离散数学试卷及答案二

2023-01-16

第一篇:离散数学试卷及答案二

离散数学试卷二十三试题与答案

试卷二十三试题与答案

一、单项选择题:(每小题1分,本大题共10分)

1.命题公式P(QP)是()。

A、 矛盾式;B、可满足式;C、重言式;D、等价式。

2.下列各式中哪个不成立()。

A、x(P(x)Q(x))xP(x)xQ(x);

B、x(P(x)Q(x))xP(x)xQ(x);

C、x(P(x)Q(x))xP(x)xQ(x);

D、x(P(x)Q)xP(x)Q。

3.谓词公式x(P(x)yR(y))Q(x)中的 x是()。

A、自由变元;B、约束变元;

C、既是自由变元又是约束变元;D、既不是自由变元又不是约束变元。

4.在0 之间应填入()符号。

A、=;B、;C、;D、。

5.设< A , > 是偏序集,BA,下面结论正确的是()。

A、B的极大元bB且唯一;B、B的极大元bA且不唯一;

C、B的上界bB且不唯一;D、B的上确界bA且唯一。

6.在自然数集N上,下列()运算是可结合的。

(对任意a,bN)

A、abab;B、abmax(a,b);

C、aba5b;D、abab。

7.Q为有理数集N,Q上定义运算*为a*b = a + b – ab ,则的幺元为(

A、a;B、b;C、1;D、0。

8.给定下列序列,()可以构成无向简单图的结点度数序列。

A、(1,1,2,2,3);B、(1,1,2,2,2);

C、(0,1,3,3,3);D、(1,3,4,4,5)。

9.设G是简单有向图,可达矩阵P(G)刻划下列 ()关系。

A、点与边;B、边与点;C、点与点;D、边与边。

10.一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为(

A、5;B、7;C、9;D、8。

。)。)

二、填空:(每空1分,本大题共15分)

1.在自然数集中,偶数集为N

1、奇数集为N2,则N1N2=;

N1N2 =。

2.设X{1,2,3,4}

,

R{1,2,2,4,3,3},则

r (R) =;s (R) = ;t (R) = 。

3.设R为集合A上的等价关系,对aA,集合[a]R=,称

a

R

[a]R

,因

为。

4.任意两个不同小项的合取为 ,全体小项的析取式为。

5.设Q(x):x为偶数,P(x):x为素数,则下列命题:(1)存在唯一偶素数;(2)至多有一个偶素数;分别形式化:(1);

(2)。

6.设T为根树,若,则称T为m元树;

若则称T为完全m叉树。

7.含5个结点,4条边的无向连通图(不同构)有 个,

它们是。

三、判断改正题:(每小题2分,本大题共20分)

1.命题公式(A(AB))B是一个矛盾式。() 2.任何循环群必定是阿贝尔群,反之亦真。() 3.根树中最长路径的端点都是叶子。() 4.若集合A上的关系R是对称的,则R

1也是对称的。()

5.数集合上的不等关系(≠)可确定A的一个划分。() 6.设集合A、B、C为任意集合,若A×B = A×C,则B = C。() 7.函数的复合运算“。”满足结合律。() 8.若G是欧拉图,则其边数e合结点数v的奇偶性不能相反。() 9.图G为(n , m)图,G的生成树TG必有n个结点。() 10.使命题公式P(QR)的真值为F的真值指派的P、Q、R值分别是T、F、F。()

四、简答题(每小题5分,本大题共25分)

1.设H,和K,都是群G,的子群,问HK,和HK,是否是

G,的子并说明理由。

3,4,9},B{2,4,7,10,12},从A到B的关系 2.设A{2,

R{a,baA,bB,且a整除b},试给出R的关系图和关系矩阵,并说明此

关系是否为函数?为什么?

3.设S,是半群,OL是左零元,对任xS,xOL是否是左零元?为什么?

4.某次会议有20人参加,其中每人至少有10个朋友,这20人拟围一桌入席,用图论知识说明是否可能每人邻做的都是朋友?(理由)

5.通过主合取范式,求出使公式(PQ)R的值为F的真值指派。

五、证明题:(共30分)

1.设R为集合A上的二元关系,如果R是反自反的和可传递的,则R一定是反对称的。

2.试证明若G,是群,HG,且任意的aH,对每一个xG,有axxa,则H,是G,的子群。

3.设G是每个面至少由k(k3)条边围成的连通平面图,试证明为结点数,e为边数。

4.符号化下列各命题,并说明结论是否有效(用推理规则)。任何人如果他喜欢美术,他就不喜欢体育。每个人或喜欢体育,或喜欢音乐,有的人不喜欢音乐,因而有的人不喜欢美术。 答案

e

k(v2)k

2,其中v

一、单项选择题:

1.N

2;

