离散数学期末试卷

2024-05-01

离散数学期末试卷(通用6篇)

篇1:离散数学期末试卷

北京工业大学经管学院期末试卷

《离散数学》(A)

学号姓名:成绩

一、单项选择题(每题2分,共18分)

1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为(D).

A.P→Q

C.P∧Q B.P∨Q D.P∧Q

p→q,蕴涵式,表示假设、条件、“如果,就”。

“→”与此题无关

2.关于命题变元P和Q的极大项M1表示(C)。书P15-P20,此题换作p、q更容易理解

A.┐P∧QB.┐P∨Qp∨┐q----01----1-----M

1C.P∨┐QD.P∧┐Q

3.设R(x):x是实数;S(x,y):x小于y。用谓词表达下述命题:不存在最小的实数。其中错误的表达式是:(D)

4.在论域D={a,b}中与公式(x)A(x)等价的不含存在量词的公式是(B)

A.A(a)A(b)

C.A(a)A(b)

5.下列命题公式为重言式的是(C)

A.Q→(P∧Q)

C.(P∧Q)→PB.P→(P∧Q)D.(P∨Q)→QB.A(a)A(b)D.A(b)A(a)

牢记→真假条件,作为选择题可直接代入0、1,使选项出现1→0,排除。熟练的可直接看出C不存在1→0的情况

6.设A={1,2,3},B={a,b},下列二元关系R为A到B的函数的是(A)

A.R={<1,a>,<2,a>,<3,a>}

B.R={<1,a>,<2,b>}

C.R={<1,a>,<1,b>,<2,a>,<3,a>}

D.R={<1,b>,<2,a>,<3,b>,<1,a>}

-第 1页

7.偏序关系具有性质(D)背

A.自反、对称、传递

B.自反、反对称

C.反自反、对称、传递

D.自反、反对称、传递

8.设R为实数集合,映射:RR,(x)x22x1,则 是(D).(A)单射而非满射(C)双射(B)满射而非单射(D)既不是单射也不是满射.书P96.设函数f:A→B

(1)若ranf=B,则f是满射的【即值域为B的全集,在本题中为R,该二次函数有最高点,不满足】

(2)若对于任何的x1,x2∈A , x1≠x2,都有f(x1)≠f(x2),则称f是单射的【即x,y真正一一对应,甚至不存在一个y对应多个x。显然,本题为二次函数,不满足】

(3)若f既是满射的,又是单射的,则称f是双射的【本题中两个都不满足,既不是单射也不是满射】

二、填空题(每空2分,共22分)

1.设Q为有理数集,笛卡尔集S=Q×Q,*是S上的二元运算,,∈S,*=, 则*运算的幺元是_____<1,0>_____。∈S, 若a≠0,则的逆元是______<1/a,-b>______。书P123定义

2.在个体域D中,公式xG(x)的真值为假当且仅当__某个G(x)的真值为假__,公式xG(x)的真值为假,当且仅当__所有G(x)的真值都为假__。

3.给定个体域为整数域,若F(x):表示x是偶数,G(x):表示x是奇数;那么,(x)F(x)(x)G(x)是一个(x)(F(x)G(x))是一个

4.设Aa,b,c ,A上的二元关系Ra,b,b,c,则r(R)

{,,,,,} 。

书P89、P85.自反闭包:r(R)= R U R0

={,} U {,,,} ={,,,,,}对称闭包:s(R)= R U R-1 = {,} U {,} = {,,,}-第 2页

传递闭包:t(R)= RUR2 UR3U……

5.设X={1,2,3},Y={a,b},则从X到Y的不同的函数共有___8___个.书P96,B上A的概念:

设A、B为集合,所有从A到B的函数构成集合BA,读作“B上A”

如果|A| = m,|B| = n,m、n不全是0,则|BA| = nm

即,若题中给出集合A有m个元素,B有n个元素,可直接用nm 计算出A到B的函数个数。本题中为23 = 8

6.设,a,bG,则(a-1)-1,(ab)-1b-1 * a-1。

书P139公式

7.设X={1,2,3},f:X→X,g:X→X,f={<1, 2>,<2,3>,<3,1>},g={<1,2>,<2,3>,<3,3>},则fg=__{<1,3>,<2,1>,<3,1>}___,gf=__{<1,3>,<2,3>,<3,2>}__。书P82-8

3合成:FG = {|xGz∧zFy}

需要说明的是,这里的合成FG是左复合,即G先作用,然后将F复合到G上。之前的答案“有误”,因为采用了右复合。这两种合成定义所计算的合成结果是不相等的,但两个定义都是合理的,只要在体系内部采用同样的定义就可以了。总之,在咱们的离散里牢记左复合。

三、计算题(每题9分,共36分)

1.设集合A={1, 2, 3,4,5},A上的关系R={<1, 1>,<1, 2>,<2, 2>,<3, 2>,<3,3>,<3,5>,<4,4>,<5,5>}

(1)画出R的关系图;

(2)问R具有关系的哪几种性质(自反、对称、传递、反对称).自反性、传递性

书P87表格,根据关系图可直接判断性质……

(3)给出R的传递闭包。

R={<1, 1>,<1, 2>,<2, 2>,<3, 2>,<3, 3>,<3,5>,<4,4>,<5,5>}

-第 3页

R2 = RR = {<1, 1>,<1,2>,<2,2>,<3,2>,<3,3>,<3,5>,<4,4>,<5,5>}R3 = R2R = {<1, 1>,<1,2>,<2,2>,<3,2>,<3,3>,<3,5>,<4,4>,<5,5>}……

所以,t(R)= {<1, 1>,<1,2>,<2,2>,<3,2>,<3,3>,<3,5>,<4,4>,<5,5>}

2.集合S={a,b,c,d,e}上的二元运算*的运算表如下,求出它的幺元,零元,及逆

元。*abcde

abaccc

babcde

cccccc

dedcba

edecdb

幺元:b

零元:c

逆元:a-1 =a,b-1 =b, d-1 =d,e-1 =e

书P123定义

3.求合式公式A=P→((P→Q)∧┐(┐Q∨┐P))的主析取范式及成真赋值。

A = P→((┐P∨Q)∧(Q∧P))

= P→((┐P∨Q)∧(Q∧P))

= P→((┐P ∧Q∧P)∨(Q∧Q∧P))

= P→(Q∧P)

= ┐P∨(Q∧P)

=(┐P∧(Q∨┐Q))∨(Q∧P)

=(cP∧Q)∨(┐P∧┐Q)∨(P∧Q)

=(┐P∧┐Q)∨(┐P∧Q)∨(P∧Q)

= m0∨m1∨m

3成真赋值为00,01,1

14.求在1到1000000之间有多少个整数既不是完全立方数,也不是完全平方数?-第 4页

完全平方数的个数:1000=1000000,所以有1000个(即1到1000)

完全立方数的个数:1003 =1000000,所以有100个(即1到100)

既是完全平方数又是完全立方数的重复部分:106 =1000000,所以有10个(即16到106)所以既不是完全立方数,也不是完全平方数的整数有:1000000-(1000+100-10)= 998910

2四、证明题(每题8分,共24分)

1.若公司拒绝增加工资,则罢工不会停止,除非罢工超过三个月且公司经理辞职。公司拒绝增加工资,罢工又刚刚开始。罢工是否能停止?(给出相应推理的证明过程)

2.给出关系不满足对称性的条件并证明。

∃∈R∧∉R

⇔∃∈R∧∉R

⇔┐∀(∈R∧∈R)

