)]/21.711Z441.7110.873 335.计算接触疲劳强度许用应力[H]

查图得小齿轮和大齿轮测接触疲劳极限分别为[Hlm1]590MPa、[Hlm2]540MPa

计算应力循环次数:

N160n1jLh6014401(2830010)4.1472109

N 2N1/u4.147210/(77/24)1.29310查图取接触疲劳寿命系数KHN10.90、KHN20.95。

《单级齿轮减速器的优化设计》说明书

取失效概率为1%、安全系数S=1,由式子得[H]1KHN1Hlim10.90590MPa531MPaS1KHN2Hlim20.95540MPa513MPa

S1[H]2取[H]1和[H]2中的较小者作为该齿轮副的接触疲劳许用应力,即

[H]1[H]2513MPa

2)试算小齿轮分度圆直径

d132KH1T1d*u1ZHZEZ2*()u[]74.466mm421.39.94810(77/24)12.5189.80.87323()mm

1(77/24)513

(2)调整小齿轮分度圆直径 1)计算实际载荷系数前的数据准备。

1、圆周速度v。

vd1tn160100074.4661440601000m/s5.6m/s

2、齿宽b.bdd1t174.466mm74.466mm2)计算实际载荷系数Ku。

1、查表取使用系数KA1。

2、根据v5.6m/s、7级精度,查图得动载荷系数Kv1.2。

3、齿轮的圆周力。

F t12T1/d1t29.948104/74.466N4.987103NKF t1b13.32910/74.466N/m66.9N/mm100N/mm查表得齿间载荷分配系数KH1.2

《单级齿轮减速器的优化设计》说明书

4、查表用插值法查得7级精度、小齿轮相对支承非对称布置时,得齿向载荷分布系数KH1.421。由此,得到实际载荷系数

KHKAKvKHK H11.21.21.4212.0513)由式子得,可得按实际载荷系数算得的分度圆直径d1d13KH2.05174.46686.675mm KHt1.3 及相应的齿轮模数

md1/z186.675/24mm3.611mm

二、按齿根弯曲疲劳强度设计(1)由式子试算模数,即

m132KF1T1YYFaYSA*()[F]dz121)确定公式中的各参数值

1、试选KF11.3。

2、由式子计算弯曲疲劳强度用重合度系数。

Y0.250.750.250.750.688 1.7113、计算YFaYsa。[F]查图得YFa12.65、YFa22.23。应力修正系数Ysa11.58、Ysa21.76。小齿轮和大齿轮的齿根弯曲疲劳极限分别为Flim1490MPa、Flim2400MPa。弯曲疲劳寿命系数 KFN10.85、KFN20.88。取弯曲疲劳安全系数S=1.4。由式子得

[F]1KFN1Flim10.85490MPa297.5MPa S1.4KFN2Flim20.88400MPa251.4MPa S1.4[F]2 4

《单级齿轮减速器的优化设计》说明书

YFa1Ysa12.651.580.0141 [F]1297.5YFa2Ysa22.231.760.0156 [F]2251.4因为大齿轮的YFaYsa大于小齿轮,所以取 [F]YFaYsaYFa2Ysa20.0156 [F][F]22)试算模数

m132KF1T1YYFaYSA21.39.9481040.6883*()0.015622[F]dz1124

2.080mm

(2)调整齿轮模数

1)计算实际载荷系数前的数据准备。

1、圆周速度v。

dmtz12.08024mm49.92mm

vd1tn160100049..921440601000m/s3.76m/s

2、齿宽b。

bdd1149.92mm49.92mm3、宽高比b/h

**h(2hac)m1(210.25)2.080mm4.68mmd

b/h49.92/4.6810.672)计算实际载荷系数KF

1、根据v.3.76m/s,7级精度,查图得动载荷系数Kv1.08

2、由F t12T1/d1t29.948104/49.92N7.44103N,查表得齿间KAF t1/b17.44103/49.92N/mm149N/m100N/mm载荷分配系数KF1.0。

《单级齿轮减速器的优化设计》说明书

3、查表用插值法查得KH1.417,结合b/h10.67查图得KF1.34。则载荷系数为

KFKAKvKFK F11.171.421.42.333)由式子,可得按实际载荷系数算得的齿轮模数

mm13KF2.332.0802.527mm KFt1.3对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数m的大小主要取决于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径有关,可取由弯曲疲劳强度算得的模数2.527mm并就近圆整为标准值m3mm,按接触疲劳强度算得的分度圆直径d186.675mm,算出小齿轮齿数z1d1/m86.675/328.89。取z129,则大齿轮齿数z2uz13.22992.4,取z292,z1与z2互为质数。

这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。

《单级齿轮减速器的优化设计》说明书

3优化设计的数学模型

3.1确定设计变量和目标函数

取设计变量和目标函数x[x1,x2,x3]T[m,z1,d]T,其中m为齿轮模数,z1为小齿轮齿数,d为齿宽系数。

设小齿轮分度圆直径为d1,大齿轮分度圆直径为d2,齿轮宽度为b,要求圆柱齿轮的重量最轻,也就要求体积最小,因此可建立目标函数:

f(x)(d1d22)b

4由齿数比ud2b,齿宽系数d,目标函数转化为:

d1d1f(x)(1u2()mz1)3d48.8279x1x2x3

3.2确定约束条件

(1)边界约束条件

模数限制:2x110; 齿数限制:20x240; 齿宽系数限制:0.8x31.4;

(2)性能约束

(接触疲劳强度的限制:g1x)H-[H]ZHZE2KT1u1*[H]0 3udd1式中:H为齿面接触疲劳强度;K为载荷系数,K=1.3;ZH为节点区域系数,ZH=2.5;ZE为弹性影响系数,ZE=189.8,代入以上参数得g(x)377717.238xxx333125500

2KT1YFYS[F]0 32mz1d弯曲疲劳强度的限制:F-[F]

《单级齿轮减速器的优化设计》说明书

式中,为齿根弯曲疲劳强度; 为齿形系数; 为齿根应力校正系数。YF112.518612.51862.063,YF22.063

uz13.01794z13.0179422.70422.704Y1.97,F1

z134.6uz134.6YF11.97代入以上参数得:

g((2x)48279412.518622.70422.063)(1.97)/(x13x2x3)2900

x23.01794x234.612.518622.70422.063)(1.97)/(x13x2x3)21003.2x23.017943.2x234.6g((3x)48279

4《单级齿轮减速器的优化设计》说明书 Matlab计算机程序

《单级齿轮减速器的优化设计》说明书

《单级齿轮减速器的优化设计》说明书

5结果分析

(1)对比分析发现:在齿轮可靠性得到保证的前提下,优化后的目标值比原设计目标值减少24%;

(2)优化结果表明:优化方案比给定方案节省材料,降低成本,效益明显,对减速设计具有良好的参考价值。

《单级齿轮减速器的优化设计》说明书

参考文献

【1】《机械设计基础》(主编 李国斌)机械工业出版社

【2】《机械制图与公差》(主编:王志泉、项仁昌;主审:金潇明)清华大学出版社

上一篇:钢铁企业节能减排汇报下一篇:团委书记赴企业挂职锻炼体会