。r(R){1,2,2,4,3,3,1,1,2,2,4,4}, 2.

s(R){1,2,2,4,3,3,2,1,4,2},RRR{1,4,3,3},

RRR{3,3},RRR{3,3},

所以, t(R){1,2,2,4,3,3,1,4}。

3.[a]R{xxA,aRx};a[a]R。4.永假式(矛盾式),永真式(重言式)。 5.(1)x((Q(x)P(x))y(Q(y)P(y)xy))。(2)xy(Q(x)P(x)Q(y)P(y)xy)。

6.每个结点的出度都小于等于m;除叶子外,每个结点的出度都等于m。 7.3。

三、判断改正题:

1.×命题公式(A(AB))B是一个重言式。 2.×任何循环群必定是阿贝尔群,但反之不真。 3.×根树中最长路径的端点不都是叶子。

4.√5.×≠不能确定A的一个划分。 6.√7.√

8.×欧拉图其边数e和结点数v的奇偶性可以相反。9.√10.√

四、简答题

1.解:HK,是 G,的子群,HK,不一定是G,的子群。a,bHK,则的子群,

a,bH,a,bK,由

H,和K,都是G,

ab

1H且ab

1

K

,ab

1

HK,HK,是G,

的子群。

如:G = {1,5,7,11},:模12乘,则G,为群。且H = {1,5},K = {1,7},

H,和K,皆为G,的子群,但HK{1,5,7},

HK,不是G,的子群。因为 5711HK,即运算不封闭。

2.解:R{2,2,2,4,2,10,2,12,3,12,4,4,4,12}则R的关系图为: R的关系矩阵为

10

00

1010

0000

1000

1110

M

R

关系R不是A到B的函数,因为

元素2,4的象不唯一(或元素9无象)

3.解:xOL仍是左零元。因为yS,由于OL是左零元,所以,OLyOL,又S,为半群,所以*可结合。

所以,(xOL)yx(OLy)xOL,所以,xOL仍是左零元。

4.解:可能。将人用结点表示,当两人是朋友时相应结点间连一条边,则得一个无向图

GV,E,20人围一桌,使每人邻做都是朋友,即要找一个过每个点一次且仅

一次得回路。由题已知,u,vV,

deg(u)10,deg(v)10

deg(u)deg(v)20,由判定定理,G中存在一条汉密尔顿回路。即所谈情况可能。

5.解:

原式(PQ)R(PQ)R(PR)(QR)

(PQR)(PQR)(PQR)(PQR)M100M110M

010

∴使公式(PQ)R的值为F的真值指派为:

P:1

Q:0R:0;

P:1

Q:1R:0;

P:0

Q:1R:0 。

五、证明题:

1.证明:假设R不是反对称的,则 x,yR,性,

∴ x,xR 此与R反自反矛盾,∴R反对称。

y,xR,

xy 由R的传递

2.证明:(1)设群G,的幺元为e,则xG有 xeex,∴eH即H非空。(2)a,bH,则 xG 有 axxa,bxxb,

从而

(ab

1

)x(ab

1

11

)x(bb

1

)

a(bb)xb

1

(ax)b

1

1

x(ab),abH

故 H,是G,的子群。

3.解:设连通平面图G有t个面:r1,r2,,rt则有 ver2,

deg(ri)k,

2k

tt

又有题意,

deg(ri)kt

i1

e

deg(r)2e

i

i1

∴2ekt,

teve

2k

e2

kk2

(v2)

。从而 ,∴。

4.解:设P(x):x喜欢美术,Q(x):x喜欢体育,R(x):x喜欢音乐。论域:人。

命题形式化为:前提:x(P(x)Q(x)),x(Q(x)R(x)),xR(x)结论:xP(x)。 证明:(1)xR(x)P(2) R(a)ES(1)(3)x(Q(x)R(x))P(4)Q(a)R(a)US(4)(5)Q(a)T(2)(4)I(6)x(P(x)Q(x))P(7)P(a)Q(a)US(6)(8)P(a)T(5)(7)I(9)xP(x)EG(8) ∴ 结论有效。

第二篇:离散数学期末考试试题及答案

离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。下面是小编整理的离散数学期末考试试题及答案,欢迎阅读参考!