3.如果关系R和S为X上的等价关系,证明:R∩S也是X上的等价关系。

(1)自反

设x∈X【推∈R∩S】

∵R和S为X上的等价关系

∴R和S均为X上的自反关系

∵x∈X

∈R, ∈S

∈R∩S

∴R∩S在X上是自反的(2)对称

设∈R∩S【推∈R∩S】

∵∈R∩S

∴∈R,∈S

∵R和S为X上的等价关系

∴R和S均为X上的对称关系

∈R,∈S

∈R∩S

-第 5页

∵此时∈R∩S

∴R∩S在X上是对称的【∈R∩S时,必有∈R∩S】

(3)传递

设∈R∩S,∈R∩S【推∈R∩S】

∵∈R∩S

∴∈R,∈S

∈R∩S

∈R,∈S

∵R和S为X上的等价关系

∴R和S均为X上的传递关系

∴∈R,∈S

∴∈R∩S

∵此时∈R∩S,∈R∩S

∴R∩S在X上是传递的【∈R∩S,∈R∩S时,必有∈R∩S】

综上所述,R∩S在X上是自反、对称、传递的∴R∩S为X上的等价关系

书P90

等价关系:自反、对称、传递

偏序关系:自反、反对称、传递

因此要证明某关系在非空集合上是等价关系或偏序关系,一般需分为三个性质分别证明,同时,题目条件中若给出等价关系或偏序关系,也可分为三部分选择使用。这类题条件较多(自己设的、题目推的),一定要思路清晰,否则容易写乱自己绕不出来„„

这道题三部分每个部分所设的条件都是该性质定义里的“若”,想要推出定义里的“则”,即用定义证明。这就是思路很重要的一部分。

-第 6页

篇2:离散数学期末试卷

一、证明题(10分)

1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2)x(A(x)B(x)) xA(x)xB(x)证明 :x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)

二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))(P∧(Q∨R))∨(P∧Q∧R)(P∧Q)∨(P∧R))∨(P∧Q∧R)(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)m0∨m1∨m2∨m7 M3∨M4∨M5∨M6

三、推理证明题(10分)

1)C∨D,(C∨D) E,E(A∧B),(A∧B)(R∨S)R∨S 证明:(1)(C∨D)E(2)E(A∧B)

P P

P(3)(C∨D)(A∧B)T(1)(2),I(4)(A∧B)(R∨S)(5)(C∨D)(R∨S)(6)C∨D

T(3)(4),I P(7)R∨S T(5),I 2)x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))证明(1)xP(x)P

(2)P(a)T(1),ES(3)x(P(x)Q(y)∧R(x))P(4)P(a)Q(y)∧R(a)T(3),US(5)Q(y)∧R(a)T(2)(4),I(6)Q(y)T(5),I(7)R(a)T(5),I(8)P(a)∧R(a)T(2)(7),I(9)x(P(x)∧R(x))T(8),EG(10)Q(y)∧x(P(x)∧R(x))T(6)(9),I

四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。

解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。

先求|A∩B|。

∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。

于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。

五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。

证明:∵x A-(B∪C) x A∧x(B∪C)

 x A∧(xB∧xC)

(x A∧xB)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C)

∴A-(B∪C)=(A-B)∩(A-C)

六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x},S={| x,yN∧y=x+1}。求R、R*S、S*R、R{1,2}、S[{1,2}](10分)。

解:R={| x,yN∧y=x} R*S={| x,yN∧y=x+1} S*R={| x,yN∧y=(x+1)},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

七、设R={,},求r(R)、s(R)和t(R)(15分)。

解:r(R)={,,,}

12-1

2s(R)={,,} R= R={,} R={,} R={,} t(R)={,,,,,}

八、证明整数集I上的模m同余关系R={|xy(mod m)}是等价关系。其中,xy(mod m)的含义是x-y可以被m整除(15分)。

证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。

2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y-x)/m=-k∈I,所以yx(mod m),即yRx。

3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

九、若f:A→B和g:B→C是双射,则(gf)=fg(10分)。

1-1-14325证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推fg:C→A是双射。

因为∈fg存在z(∈g∈f)存在z(∈f∈g)∈gf∈(gf),所以(gf)=fg。

1-1

-1-1-1-1

-1-1-1

-1离散数学试题(B卷答案2)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)xy(P(x)Q(y)) (xP(x)yQ(y))证明:xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y))

二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1 m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R(2)R∨P(3)P(4)P(QS)(5)QS(6)Q(7)S(8)RS 2)x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。

证明:(1)x(A(x)yB(y))P(2)A(a)yB(y)T(1),ES(3)x(B(x)yC(y))P(4)x(B(x)C(c))T(3),ES(5)B(b)C(c)T(4),US(6)A(a)B(b)T(2),US(7)A(a)C(c)T(5)(6),I(8)xA(x)C(c)T(7),UG(9)xA(x)yC(y)T(8),EG

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生 的集合,则命题可符号化为:PxA(x),xA(x)QQP。

(1)PxA(x)P(2)PxA(x)T(1),E(3)xA(x)P T(2),E(4)xA(x)Q P(5)(xA(x)Q)∧(QxA(x))T(4),E(6)QxA(x)T(5),I(7)QP T(6)(3),I

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、A={ x1,x2,x3 },B={ y1,y2},R={,,},求其关系矩阵及关系图(10分)。

七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。

解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>, <3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R=R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}

八、设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠。关系R满足:<>∈R∈R1且∈R2,证明R是A×B上的等价关系(10分)。

证明 对任意的∈A×B,由R1是A上的等价关系可得∈R1,由R2是B上的等价关系可得∈R2。再由R的定义,有<>∈R,所以R是自反的。

对任意的∈A×B,若R,则∈R1且∈R2。由R1对称得∈R1,由R2对称得∈R2。再由R的定义,有<> 432

5∈R,即R,所以R是对称的。

对任意的∈A×B,若RR,则∈R1且∈R2,∈R1且∈R2。由∈R1、∈R1及R1的传递性得∈R1,由∈R2、∈R2及R2的传递性得∈R1。再由R的定义,有<>∈R,即R,所以R是传递的。

综上可得,R是A×B上的等价关系。

九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f、g和h(10分)。

解 因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。

由hgf=IA,得f=hg;由fhg=IB,得g=fh;由gfh=IC,得h=gf。-

1-1

-1-1-1

-1离散数学试题(B卷答案3)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程)1)P(P∨Q∨R)2)((QP)∨P)∧(P∨R)3)((P∨Q)R)((P∧Q)∨R)解:1)重言式;2)矛盾式;3)可满足式

二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。

解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。

三、(10分)证明((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C))((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)

((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C

四、(10分)个体域为{1,2},求xy(x+y=4)的真值。

解:xy(x+y=4)x((x+1=4)∨(x+2=4))

((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4))(0∨0)∧(0∨1)0∧10

五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B)解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)

六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}

七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f()=。1)证明f是双射。

解:1)∈R×R,若f()=f(),即=,则x1+y1=x2+y2且x1-y1=x2-y2得x1=x2,y1=y2从而f是单射。

2)

∈R×R,由f()=

,通过计算可得x=(p+q)/2;y=(p-q)/2;从而

的原象存在,f是满射。

八、(10分)是个群,u∈G,定义G中的运算“”为ab=a*u*b,对任意a,b∈G,求证:也是个群。

证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。

2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。

3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。

所以也是个群。

九、(10分)已知:D=,V={1,2,3,4,5},E={<1,2>,<1,4>,<2,3>,<3,4>,<3,5>,<5,1>},求D的邻接距阵A和可达距阵P。

解:1)D的邻接距阵A和可达距阵P如下:

A= 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1-

1-1

P= 1 1 1 1

十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解:最优二叉树为

权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148

离散数学试题(B卷答案4)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T

证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(等幂律)T(代入)2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x))证明:x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x))

二、求命题公式(PQ)(P∨Q)的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R 附加前提(2)R∨P P(3)P T(1)(2),I(4)P(QS)P(5)QS T(3)(4),I(6)Q P(7)S T(5)(6),I(8)RS CP 2)x(P(x)∨Q(x)),xP(x)x Q(x)证明:(1)xP(x)P(2)P(c)T(1),US(3)x(P(x)∨Q(x))P(4)P(c)∨Q(c)T(3),US(5)Q(c)T(2)(4),I(6)x Q(x)T(5),EG

四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)(10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、={A1,A2,„,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,„,n},则R是A上的等价关系(15分)。

证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。a,b∈A,若aRb,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。

a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。

总之R是A上的等价关系。

七、若f:A→B是双射,则f:B→A是双射(15分)。

证明:对任意的x∈A,因为f是从A到B的函数,故存在y∈B,使∈f,∈f。所以,f是满射。

对任意的x∈A,若存在y1,y2∈B,使得∈f且∈f,则有∈f且∈f。因为f是函数,则y1=y2。所以,f是单射。

因此f是双射。

八、设是群,和的子群,证明:若A∪B=G,则A=G或B=G(10分)。

证明 假设A≠G且B≠G,则存在aA,aB,且存在bB,bA(否则对任意的aA,aB,从而AB,即A∪B=B,得B=G,矛盾。)

对于元素a*bG,若a*bA,因A是子群,aA,从而a *(a*b)=b A,所以矛盾,故a*bA。同理可证a*bB,综合有a*bA∪B=G。综上所述,假设不成立,得证A=G或B=G。

九、若无向图G是不连通的,证明G的补图G是连通的(10分)。

证明 设无向图G是不连通的,其k个连通分支为G1、G2、„、Gk。任取结点u、v∈G,若u和v不在图G的同一个连通分支中,则[u,v]不是图G的边,因而[u,v]

1-1-1

-1-1-1-1是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支Gi(1≤i≤k)中,在不同于Gi的另一连通分支上取一结点w,则[u,w]和[w,v]都不是图G的边,因而[u,w]和[w,v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和v的任意性可知,G是连通的。

离散数学试题(B卷答案5)

一、(10分)求命题公式(P∧Q)(PR)的主合取范式。

解:(P∧Q)(PR)((P∧Q)(PR))∧((PR)(P∧Q))((P∧Q)∨(P∧R))∧((P∨R)∨(P∨Q))(P∧Q)∨(P∧R)(P∨R)∧(Q∨P)∧(Q∨R)

(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M1∧M3∧M4∧M5

二、(8分)叙述并证明苏格拉底三段论

解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。命题符号化为x(F(x)G(x)),F(a)G(a)证明:

(1)x(F(x)G(x))P(2)F(a)G(a)T(1),US(3)F(a)P(4)G(a)T(2)(3),I

三、(8分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C)证明:∵x A∩(B∪C) x A∧x(B∪C)

 x A∧(xB∨xC)

(x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C  x(A∩B)∪(A∩C)

∴A∩(B∪C)=(A∩B)∪(A∩C)

四、(10分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R∩S=[a]R∩[a]S。

解:x∈A,因为R和S是自反关系,所以∈R、∈S,因而∈R∩S,故R∩S是自反的。

x、y∈A,若∈R∩S,则∈R、∈S,因为R和S是对称关系,所以因∈R、∈S,因而∈R∩S,故R∩S是对称的。

x、y、z∈A,若∈R∩S且∈R∩S,则∈R、∈S且∈R、∈S,因为R和S是传递的,所以因∈R、∈S,因而∈R∩S,故R∩S是传递的。

总之R∩S是等价关系。

2)因为x∈[a]R∩S∈R∩S

∈R∧∈S x∈[a]R∧x∈[a]S x∈[a]R∩[a]S 所以[a]R∩S=[a]R∩[a]S。

五、(10分)设A={a,b,c,d},R是A上的二元关系,且R={,},求r(R)、s(R)和t(R)。

解 r(R)=R∪IA={,,,} s(R)=R∪R={,} R={,,} R={,,} R={,,}=R

t(R)=R={,,,,

4232-1d>,}

六、(15分)设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×CB×D且∈A×C,h()=。证明h是双射。

证明:1)先证h是满射。

∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=,所以h是满射。

2)再证h是单射。

、∈A×C,若h()=h(),则,所以f(a1)=f(a2),g(c1)=g(c2),因为f是A到B的双射,g是C

到D的双射,所以a1=a2,c1=c2,所以=,所以h是单射。

综合1)和2),h是双射。

七、(12分)设是群,H是G的非空子集,证明的子群的充要条件是若a,bH,则有a*bH。

证明: a,b∈H有b∈H,所以a*b∈H。a∈H,则e=a*a∈H a=e*a∈H ∵a,b∈H及b∈H,∴a*b=a*(b)∈H ∵HG且H≠,∴*在H上满足结合律 ∴的子群。

八、(10分)设G=是简单的无向平面图,证明G至少有一个结点的度数小于等于5。

解:设G的每个结点的度数都大于等于6,则2|E|=d(v)≥6|V|,即|E|≥3|V|,与简单无向平面图的|E|≤3|V|-6矛盾,所以G至少有一个结点的度数小于等于5。九.G=,A={a,b,c},*的运算表为:(写过程,7分)-

1-1

-1-1-1-1-1

-1-1(1)G是否为阿贝尔群?

(2)找出G的单位元;(3)找出G的幂等元(4)求b的逆元和c的逆元 解:(1)(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c)(a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b)(b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c)所以G是阿贝尔群

(2)因为a*a=a a*b=b*a=b a*c=c*a=c 所以G的单位元是a(3)因为a*a=a 所以G的幂等元是a(4)因为b*c=c*b=a,所以b的逆元是c且c的逆元是b

十、(10分)求叶的权分别为2、4、6、8、10、12、14的最优二叉树及其权。

解:最优二叉树为

权=148 离散数学试题(B卷答案6)

一、(20分)用公式法判断下列公式的类型:(1)(P∨Q)(PQ)(2)(PQ)(P∧(Q∨R))解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)

(P∧Q)∨(P∧Q)∨(P∧Q)m1∨m2∨m3 M0

所以,公式(P∨Q)(PQ)为可满足式。

(2)因为(PQ)(P∧(Q∨R))((P∨Q))∨(P∧Q∧R))

(P∨Q)∨(P∧Q∧R))

(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R)(P∨Q)∧(P∨Q∨R)

(P∨Q∨(R∧R))∧(P∨Q∨R)(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)M0∧M1

m2∨m3∨m4∨m5∨m6∨m7

所以,公式(PQ)(P∧(Q∨R))为可满足式。

二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋

又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。

解:论域:所有人的集合。Q(x):x是勤奋的;H(x):x是身体健康的;S(x):x是科学家;C(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:

x(S(x)H(x))Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧x(C(x)∨F(x))下面给出证明:

(1)x(S(x)∧H(x))

P(2)S(a)∧H(a)

T(1),ES(3)x(S(x)Q(x))

P(4)S(a)Q(a)

T(1),US(5)S(a)

T(2),I(6)Q(a)

T(4)(5),I(7)H(a)

T(2),I(8)Q(a)∧H(a)

T(6)(7),I(9)x(Q(x)∧H(x)C(x))

P(10)Q(a)∧H(a)C(a)

T(9),Us(11)C(a)

T(8)(10),I(12)xC(x)

T(11),EG(13)x(C(x)∨F(x))

T(12),I

三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解

P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立?(1)若R和S是自反的,则R*S也是自反的。(2)若R和S是反自反的,则R*S也是反自反的。(3)若R和S是对称的,则R*S也是对称的。

(4)若R和S是传递的,则R*S也是传递的。(5)若R和S是自反的,则R∩S是自反的。(6)若R和S是传递的,则R∪S是传递的。

(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。

(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。

(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。

(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。

(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。

五、(15分)令X={x1,x2,„,xm},Y={y1,y2,„,yn}。问(1)有多少个不同的由X到Y的函数?