一、【单项选择题】

(本大题共15小题,每小题3分,共45分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。

[A] 3 [B] 8 [C]9 [D]27

2、设A1,2,3,5,8,B1,2,5,7,则AB( )。

[A] 3,8 [B]3 [C]8 [D]3,8

3、若X是Y的子集,则一定有( )。

[A]X不属于Y [B]X∈Y

[C]X真包含于 Y [D]X∩Y=X

4、下列关系中是等价关系的是( )。

[A]不等关系 [B]空关系

[C]全关系 [D]偏序关系

5、对于一个从集合A到集合B的映射,下列表述中错误的是( )。

[A]对A的每个元素都要有象 [B] 对A的每个元素都只有一个象

[C]对B的每个元素都有原象 [D] 对B的元素可以有不止一个原象

6、设p:小李努力学习,q:小李取得好成绩,命题“除非小李努力学习,否则他不能取得好成绩”的符号化形式为( )。

[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q

7、设A={a,b,c},则A到A的双射共有( )。

[A]3个 [B]6个 [C]8个 [D]9个

8、一个连通G具有以下何种条件时,能一笔画出:即从某结点出发,经过中每边仅一次回到该结点( )。

[A] G没有奇数度结点 [B] G有1个奇数度结点

[C] G有2个奇数度结点 [D] G没有或有2个奇数度结点

9、设〈G,*〉是群,且|G|>1,则下列命题不成立的是( )。

[A] G中有幺元 [B] G中么元是唯一的

[C] G中任一元素有逆元 [D] G中除了幺元外无其他幂等元

10、令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )

[A] p→┐q [B] p∨┐q

[C] p∧q [D] p∧┐q

11、设G=的结点集为V={v1,v2,v3},边集为E={,}.则G的割(点)集是( )。

[A]{v1} [B]{v2} [C]{v3} [D]{v2,v3}

12、下面4个推理定律中,不正确的为( )。

[A]A=>(A∨B) (附加律) [B](A∨B)∧┐A=>B (析取三段论)

[C](A→B)∧A=>B (假言推理) [D](A→B)∧┐B=>A (拒取式)

13、在右边中过v1,v2的初级回路有多少条( )

[A] 1 [B] 2 [C] 3 [D]

414、若R,,是环,且R中乘法适合消去律,则R是( )。

[A]无零因子环

[C]整环 [B]除环 [D]域

15、无向G中有16条边,且每个结点的度数均为2,则结点数是( )。

[A]8 [B]16 [C]4 [D]

32二、【判断题】

(本大题共8小题,每小题3分,共24分)正确的填T,错误的填F,填在答题卷相应题号处。

16、是空集。 ( )

17、设S,T为任意集合,如果S—T=,则S=T。 ( )

18、在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。 ( )

19、关系的复合运算满足交换律。 ( )

20、集合A上任一运算对A是封闭的。 ( )

21、0,1,2,3,4,max,min是格。 ( )

22、强连通有向一定是单向连通的。 ( )

23、设都是命题公式,则(PQ)QP。 ( )

三、【解答题】

(本大题共3小题,

24、25每小题10分,26小题11分,共31分)请将答案填写在答题卷相应题号处。

24、设集合A={a, b, c},B={b, d, e},求

(1)BA; (2)AB; (3)A-B; (4)BA.25、设非空集合A,验证(P(A),,,~,,A)是布尔代数

26、如果他是计算机系本科生或者是计算机系研究生,那么他一定学过DELPHI语言而且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理的有效结论。

离散数学试题答案

一、【单项选择题】(本大题共15小题,每小题3分,共45分)

BDDCCCBABDADCBB

二、【判断题】(本大题共8小题,每小题3分,共24分)

FFTFTTTF

三、【解答题】(本大题共3小题,

24、25每小题10分,26小题11分,共31分)

24、设集合A={a, b, c},B={b, d, e},求 (1)BA; (2)AB; (3)A-B; (4)BA. 标准答案:(1)BA={a, b, c}{b, d, e}={ b }

(2)AB={a, b, c}{b, d, e}={a, b, c, d, e }

(3)A-B={a, b, c}-{b, d, e}={a, c}

(4)BA= AB-BA={a, b, c, d, e }-{ b }={a, c, d, e }

复习范围或考核目标:考察集合的基本运算,包括交集,并集,见课件第一章第

二节,集合的运算。

25、设非空集合A,验证(P(A),,,~,,A)是布尔代数

标准答案:证明 因为集合A非空,故P(A)至少有两个元素,显然,是P(A)上的二元运算. 由定理10 ,任给B,C,DP(A), H1 BD=DC CD=DC

H2 B(CD)=(BC)(BD) B(CD)=(BC)(BD)

H3 P(A)存在和A,BP(A), 有B=B, BA=B

H4,BP(A), BA,存在A~B,有

BA~B)= A B(A~B)=

所以(P(A),,,~,,A)是布尔代数.复习范围或考核目标:考察布尔代数的基本概念,集合的运算,见课件代数系统中布尔代数小节。

26、如果他是计算机系本科生或者是计算机系研究生,那么他一定学过DELPHI语言而且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。请用命题逻辑推理方法,证明该推理的有效结论。

标准答案:令p:他是计算机系本科生

q:他是计算机系研究生 r:他学过DELPHI语言

s:他学过C++语言

t:他会编程序

前提:(p∨q)→(r∧s),(r∨s)→t

结论:p→t

证①p P(附加前提)

②p∨q T①I

③(p∨q)→(r∧s) P(前提引入)

④r∧s T②③I

⑤r T④I

⑥r∨s T⑤I

⑦(r∨s)→t P(前提引入)

⑧t T⑤⑥I

第三篇:信息管理与信息系统专业离散数学 试卷及答案

一 单项选择题(将正确答案题号填在括号里,每小题2分,合计40分)

8.命题“合肥位于北京与上海之间。”的个体为()。 1.设命题P、Q、R的真值分别为

1、

1、0,则复合命题

¬P⋀(Q↔¬R)的真值为()。

A1B1或0C0D不确定 2.下列命题中,()是复合命题。 A长江与黄河都流经安徽境内。

B美丽的黄山地处安徽。

C合肥位于长江以北。D合肥是包公故里。

3.命题公式(P→Q)→R的主合取范式为()。 A∏(0,2,6)B∏(1,3,4,5,7) C∑(0,2,6)D∑(1,3,4,5,6) 4.命题公式(P→Q)→R的主析取范式为()。 A∏(0,2,6)B∏(1,3,4,5,7) C∑(0,2,6)D∑(1,3,4,5,6) 5.命题公式(P→Q)→R的类型为()。 A重言式B矛盾式C可满足式D不确定

6.设论域为实数集,谓词公式∀x∃y(x+y=1)的真值为(A1B1或0C0D不确定 7.下列关系中()不是等价关系。

A实数集上的等于关系B平面三角形集合上的全等关系 C幂集上的包含于关系D北大学生集合上住在同公寓的关系

A 合肥,北京B 北京,上海C 上海,合肥D 合肥,北京,上海

9.设R为实数集,关系h={∣x,y∈R,y=2x},关系

g={∣x,y∈R,y=3x},则复合关系h-1og-1

的值为()。 A{∣x,y∈R,y=6x}B

{∣x,y∈R,y=x

6

}

C{∣x,y∈R,y=5x}D{∣x,y∈R,y=4x}

10.设A={1,2,3},关系f⊆A×A且f={<1,2>,<2,3>,<3,1>},关系g⊆A×A且g={<1,2>,<2,3>,<3,3>},复合关系fog的值为()。A{<1,3>,<2,1>,<3,1>}B{<1,3>,<2,3>,<3,2>}

C{<1,2>,<2,3>,<2,2>}D{<2,3>,<3,1>,<3,2>}

11.设IA为集合A上的恒等关系,则IA不是A上的()关系。 A自反B反自反C对称D反对称

12.设A={1,2,3,4},则A上有()个等价关系。 。 A216B212C15D不确定

13.设A={1,2,3,4},则A上有()个自反关系。 A216B212C44D不确定

14.具有5个结点3条边的不同构的简单无向图的个数为()。

A2B3

C4D5

)

15.设A={1,2,3,4},R={∣x,y∈A,y=2x},则R的前域dom(R)等于()

A{1,2}B{2,4}C{1,3}D{1,2,3,4} 16.设A={1,2,3,4},关系R⊆A×A且

R={<1,1>,<1,2>,<3,4>,<4,3>},则R5

的值为()。 A{<1,1>,<1,2>,<3,4>,<4,3>}B{<1,3>,<2,3>,<3,2>}

C{<1,2>,<2,3>,<2,2>,<4,4>}D{<2,3>,<3,1>,<3,2>}

17.设A={1,2,3,4},关系R⊆A×A且

R={<1,2>,<3,4>,<4,3>},则R的传递闭包t(R)的值为() A{<1,2>,<3,4>,<4,3>,<3,3>,<4,4>}B{<1,2>,<3,4>,<4,3>}

C{<1,2>,<2,3>,<2,2>,<4,4>,<4,3>}D{<2,3>,<3,1>,<3,2>} 18.设G是有9个结点的简单图,则图G的最大度∆(G)为()。

A

∆(G)≥ 9B∆(G)≤9C

∆(G)>9D∆(G)<9

19.以下列序列中()为结点度数序列可构成简单无向图。

A1,1,2,2,3B1,1,2,2,2

C0,1,3,3,3D1,3,4,4,5 20.设无向图G有12条边,有6个3度结点,其余结点度数均小于3,

则G至少有()个结点。

A13B12

C11D9

二 填空题(每小题2分,合计30分)

1.设P,Q为命题变元,则命题演算的吸收律可表示为。

2.设A,B为集合,则集合运算的德·摩根律可表示为。 3.设A,B,C为命题变元,化简命题公式

(A∧B∧C)∨(¬A∧B∧C)⇔。

4.设A,B,C为集合,化简(A∩B∩C)∪(~A∩B∩C)=。

5.设P(x):x是人,Q(x):x犯错误,翻译命题“没有人不犯错误。”为。

6.给定论域{2,3},且L(2,2)与L(3,3)的真值均为1,L(2,3)与L(3,2)的真值均为0,则∀y∃xL(x,y)的真值为。 7.命题“如果我是你,那么太阳从西边出。”的真值为。 8.设A={1,2,3,4},B={3,4,5,6},则A-B=。 9.设P()为空集的幂集,则P(P())=。