(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?(3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?

(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共nm个。

(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到

mY的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。

(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,故不同的双射有m!个。

六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个?

X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。

七、(10分)若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=

b。

证明 设e是群的幺元。令x=a1*b,则a*x=a*(a1*b)=(a*a1)*b=e*b=b。

-所以,x=a1*b是a*x=b的解。-若x∈G也是a*x=b的解,则x=e*x=(a1*a)*x=a1*(a*x)=a1*b=x。所以,x

-=a1*b是a*x=b的惟一解。-

八、(10分)给定连通简单平面图G=,且|V|=6,|E|=12。证明:对任意f∈F,d(f)=3。

证明

由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=

fF24。若存在f∈F,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。

离散数学试题(B卷答案7)

一、(15分)设计一盏电灯的开关电路,要求受3个开关A、B、C的控制:当且仅当A和C同时关闭或B和C同时关闭时灯亮。设F表示灯亮。

(1)写出F在全功能联结词组{}中的命题公式。(2)写出F的主析取范式与主合取范式。

(1)设A:开关A关闭;B:开关B关闭;C:开关C关闭;F=(A∧C)∨(B∧C)。在全功能联结词组{}中:

A(A∧A)AA A∧C(A∧C)(AC)(AC)(AC)

A∨B(A∧B)((AA)∧(BB))(AA)(BB)所以

F((AC)(AC))∨((BC)(BC))(((AC)(AC))((AC)(AC)))(((BC)(BC))((BC)(BC)))(2)F(A∧C)∨(B∧C)

(A∧(B∨B)∧C)∨((A∨A)∧B∧C)(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)m3∨m5∨m7

主析取范式 M0∧M1∧M2∧M4∧M6

主合取范式

二、(10分)判断下列公式是否是永真式?(1)(xA(x)xB(x))x(A(x)B(x))。(2)(xA(x)xB(x))x(A(x)B(x)))。解

(1)(xA(x)xB(x))x(A(x)B(x))(xA(x)∨xB(x))x(A(x)B(x))(xA(x)∨xB(x))∨x(A(x)∨B(x))(xA(x)∧xB(x))∨xA(x)∨xB(x)(xA(x)∨xA(x)∨xB(x))∧(xB(x)∨xA(x)∨xB(x))x(A(x)∨A(x))∨xB(x)T

所以,(xA(x)xB(x))x(A(x)B(x))为永真式。

(2)设论域为{1,2},令A(1)=T;A(2)=F;B(1)=F;B(2)=T。

则xA(x)为假,xB(x)也为假,从而xA(x)xB(x)为真;而由于A(1)B(1)为假,所以x(A(x)B(x))也为假,因此公式(xA(x)xB(x))x(A(x)B(x))为假。该公式不是永真式。

三、(15分)设X为集合,A=P(X)-{}-{X}且A≠,若|X|=n,问(1)偏序集是否有最大元?(2)偏序集是否有最小元?

(3)偏序集中极大元和极小元的一般形式是什么?并说明理由。解

偏序集不存在最大元和最小元,因为n>2。

考察P(X)的哈斯图,最底层的顶点是空集,记作第0层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第n-1层是X的n-1元子集,第n层是X。偏序集与偏序集

相比,恰好缺少第0层和第n层。因此的极小元就是X的所有单元集,即{x},x∈X;而极大元恰好是比X少一个元素,即X-{x},x∈X。

四、(10分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

五、(10分)设函数g:A→B,f:B→C,(1)若fg是满射,则f是满射。(2)若fg是单射,则g是单射。

证明

因为g:A→B,f:B→C,由定理5.5知,fg为A到C的函数。

(1)对任意的z∈C,因fg是满射,则存在x∈A使fg(x)=z,即f(g(x))=z。由g:A→B可知g(x)∈B,于是有y=g(x)∈B,使得f(y)=z。因此,f是满射。

(2)对任意的x1、x2∈A,若x1≠x2,则由fg是单射得fg(x1)≠fg(x2),于是f(g(x1))≠f(g(x2)),必有g(x1)≠g(x2)。所以,g是单射。

六、(10分)有幺元且满足消去律的有限半群一定是群。

证明

是一个有幺元且满足消去律的有限半群,要证是群,只需证明G的任一元素a可逆。

考虑a,a2,„,ak,„。因为G只有有限个元素,所以存在k>l,使得ak=al。令m=k-l,有al*e=al*am,其中e是幺元。由消去率得am=e。

于是,当m=1时,a=e,而e是可逆的;当m>1时,a*am-1=am-1*a=e。从而a是可逆的,其逆元是am-1。总之,a是可逆的。

七、(20分)有向图G如图所示,试求:(1)求G的邻接矩阵A。

(2)求出A2、A3和A4,v1到v4长度为1、2、3和4的路有多少?

(3)求出ATA和AAT,说明ATA和AAT中的第(2,2)元素和第(2,3)元素的意义。(4)求出可达矩阵P。(5)求出强分图。

(1)求G的邻接矩阵为:

00A00101011

101100(2)由于

002A001110220130A0211102011120322044A

031201012313 2322所以v1到v4长度为1、2、3和4的路的个数分别为1、1、2、3。(3)由于

00ATA000002131212TAA

21011102132110 2121再由定理10.19可知,所以ATA的第(2,2)元素为3,表明那些边以v2为终结点且具有不同始结点的数目为3,其第(2,3)元素为0,表明那些边既以v2为终结点又以v3为终结点,并且具有相同始结点的数目为0。AAT中的第(2,2)元素为2,表明那些边以v2为始结点且具有不同终结点的数目为2,其第(2,3)元素为1,表明那些边既以v2为始结点又以v3为始结点,并且具有相同终结点的数目为1。

(4)00B4AA2A3A40000所以求可达矩阵为P0000(5)因为PPT0010100110+10101000111111。

11111111101111∧1111111100001110=01110111000111,所以{v1},{v2,v3,v4}

111111因

1110



2010

+

1110

0110

2120312204+

2120320101231323220

000

741

747,747

434构成G的强分图。

离散数学试题(B卷答案8)

一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R

证明

因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。(1)R

附加前提(2)PR

P(3)P

T(1)(2),I(4)P∨Q

P(5)Q

T(3)(4),I(6)QS

P(7)S

T(5)(6),I(8)RS

CP(9)S∨R

T(8),E

二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。

(1)x(P(x)Q(x))

P(2)x(P(x)∨Q(x))

T(1),E(3)x(P(x)∧Q(x))

T(2),E(4)P(a)∧Q(a)

T(3),ES(5)P(a)

T(4),I(6)Q(a)

T(4),I(7)x(P(x)(A(x)∨B(x))

P(8)P(a)(A(a)∨B(a))

T(7),US(9)A(a)∨B(a)

T(8)(5),I(10)x(A(x)Q(x))

P

(11)A(a)Q(a)

T(10),US(12)A(a)