10.若R是A上的自反关系,反对称关系,,则称R为A上的偏序关系。

11.命题“如果我休假,我将去美丽的黄山旅游。”的否定可表述为。

12.设A={1,2,3,4},给出上的一个关系R=,使R既是对称又是反对称的。

13.无向连通图G是欧拉图,当且仅当G有个奇数度数结点。 14.若连通平面图G有4个结点3个面,则G有条边。

15.树T有2个2度结点,1个3度结点,3个4度结点,其余都是1度结点,则树T的叶子数为。

三 解答题(

1、4小题各8分,

2、3小题各7分,合计30分)

1.今有a、b、c、d、e、f、g七人,其中a擅长英语,b擅长英语和汉语,c擅长英语、意大利语和俄语,d擅长日语和汉语,e擅长德语和意大利语,f擅长法语、日语和俄语,g擅长法语和德语。试用图论知识描述如何安排这七人围圆桌而坐,使得每人都能与其相邻两边的人交谈。

2.设集合A={1,2,3},P(A)为A的幂集,偏序关系={∣x,y∈P(A),x⊆y},画偏序集的哈斯图,并指出的最大元和极小元,其中B={,{1},{3},{1,3},A}。

3.翻译命题“所有的人都是要死的,苏格拉厎是人,所以苏格拉厎要死。”并证明其有效结论。

4.某发电厂A要向b、c、d、e四个地点送电,已知发电厂A可以和b、c、d直接架设电线,地点e可以和b、d直接架设电线,其他由于地理原因无法直接架设电线。架设电线时不能有回路存在,否则会造成浪费。找出所有电线架设方案,使从发电厂A可向b、c、d、e四个地点送电。答案

一 单项选择题

CAADCACDBBBCBCAAADBD

二 填空题

1. P∧(P∨Q)PP∨(P∧Q)P

2. ~(A∩B)=~A∪~B~(A∪B)=~A∩~B 3. B∧C 4. B∩C

5. ┐x(P(x)∧┐Q (x)) 6. 1或T 7. 1或T 8. {1,2}

9. {,{}} 10. 传递

11. 我休假但我不去美丽的黄山旅游。 12. {<1,1>} 13. 0 14.

515. 9

三 解答题(

1、4小题各8分,

2、3小题各7分,合计30分)

1.构造简单图G=,其中V={a,b,c,d,e,f,g}

任意x,y∈V,边(x,y)∈E当且仅当x与y擅长同种语言 图G中的一条Hamilton回路即为所求方案。 4.构造简单图G=,其中V={A,b,c,d,e}

任意x,y∈V,边(x,y)∈E当且仅当x与y间可直接架设电线 图G中的生成树即为所求方案

第四篇:离散数学考试试题(A卷及答案)

一、证明题(10分)

1) (P∧Q∧AC)∧(AP∨Q∨C) (A∧(PQ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧AC)∧(AP∨Q∨C)

(P∨Q∨A∨C)∧(A∨P∨Q∨C)

((P∨Q∨A)∧(A∨P∨Q))∨C反用分配律

((P∧Q∧A)∨(A∧P∧Q))∨C

( A∧((P∧Q)∨(P∧Q)))∨C再反用分配律

( A∧(PQ))∨C

(A∧(PQ))C

2) (PQ) PQ。

证明:(PQ)((P∧Q))(P∨Q))PQ。

二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(QR))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。

主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。

证明:

公式法:因为(P(Q∨R))∧(P∨(QR))

(P∨Q∨R)∧(P∨(Q∧R)∨(Q∧R))

(P∨Q∨R)∧(((P∨Q)∧(P∨R))∨(Q∧R))分配律

(P∨Q∨R)∧(P∨Q∨Q)∧(P∨Q∨R)∧(P∨R∨Q)∧(P∨R∨R)

(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)

M4∧M5∧M6使(非P析取Q析取R)为0所赋真值,即100,二进制

4m0∨m1∨m2∨m3∨m7

所以,公式(P(Q∨R))∧(P∨(QR))为可满足式,其相应的成真赋值为000、00

1、0

10、0

11、111:成假赋值为:100、10

1、110。

真值表法:

为000、00

1、0

10、0

11、111:成假赋值为:100、10

1、110。

三、推理证明题(10分)

1)P∨Q,Q∨R,RSPS。

证明:

(1)P附加前提 (2)P∨QP

(3)QT(1)(2),I(析取三段论) (4)Q∨RP

(5)RT(3)(4),I(析取三段论) (6)RSP

(7)ST(5)(6),I(假言推理) (8)PSCP

2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))

证明(1)xP(x) (2)P(a)

(3)x(P(x)Q(y)∧R(x)) (4)P(a)Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)x(P(x)∧R(x))

(11)Q(y)∧x(P(x)∧R(x))

五、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) (10分)

证明:因为

x∈(A∪B)-Cx∈(A∪B)-C

x∈(A∪B)∧xC (x∈A∨x∈B)∧xC

(x∈A∧xC)∨(x∈B∧xC) x∈(A-C)∨x∈(B-C) x∈(A-C)∪(B-C)

所以,(A∪B)-C=(A-C)∪(B-C)。

八、证明整数集I上的模m同余关系R={|xy(mod m)}是等价关系。其中,xy(mod m)的含义是x-y可以被m整除(15分)。X(modm)=y(modm) 证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。

2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y - x)/m=-k∈I,所以yx(mod m),即yRx。

3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

九、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。

证明:

因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推f-1g-1:C→A是双射。

因为∈f-1g-1存在z(∈g-1∈f-1)存在z(∈f∈g)∈gf∈(gf)-1,所以(gf)-1=f-1g-1。

-

1离散数学考试试题(B卷及答案)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T

证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)

 ((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)

 ((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律)T (代入)

2) xy(P(x)Q(y))(xP(x)yQ(y)) 证明:xy(P(x)Q(y))xy(P(x)∨Q(y))

x(P(x)∨yQ(y)) xP(x)∨yQ(y) xP(x)∨yQ(y) (xP(x)yQ(y))

二、求命题公式(PQ)(P∨Q) 的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q)

(P∨Q)∨(P∨Q) (P∧Q)∨(P∨Q)(P∨P∨Q)∧(Q∨P∨Q) (P∨Q)

M1析取要使之为假,即赋真值001,即M1 m0∨m2∨m3使之为真

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS

证明:(1)R(2)R∨P (3)P

p

T(1)(2)析取三段论 p

T(3)(4)I假言推理 P

T(5)(6)I假言推理 CP

(4)P(QS) (5)QS(6)Q (7)S

(8)RS

2) x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。

证明:(1)x(A(x)yB(y))P(2)A(a)yB(y)T(1)ES (3)x(B(x)yC(y))P

(4)x(B(x)C(c))T(3)ES (5)B(b)C(c)T(4)US (6)A(a)B(b)T(2)US

(7)A(a)C(c)T(5)(6)I假言三段论 (8)xA(x)C(c)T(7)UG (9)xA(x)yC(y)T(8)EG

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 :

设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生的集

合,则命题可符号化为:PxA(x),xA(x)QQP。 (1)PxA(x)P (2)PxA(x)T(1)E (3)xA(x)PT(2)E(4)xA(x)QP (5)(xA(x)Q)∧(QxA(x))T(4)E (6)QxA(x)T(5)I (7)QPT(6)(3)I

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:

∵ x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)( x A∧

xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A ∩(B∪C)=(A∩B)∪(A∩C)

六、A={ x1,x2,x3 },B={ y1,y2},R={,,},求其关系矩阵及关系图(10分)。有就是1,没就是0

七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。

r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3><5,5>}(自反闭包)

s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>}(对称闭包) t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}(传递

闭包)

九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f-

1、g-1和h-1(10分)。

解因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。

由hgf=IA,得f-1=hg;由fhg=IB,得g-1=fh;由gfh=IC,得h-1=gf。

第五篇:离散数学 期末考试试卷答案

离散数学试题(B卷答案1)

一、证明题(10分)

1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x)) xA(x)xB(x) 证明 :x(A(x)B(x))x(A(x)∨B(x)) xA(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x)

二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6

三、推理证明题(10分)

1) C∨D, (C∨D) E, E(A∧B), (A∧B)(R∨S)R∨S 证明:(1) (C∨D)E (2) E(A∧B)

P P

P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S) (5) (C∨D)(R∨S) (6) C∨D

T(3)(4), I P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I

四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。

解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。

先求|A∩B|。

∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。

于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。

五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (10分)。

证明:∵x A-(B∪C) x A∧x(B∪C)

 x A∧(xB∧xC)

(x A∧xB)∧(x A∧xC)  x(A-B)∧x(A-C)  x(A-B)∩(A-C)

∴A-(B∪C)=(A-B)∩(A-C)

六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x},S={| x,yN∧y=x+1}。求R、R*S、S*R、R{1,2}、S[{1,2}](10分)。

解:R={| x,yN∧y=x} R*S={| x,yN∧y=x+1} S*R={| x,yN∧y=(x+1)},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