T(11)(6),I

(13)B(a)

T(12)(9),I(14)P(a)∧B(a)

T(5)(13),I(15)x(P(x)∧B(x))

T(14),EG

三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

设A、B、C分别表示会打排球、网球和篮球的学生集合。则:

|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2=6,所以|(A∩B)|=3。于是|A∪B∪C|=12+6+14-6-5-3+2=20,|ABC|=25-20=5。故,不会打这三种球的共5人。

四、(10分)设A1、A2和A3是全集U的子集,则形如Ai(Ai为Ai或Ai)的集合称

i13为由A1、A2和A3产生的小项。试证由A1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。

证明

小项共8个,设有r个非空小项s1、s2、…、sr(r≤8)。

对任意的a∈U,则a∈Ai或a∈Ai,两者必有一个成立,取Ai为包含元素a的Ai或Ai,则a∈Ai,即有a∈si,于是Usi。又显然有siU,所以U=si。

i1i1i1i1i13rrrr任取两个非空小项sp和sq,若sp≠sq,则必存在某个Ai和Ai分别出现在sp和sq中,于是sp∩sq=。

综上可知,{s1,s2,…,sr}是U的一个划分。

五、(15分)设R是A上的二元关系,则:R是传递的R*RR。

证明

(5)若R是传递的,则∈R*Rz(xRz∧zSy)xRc∧cSy,由R是传递的得xRy,即有∈R,所以R*RR。

反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则∈R*R,于是有∈R,即有xRy,所以R是传递的。

六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r分别为G的结点数、边数和面数。

证明

对G的边数m作归纳法。

当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。假设对边数小于m的连通平面图结论成立。下面考虑连通平面图G的边数为m的情况。

设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。对e分为下列情况来讨论:

若e为割边,则G有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。

若e不为割边,则n=n,m=m-1,r=r-1,由归纳假设有n-m+r=2,从而n-(m-1)+r-1=2,即n-m+r=2。

由数学归纳法知,结论成立。

七、(10分)设函数g:A→B,f:B→C,则:(1)fg是A到C的函数;

(2)对任意的x∈A,有fg(x)=f(g(x))。

证明

(1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使∈g。对于y∈B,因f:B→C是函数,则存在z∈C使∈f。根据复合关系的定义,由∈g和∈f得∈g*f,即∈fg。所以Dfg=A。

对任意的x∈A,若存在y1、y2∈C,使得∈fg=g*f,则存在t1使得∈g且∈f,存在t2使得∈g且∈f。因为g:A→B是函数,则t1=t2。又因f:B→C是函数,则y1=y2。所以A中的每个元素对应C中惟一的元素。

综上可知,fg是A到C的函数。

(2)对任意的x∈A,由g:A→B是函数,有∈g且g(x)∈B,又由f:B→C是函数,得∈f,于是∈g*f=fg。又因fg是A到C的函数,则可写为fg(x)=f(g(x))。

八、(15分)设的子群,定义R={|a、b∈G且a1*b∈H},-则R是G中的一个等价关系,且[a]R=aH。

证明

对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。

若∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以

-a>∈R。

若∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a

-1*b)*(b1*c)=a1*c∈H,故∈R。--综上可得,R是G中的一个等价关系。

对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,-

-于是b∈aH,[a]RaH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,∈R,故aH[a]R。所以,[a]R=aH。

离散数学试题(B卷答案9)

一、(10分)证明(P∧Q∧AC)∧(AP∨Q∨C)(A∧(PQ))C。证明:(P∧Q∧AC)∧(AP∨Q∨C)(P∨Q∨A∨C)∧(A∨P∨Q∨C)

(P∨Q∨A∨C)∧(A∨P∨Q∨C)((P∨Q∨A)∧(A∨P∨Q))∨C ((P∧Q∧A)∨(A∧P∧Q))∨C (A∧((P∧Q)∨(P∧Q)))∨C (A∧(PQ))∨C (A∧(PQ))C。

二、(10分)举例说明下面推理不正确:xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))。

解:设论域为{1,2},令P(1)=P(2)=T;Q(1)=Q(2)=T;R(1)=R(2)=F。则: xy(P(x)Q(y))x((P(x)Q(1))∨(P(x)Q(2)))

((P(1)Q(1))∨(P(1)Q(2)))∧((P(2)Q(1))∨(P(2)Q(2)))((TT)∨(TT))∧((TT)∨(TT))T yz(R(y)Q(z))y((R(y)Q(1))∨(R(y)Q(2)))

((R(1)Q(1))∨(R(1)Q(2)))∧((R(2)Q(1))∨(R(2)Q(2)))

((FT)∨(FT))∧((FT)∨(FT))

T

xz(P(x)R(z))x((P(x)R(1))∧(P(x)R(2)))((P(1)R(1))∧(P(1)R(2)))∨((P(2)R(1))∧(P(2)R(2)))((TF)∧(TF))∨((TF)∧(TF))F 所以,xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))不正确。

三、(15分)在谓词逻辑中构造下面推理的证明:所有牛都有角,有些动物是牛,所以,有些动物有角。

解:令P(x):x是牛;Q(x):x有角;R(x):x是动物;则推理化形式为:

x(P(x)Q(x)),x(P(x)∧R(x))x(Q(x)∧R(x))下面给出证明:

(1)x(P(x)∧R(x))

P(2)P(a)∧R(a)

T(1),ES(3)x(P(x)Q(x))

P(4)P(a)Q(a)

T(3),US(5)P(a)

T(2),I(6)Q(a)

T(4)(5),I(7)R(a)

T(2),I(8)Q(a)∧R(a)

T(6)(7),I(9)x(Q(x)∧R(x))

T(8),EG

四、(10分)证明(A∩B)×(C∩D)=(A×C)∩(B×D)。

证明:因为∈(A∩B)×(C∩D)x∈(A∩B)∧y∈(C∩D)x∈A∧x∈B∧y∈C∧y∈D(x∈A∧y∈C)∧(x∈B∧y∈D)∈A×C∧∈B×D∈(A×C)∩(B×D),所以(A∩B)×(C∩D)=(A×C)∩(B×D)。

五、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

六、(10分)若函数f:A→B是双射,则对任意x∈A,有f1(f(x))=x。

-证明

对任意的x∈A,因为f:A→B是函数,则∈f,于是

-由f-1是B到A的函数,于是可写为f1(f(x))=x。

七、(10分)若G为有限群,则|G|=|H|·[G:H]。

证明

设[G:H]=k,a1、a2、…、ak分别为H的k个左陪集的代表元,由定理8.38得

G[ai]RaiH

i1i1kk又因为对H中任意不同的元素x、y∈H及a∈G,必有a*x≠a*y,所以|a1H|=…=|akH|=|H|。因此

|G||aiH|i1k|aH|k|H|=|H|·[G:H]。

ii1k

八、(20分)(1)画出3阶2条边的所有非同构有向简单图。

解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为: 1、2、1:入度列为0、1、1或0、2、0或1、0、1;出度列为1、1、0或1、0、1或0、2、0 2、2、0:入度列为1、1、0;出度列为1、1、0 四个所求有向简单图如图所示。

(2)设G是n(n≥4)阶极大平面图,则G的最小度≥3。

证明

设v是极大平面图G的任一结点,则v在平面图G-{v}的某个面f内。由于G-{v}是一个平面简单图且其结点数大于等于3,所以d(f)≥3。由G的极大平面性,v与f上的结点之间都有边,因此d(v)≥3。由v的任意性可得,G的最小度≥3。

离散数学试题(B卷答案10)