七、设R={,,},求r(R)、s(R)和t(R) (15分)。

解:r(R)={,,,,,}

22-

12-1

2s(R)={,,,,,} R= R={,,} R={,,} R={,,} t(R)={,,,,,,,,,}

八、证明整数集I上的模m同余关系R={|xy(mod m)}是等价关系。其中,xy(mod m)的含义是x-y可以被m整除(15分)。

证明:1)x∈I,因为(x-x)/m=0,所以xx(mod m),即xRx。

2)x,y∈I,若xRy,则xy(mod m),即(x-y)/m=k∈I,所以(y - x)/m=-k∈I,所以yx(mod m),即yRx。

3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

九、若f:A→B和g:B→C是双射,则(gf)=fg(10分)。

-

1-1-14325证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf):C→A。同理可推fg:C→A是双射。

因为∈fg存在z(∈g∈f)存在z(∈f∈g)∈gf∈(gf),所以(gf)=fg。

-

1-1

-1-1-1-1

-1

-1-1-1

-1离散数学试题(B卷答案2)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T 证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)  ((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)  ((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律) T (代入) 2) xy(P(x)Q(y)) (xP(x)yQ(y)) 证明:xy(P(x)Q(y))xy(P(x)∨Q(y)) x(P(x)∨yQ(y)) xP(x)∨yQ(y) xP(x)∨yQ(y) (xP(x)yQ(y))

二、求命题公式(PQ)(P∨Q) 的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q) (P∨Q)∨(P∨Q) (P∧Q)∨(P∨Q) (P∨P∨Q)∧(Q∨P∨Q) (P∨Q) M1 m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R (2)R∨P (3)P (4)P(QS) (5)QS (6)Q (7)S (8)RS 2) x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。

证明:(1)x(A(x)yB(y)) P (2)A(a)yB(y) T(1),ES (3)x(B(x)yC(y)) P (4)x(B(x)C(c)) T(3),ES (5)B(b)C(c) T(4),US (6)A(a)B(b) T(2),US (7)A(a)C(c) T(5)(6),I (8)xA(x)C(c) T(7),UG (9)xA(x)yC(y) T(8),EG

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生

的集合,则命题可符号化为:PxA(x),xA(x)QQP。

(1)PxA(x) P (2)PxA(x) T(1),E (3)xA(x)P T(2),E (4)xA(x)Q P (5)(xA(x)Q)∧(QxA(x)) T(4),E (6)QxA(x) T(5),I (7)QP T(6)(3),I

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)( x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、A={ x1,x2,x3 },B={ y1,y2},R={,,},求其关系矩阵及关系图(10分)。

七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图(15分)。

解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>, <3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R=R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}

八、设R1是A上的等价关系,R2是B上的等价关系,A≠且B≠。关系R满足:<,>∈R∈R1且∈R2,证明R是A×B上的等价关系(10分)。

证明 对任意的∈A×B,由R1是A上的等价关系可得∈R1,由R2是B上的等价关系可得∈R2。再由R的定义,有<,>∈R,所以R是自反的。

对任意的、∈A×B,若R,则∈R1且∈R2。由R1对称得∈R1,由R2对称得∈R2。再由R的定义,有<,> 432

5∈R,即R,所以R是对称的。

对任意的、、∈A×B,若R且R,则∈R1且∈R2,∈R1且∈R2。由∈R

1、∈R1及R1的传递性得∈R1,由∈R

2、∈R2及R2的传递性得∈R1。再由R的定义,有<,>∈R,即R,所以R是传递的。

综上可得,R是A×B上的等价关系。

九、设f:AB,g:BC,h:CA,证明:如果hgf=IA,fhg=IB,gfh=IC,则f、g、h均为双射,并求出f、g和h(10分)。

解 因IA恒等函数,由hgf=IA可得f是单射,h是满射;因IB恒等函数,由fhg=IB可得g是单射,f是满射;因IC恒等函数,由gfh=IC可得h是单射,g是满射。从而f、g、h均为双射。

由hgf=IA,得f=hg;由fhg=IB,得g=fh;由gfh=IC,得h=gf。 -

1-1

-1-1-1

-1离散数学试题(B卷答案3)

一、(10分)判断下列公式的类型(永真式、永假式、可满足式)?(写过程) 1)P(P∨Q∨R) 2)((QP)∨P)∧(P∨R) 3)((P∨Q)R)((P∧Q)∨R) 解:1)重言式;2)矛盾式;3)可满足式

二、(10分)求命题公式(P∨(Q∧R))(P∨Q∨R)的主析取范式,并求成真赋值。

解:(P∨(Q∧R))(P∨Q∨R)(P∨(Q∧R))∨P∨Q∨R P∧(Q∨R)∨P∨Q∨R (P∧Q)∨(P∧R)∨(P∨Q)∨R ((P∨Q)∨(P∨Q))∨(P∧R)∨R 1∨((P∧R)∨R)1 m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7 该式为重言式,全部赋值都是成真赋值。