一、(10分)使用将命题公式化为主范式的方法,证明(PQ)(P∧Q)(QP)∧(P∨Q)。

证明:因为(PQ)(P∧Q)(P∨Q)∨(P∧Q)

(P∧Q)∨(P∧Q)(QP)∧(P∨Q)(Q∨P)∧(P∨Q)(P∧Q)∨(Q∧Q)∨(P∧P)∨(P∧Q)(P∧Q)∨P

(P∧Q)∨(P∧(Q∨Q))(P∧Q)∨(P∧Q)∨(P∧Q)(P∧Q)∨(P∧Q)所以,(PQ)(P∧Q)(QP)∧(P∨Q)。

二、(10分)证明下述推理: 如果A努力工作,那么B或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。

解 设A:A努力工作;B、C、D分别表示B、C、D愉快;则推理化形式为: AB∨C,BA,DCAD

(1)A 附加前提(2)AB∨C P(3)B∨C T(1)(2),I(4)BA P(5)AB

T(4),E(6)B T(1)(5),I(7)C T(3)(6),I

(8)DC P(9)D T(7)(8),I(10)AD CP

三、(10分)证明xy(P(x)Q(y))(xP(x)yQ(y))。xy(P(x)Q(y))xy(P(x)∨Q(y))x(P(x)∨yQ(y))xP(x)∨yQ(y)xP(x)∨yQ(y)(xP(x)yQ(y))

四、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

五、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>}(1)画出R的关系图。(2)写出R的关系矩阵。

(3)说明R是否是自反、反自反、对称、传递的。解(1)R的关系图如图所示:(2)R的关系矩阵为:

10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;

经过计算可得

10M(R2)111011101100M(R),所以R是传递的。00

六、(15分)设函数f:R×RR×R,f定义为:f()=。(1)证明f是单射。(2)证明f是满射。(3)求逆函数f。

(4)求复合函数ff和ff。

证明(1)对任意的x,y,x1,y1∈R,若f()=f(),则,x+y=x1+y1,x-y=x1-y1,从而x=x1,y=y1,故f是单射。

(2)对任意的∈R×R,令x=-1-

1uwuwuwuw,y=,则f()=<+,2222uwuw->=,所以f是满射。22(3)f()=<-1-1uwuw,>。22-1(4)ff()=f(f())=f

-1

()=<

xyxy,2xy(xy)>= 2ff()=f(f())=f()==<2x,2y>。

七、(15分)给定群,若对G中任意元a和b,有a*b=(a*b),a*b=(a*b),a*b=(a*b),试证是Abel群。

证明 对G中任意元a和b。

因为a*b=(a*b),所以a*a*b*b=a*(a*b)*b,即得a*b=(b*a)。同33

333

2255

13

111理,由a*b=(a*b)可得,a*b=(b*a)。由a*b=(a*b)可得,a*b=(b*a)。

于是(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。同理可得,(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。

3333334

344433555444

由于(a*b)*b=a*b=b*a=b*(b*a)=b*(a*b)=(b*a)*b,故a*b=b*a。

八、(15分)(1)证明在n个结点的连通图G中,至少有n-1条边。

证明 不妨设G是无向连通图(若G为有向图,可略去边的方向讨论对应的无向图)。设G中结点为v1、v2、„、vn。由连通性,必存在与v1相邻的结点,不妨设它为v2(否则可重新编号),连接v1和v2,得边e1,还是由连通性,在v3、v4、„、vn中必存在与v1或v2相邻的结点,不妨设为v3,将其连接得边e2,续行此法,vn必与v1、v2、„、vn1中的某个结点相邻,得新边en1,由此可见G中至少有n-1条边。

(2)试给出|V|=n,|E|=(n-1)(n-2)的简单无向图G=是不连通的例子。

解 下图满足条件但不连通。

篇3:离散数学期末试卷

1.6.3737……精确到十分位是 ( ) , 保留两位小数是 ( ) 。

2.两个因数相乘的积是0.36, 其中一个因数扩大10倍, 另一个因数也扩大10倍, 积现在是 ( ) 。

3.6.5小时= ( ) 小时 ( ) 分4m5cm= ( ) m

5.6kg= ( ) kg ( ) g 0.72km= ( ) m

4.请你根据上面的算式直接写出下面算式的结果。

5.去掉3.14的小数点, 也就是把它的小数点向右移动了 ( ) 位, 它的值相应扩大了 ( ) 倍。

6.在○里填上适当的运算符号。

7.把1.1616……、1.1666……和1.16三个数从大到小按顺序排列。

( ) > ( ) > ( )

8.根据运算定律填一填。

9.长方形的面积计算公式用字母表示是 ( ) , 如果a=2m, b=1.5m, 则长方形的面积是 ( ) m2。

10.1个面包0.8元, 买a个应付 ( ) 元

l1.《故事会》每本2.5元, 《故事大王》比《故事会》贵x元, 《故事大王》每本 ( ) 元。

12.图书角有a本图书, 借走b本, 还剩 ( ) 本。

13.妈妈买了4kg苹果, 每千克y元, 付给售货员50元, 应找回 ( ) 元。

14.三个连续自然数, 中间一个是a, 较小数是 ( ) , 较大数是 ( ) 。

15.小明读一本a页的故事书, 已经读了5天, 平均每天读b页, 剩下的c天读完。

(1) 5+c表示 ( )

(7) 5b表示 ( )

16.小明住在南湖花园10号楼3单元的2楼02室, 记作:10-3-202。小英家住在13号楼4单元的1楼01室, 应记作: ( ) 。

17.四年级爬竿比赛, 前5名的成绩是5m、7m、6.5m、4m和4.5m, 他们的平均成绩是 ( ) m, 这组数据的中位数是 ( ) 。

18.当一组数据的个别数据严重偏大或偏小时, 用 ( ) 数来描述该组数据的一般水平较合适。

19.转动指针, 停在3号方格的可能性是 ( ) ;如果转动指针100次, 指针大约会有 ( ) 次停在1号格上。

20.有四张卡片2 3 4 5, 从中抽出一张, 有 ( ) 种可能, 可能性都是 ( ) 。摸出卡片的数字大于3的可能性是 ( ) 。

二、请你判断对错

l.6x-4>是方程。 ( )

2.x=5是方程3x+5=20的解。 ( )

3.当m=3时, m2+7的值是13。 ( )

4.含有未知数的式子叫做方程。 ( )

5.两个面积相等的三角形一定可以拼成一个平行四边形。 ( )

6.面积单位比长度单位大。 ( )

7.三角形的面积等于平行四边形的一半。 ( )

8.等底等高的三角形, 它们的面积一定相等。 ( )

9.一个平行四边形的高是6cm, 底的长度是高的5倍, 它的面积是180cm2。 ( )

三、择优录取选一选

1.一个平行四边形的面积是5.4cm2, 高是0.9cm, 底是 ( ) cm。

(1) 0.6 (2) 6 (3) 12

2.一个三角形与一个平行四边形面积相等, 底边的长度也相等, 平行四边形的高是6cm, 三角形的高是 ( ) cm。

(1) 6cm (2) 12cm (3) 3cm

3.将用木条钉成的一个长方形拉成一个平行四边形, 它的面积比长方形 ( ) 。

(1) 大 (2) 小 (3) 相等

4.一个三角形的面积是40cm2, 底是8cm, 它的高是 ( ) cm。

(1) 10 (2) 5 (8) 20

5.一个梯形的面积是16dm2, 把这样的两个梯形拼成一个平行四边形, 这个平行四边形的面积是 ( ) dm2。

(1) 32 (2) 16 (3) 8

四、计算我能行

1.直接写出得数。

2.根据要求填表。

3.列竖式计算。

4.脱式计算。 (能简便的要用简便方法计算)

5.解方程。

.看图列式并计算。

五、动手画高, 并进行相应测量, 求出下列图形的面积

(测量时, 保留一位小数, 单位:cm)

六、观察物体我仔细

面各幅图分别是从哪个方向看到的图形?

这是从 ( ) 面看到的。

这是从 ( ) 面看到的。

这是从 ( ) 面看到的。

是从 ( ) 面看到的。

七、下面的物体从上面看分别是什么形状的?请你画一画

八、解决问题看我的

1.《少儿童话》每本价格为5.40元。五 (1) 班订阅了55本, 五 (2) 班订阅了45本。这两个班共花了多少钱订购《少儿童话》?

2.李老板购进200米彩条, 卖出108米, 剩下的准备扎成花篮出售, 每个花篮需用彩条2.5米, 一共可以扎多少个这样的花篮?

3.玩具厂计划生产2600只机器猫。前5天每天生产18只, 为了赶在交易会前交货, 余下的要在8.5天内完成, 每天应生产多少只机器猫?

4.小青买了2本日记本, 付出10元, 找回4.4元。每本日记本多少元?

5.南山广场种樟树365棵, 比柏树棵数的4倍还多13棵。柏树种了多少棵?

6.甲、乙两地相距350km, 一辆汽车以每小时45km的速度从甲地开往乙地, 行驶几小时后, 汽车距乙地正好80km?

7.有一块平行四边形的麦地, 底是20m, 高是35m, 共收小麦840千克, 平均每平方米产小麦多少千克?

8.一个梯形的高是4.8cm, 比上底长1cm, 下底比高长1.2cm, 它的面积是多少?

9.一张等边三角形卡片的周长是18cm, 高是4cm, 这张卡片的面积是多少?

10.一块长方形平面钢板, 长1.5m, 宽0.8m, 从这块钢板上截下一块底长0.4m、高0.5m的三角形钢板, 剩下钢板的面积是多少平方米?

11.桌子上摆着9张卡片, 分别写着2 3 4 5 6 78 9 10各数。如果摸到单数小明赢, 如果摸到双数小红赢。

(1) 这个游戏公平吗?为什么?

(2) 小红一定会赢吗?为什么?

(3) 你能想出一个什么办法使这个游戏公平。

12.下表是五 (1) 班七名同学投垒球的成绩。

(1) 求出这组数据的平均数和中位数。

(2) 为什么中位数比平均数小?

13.

(1) 求出中位数。

篇4:期中、期末考试数学试卷评讲策略

一、结合学情,研究试题

阅卷前,教师要在认真解答试题的基础上,分析试题的结构、考查的范围、知识点的分布以及考查的重点、难点等。结合阅卷情况发现学生在知识、方法掌握上存在的普遍性问题和突出问题,明确在后期教学工作中需进一步巩固、充实、完善、加强的地方,增强教学的针对性。

二、统计分析,找准问题

在试卷评讲前,教师要借助电脑对学生答卷各题得分情况进行统计与分析,同时还要收集客观题卷面答题信息。通过数据分析及卷面答题信息找到学生存在的共性问题,比如概念不清的有哪些,审题不清的有哪些,方法不当的有哪些,运算不准的有哪些,解题不规范的有哪些等。只有这样,才能在评讲过程中有针对性、有重点地评讲学生答题中存在的共性问题及错因。同时还要关注少数学生的特有错误,为后面的个别指导做准备。

三、试卷评讲,突出重点

1.讲概念辨析

学生在考试中出现的会而不对、对而不全的问题,并不是学生完全不会导致的,大部分情况下是学生对概念的理解不深、不透导致的。例如,学生在运用算术平均数大于等于几何平均数这一公式解题时忽略取等号的充要条件,轻者造成失分,重者会导致结论错误不得分。所以,在评卷中要有意识的对学生在考试中出错率较高的概念进行重点辨析,帮助学生准确理解概念,防止类似问题的再次发生。

2.讲错例、错因

讲评试卷不能从头到尾面面俱到,而是应有选择、有侧重。否则,既浪费了课堂教学时间,又难达到预期效果。讲评试卷前教师要认真查阅每个学生的试卷,分析各题的错误率,弄清那些题目错得多,错在那里,找出错误的症结。集中学生的易错处和典型错例,展开错因分析,既能弥补学生知识、方法上的缺陷,又能提升学生分析问题和解决问题的能力。

3.讲考题的拓展、延伸

考题大多源于课本、高于课本,由于部分题的情景变换,学生很可能就会由于思维定势造成失分。因此、培养学生应变和方法迁移能力很重要。所以、在评讲试卷时,教师要对重要题目进行引申,从多侧面、多角度进行合理发散,对提问方式进行改变,对结论进行衍伸和扩展,使学生感到别开生面,提升学生学习兴趣、调动学生学习积极性,培养学生分析和解决问题的能力,帮助学生形成知识迁移能力。

4.讲解题思路和规律

在考试中,有些学生会对一些题型出现解答不稳定的情况、时好时坏。出现这种情况说明,学生对方法的掌握不够全面,对规律的总结不够到位。要改变这种情况,教师在评卷时需指导学生进行考点分析,即思考试题考查什么知识点,这些知识点的关键处在哪里,解题的常规方法和技巧是什么,有哪些规律性东西需要注意,结合学情因材施教,帮助学生更好、更灵活地掌握解决问题的方法。

5.讲解题技巧

数学考试解题的原则是小题小做、大题巧做。选择题、填空题解答准确、快速是关键。要做到这一点,就要灵活运用筛选、特值、图像、估算、计算、推理、验证选项等多种方法,提高解题的准确性和速度。简答题解答规范、完备是关键。在審题时,要引导学生做到常规解法与技巧权衡选择,提醒学生解答过程中注重对细节的处理,防止不必要的失分。

6.讲答题规范

对简答题的解答要引导学生从文字说明、证明过程和演算步骤的清楚以及准确方面做好自查,发现存在的问题,明确改进方向,培养学生养成有理有据地分析问题的良好习惯和严谨的科学态度。同时,还要把卷面整洁做为基本要求,让学生养成在卷面上不乱涂乱画、书写工整的好习惯。

篇5:离散数学浙师大2008期末试卷

考试形式闭卷使用学生 计(非师范): 02班

考试时间120 分钟出卷时间 2008 年5月28日

说明:考生应将全部答案都写在答题纸上,否则作无效处理。

一。选择题(每题2分,共20分):

1.命题公式p(qp)为()。

A.重言式B.可满足式C.矛盾式D.等值式

2.设集合A = {1,a},则P(A)=()。

A.{{1},{a}}B.{,{1},{a}}

C.{,{1},{a},{1,a}}D.{{1},{a},{1,a}}

3.下列命题中正确的结论是:()

A.集合上A的关系如果不是自反的,就一定是反自反的;

B.若关系R,S都是反自反的,那么RS必也为反自反的;

C.若关系R,S都是自反的,那么RS必也为自反的;

D.每一个全序集必为良序集.4.下列结论中不正确的结论是:()

A.三个命题变元的布尔小项pqr的编码是m010;

B.三个命题变元的布尔大项pqr的编码是M101;

C.任意两个不同的布尔小项的合取式必为永假式;

D.任意两个不同的布尔大项的合取式必为永假式.5.设集合A和二元运算*,可交换的代数运算是()。

A.设AP({x,y}),a,bA,abab

B.设A{1,1,2,3,4,5},a,bA,ab|b|

C.设AMn(R),运算是矩阵的乘法

D.设AZ,a,bA,aba2b

6.以下命题中不正确的结论是()

A.素数阶群必为循环群;B.Abel群必为循环群;

C.循环群必为Abel群D.4阶群必为Abel群.7.设代数系统(K1,)和(K2,),存在映射f:K1K2,如果a,bK1,都有(),称K1与K2同态。

A.f(ab)f(a)f(b)B.f(ab)f(a)f(b)

C.f(ab)f(a)f(b)D.f(ab)f(a)f(b)

8.图G有21条边,3个4度结点,其余均为3度结点,则G有()个结点。A.13B.15C.17D.19

9.以下命题中正确的结论是()

A.n2k时,完全图Kn必为欧拉图

B.如果一个连通图的奇结点的个数大于2,那么它可能是一个Euler图;

C.一棵树必是连通图,且其中没有回路;

D.图的邻接矩阵必为对称阵.10.若连通图GV,E,其中|V|n,|E|m,则要删去G中()条边,才能确定G的一棵生成树。

A.nm1B.nm1C.mn1D.mn

1二.填空题(每题2分,共20分)

11.在有界格中命题a00的对偶命题为

12.设G是有限群,H是G的子群,则H在G中的右陪集数为。

13.设集合A = {a,b,c,d},A上的二元关系R = {,,,},那么Dom(R)= Ran(R)=。

11014.设集合B = {a,b,c}上的二元关系R的关系矩阵MR001,则R具有的性质

000

是,且它的对称闭包S(R)=。

15.设集合A = {a,b},B = {1,2},则从A到B的所有函数是,其中双射的函数

16.设无向图GV,E是哈密顿图,对于任意的V1V且V1均有 其中,p(GV1)为GV1的连通分支数。

17.公式(a(bc)def)(g(hi)j)的前缀符号法表示为。

18.已知下图,它的点连通度(G)为,边连通度(G)为

20.若二部图Km,n为完全二部图,则其边数为

三.计算题(一)(每小题5分,共30分)

21.符号化下述两个语句,并说明其区别:

(1)如果天不下雨,我们就去旅游;(2)只有不下雨,我们才去旅游。

22.将下命题化为主析取范式和主合取范式:(p(qr))(pqr).23.设R={<0,1>,<1,0>,<0,2>,<2,0>},求:⑴ R*R;⑵ R*R-1; ⑶R[{0}]

24.设集合A={1,2,3,4},A上的二元关系R,其中R={<1,1>,<1,4>,<2,2>, <2,3>,<3,2>,<3,3>,<4,1>,<4,4>},说明R是否A上的等价关系。

25.设A{1,2,,12},为整除关系,B{2,3,4},(1)画出偏序集A,的哈斯图;

(2)找出A的极大元、极小元、最大元、最小元;(3)在A,中求B的上界、下界、最小上界、最大下界.26.设代数系统(Z,),其中Z是整数集,二元运算定义为

a,bZ,abab2。aZ,求a的逆元.三.计算题(二)(每小题7分,共14分)

27.设Ga是15阶循环群.(1)求出G的所有生成元;(2)求出G的所有子群.28.求下图D的邻接矩阵A(D),并算出其可达矩阵P(D)

五.证明题(每小题8分,共16分)

29.在自然推理系统F中,构造下面推理的证明:

每个喜欢步行的人都不喜欢骑自行车。每个人或者喜欢骑自行车或者喜欢乘汽车。有的人不喜欢乘汽车,所有的人不喜欢步行。(个体域为人类集合)

篇6:离散数学期末试卷

答案及评分细则

课程名称: 离散数学 考试形式: 闭卷 考试日期:2013 年 月 日 考试时长:120分钟

I.Multiple Choice(15%, 10 questions, 1.5 points each)C, C, B, A, B, B, D, A, B, C II.True or False(10%, 10 questions, 1 point each)F, T, T, T, F, F, F, F, T, F

III.Fill in the Blanks(20%, 10 questions, 2 points each)27=128, [-1,1], (aa)(bb)(cc)(ab)(ba), (12)(23)(33)(42), Some tests are easy, gcd(45,12)=3=12  4  45 (1), 6!, 52, ∀x ∃y(xy <>0), {(a,b)2|ab}

IV.Answer the Questions(35%,7 questions, 5 points each): 1.

(1 point for each row)

2.Ans:(a)0123

(3points)

(b)[612).(2points)113.Ans: 001110011100.(one entry 1 point)114.Ans:

(one point for each step)

5.Ans: Encrypted form: CTOA.(one character 1 point)6.Ans: 5  11k.(the inverse of 5 module 11 is 9, 3 points, the result 2 points)7.Ans: The graphs are isomorphic(2 points): A–7, B–4, C–3, D–6, E–5, F–2, G–1.(3 points)

V.(6%)

(a)R is reflexive:(a, b)and(a, b)lie on the same line through the origin, namely on the line y = bx/a(if a≠0), or else on the line x = 0(if a = 0).(1 point)

R is symmetric: if(a, b)and(c, d)lie on the same line through the origin, then(c, d)and(a, b)lie on the same line through the origin.(1 point)R is transitive: suppose(a, b)and(c, d)lie on the same line L through the origin and(c, d)and(e, f)lie on the same line M through the origin.Then L and M both contain the two distinct points(0, 0)and(c, d).Therefore L and M are the same line, and this line contains(a, b)and(e, f).Therefore(a, b)and(e, f)lie on the same line through the origin.(1 point)Note: The proof that R is an equivalence relation can be carried out using analytic geometry: if(a, b)and(c, d)lie on the same nonvertical line through the origin, then the slope must equal b/a because the line passes through(0, 0)and(a, b)and the slope must also equal d/c because the line passes through(0, 0)and(c, d);thus, b/a = d/c, or ad = bc.If(a, b)and(c, d)lie on the same vertical line through the origin, then the points must have the form(0, b)and(0, d), and again it must happen that ad = bc.Therefore,(a, b)R(c, d)means that ad = bc.This equation can be used to verify that R is reflexive, symmetric, and transitive.(b)Each equivalence class is the set of points of A on a line of the form y = mx or the vertical line x = 0.(2 points)(c)If A is replaced by the entire plane, R is not an equivalence relation.It fails to satisfy the transitive property;for example,(1, 2)R(0, 0)and(0, 0)R(2, 2), but(1, 2)R(2, 2)because the line passing through(1, 2)and(2, 2)does not pass through the origin.(1 point)

VI(7%)

Using the variables: p: Lynn works part time;f: Lynn works full time;t: Lynn plays on the team;b: Lynn is busy, the argument can be written in symbols:

(3 points)If p∨f;t →p;t → b;f Then b

(1 point)One method to find whether the argument is valid is to construct the truth table:

We need to examine all cases where the hypotheses(columns 5, 6, 7, 8)are all true.There is only one case in which all four hypotheses are true(row 5), and in this case the conclusion is also true.Therefore, the argument is valid.(3 points)Alternately, rules of logic can be used to give a proof that the argument is valid.We begin with the four hypotheses and show how to derive the conclusion, b.1.p∨f;premise 2.t →p premise 3.t → b premise 4.f premise 5.p disjunctive syllogism on(1)and(4)

(1 point)6.p → t contrapositive of(2)

7.t modus ponens on(5)and(6)

(1 point)8.b modus ponens on(7)and(3)

(1 point)

VI I(7%)

Ans: {a} {a, b} {a, b, c}

上一篇:偏远少数民族地区高职教师信息化教学能力发展论文下一篇:万科及各品牌广告语