三、(10分)证明 ((P∧Q∧A)C)∧(A(P∨Q∨C))(A∧(PQ))C 证明:((P∧Q∧A)C)∧(A(P∨Q∨C))((P∧Q∧A)∨C)∧(A∨(P∨Q∨C)) ((P∨Q∨A)∨C)∧((A∨P∨Q)∨C)

((P∨Q∨A)∧(A∨P∨Q))∨C ((P∨Q∨A)∧(A∨P∨Q))C ((P∨Q∨A)∨(A∨P∨Q))C ((P∧Q∧A)∨(A∧P∧Q))C (A∧((P∧Q)∨(P∧Q)))C (A∧((P∨Q)∧(P∨Q)))C (A∧((QP)∧(PQ)))C (A∧(PQ))C

四、(10分)个体域为{1,2},求xy(x+y=4)的真值。

解:xy(x+y=4)x((x+1=4)∨(x+2=4))

((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+2=4)) (0∨0)∧(0∨1)0∧10

五、(10分)对于任意集合A,B,试证明:P(A)∩P(B)=P(A∩B) 解:xP(A)∩P(B),xP(A)且xP(B),有xA且xB,从而xA∩B,xP(A∩B),由于上述过程可逆,故P(A)∩P(B)=P(A∩B)

六、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}

七、(10分)设函数f:R×RR×R,R为实数集,f定义为:f()=。1)证明f是双射。

解:1),∈R×R,若f()=f(),即=,则x1+y1=x2+y2且x1-y1=x2-y2得x1=x2,y1=y2从而f是单射。

2)∈R×R,由f()=,通过计算可得x=(p+q)/2;y=(p-q)/2;从而的原象存在,f是满射。

八、(10分)是个群,u∈G,定义G中的运算“”为ab=a*u*b,对任意a,b∈G,求证:也是个群。

证明:1)a,b∈G,ab=a*u*b∈G,运算是封闭的。

2)a,b,c∈G,(ab)c=(a*u*b)*u*c=a*u*(b*u*c)=a(bc),运算是可结合的。

3)a∈G,设E为的单位元,则aE=a*u*E=a,得E=u,存在单位元u。 4)a∈G,ax=a*u*x=E,x=u*a*u,则xa=u*a*u*u*a=u=E,每个元素都有逆元。

所以也是个群。

九、(10分)已知:D=,V={1,2,3,4,5},E={<1,2>,<1,4>,<2,3>,<3,4>,<3,5>,<5,1>},求D的邻接距阵A和可达距阵P。

解:1)D的邻接距阵A和可达距阵P如下:

A= 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 0 1 -

1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

P= 1 1 1 1

十、(10分)求叶的权分别为

2、

4、

6、

8、

10、

12、14的最优二叉树及其权。

解:最优二叉树为

权=(2+4)×4+6×3+12×2+(8+10)×3+14×2=148

离散数学试题(B卷答案4)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T

证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)  ((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)  ((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律) T (代入) 2)x(P(x)Q(x))∧xP(x)x(P(x)∧Q(x)) 证明:x(P(x)Q(x))∧xP(x)x((P(x)Q(x)∧P(x))x((P(x)∨Q(x)∧P(x))x(P(x)∧Q(x))xP(x)∧xQ(x)x(P(x)∧Q(x))

二、求命题公式(PQ)(P∨Q) 的主析取范式和主合取范式(10分)

解:(PQ)(P∨Q)(PQ)∨(P∨Q)(P∨Q)∨(P∨Q)(P∧Q)∨(P∨Q) (P∨P∨Q)∧(Q∨P∨Q)(P∨Q)M1m0∨m2∨m3

三、推理证明题(10分)

1)(P(QS))∧(R∨P)∧QRS 证明:(1)R 附加前提 (2)R∨P P (3)P T(1)(2),I (4)P(QS) P (5)QS T(3)(4),I (6)Q P (7)S T(5)(6),I (8)RS CP 2) x(P(x)∨Q(x)),xP(x)x Q(x) 证明:(1)xP(x) P (2)P(c) T(1),US (3)x(P(x)∨Q(x)) P (4)P(c)∨Q(c) T(3),US (5)Q(c) T(2)(4),I (6)x Q(x) T(5),EG

四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(10分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

五、已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:∵x A∩(B∪C) x A∧x(B∪C) x A∧(xB∨xC)( x A∧xB)∨(x A∧xC) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A∩(B∪C)=(A∩B)∪(A∩C)

六、={A1,A2,„,An}是集合A的一个划分,定义R={|a、b∈Ai,I=1,2,„,n},则R是A上的等价关系(15分)。

证明:a∈A必有i使得a∈Ai,由定义知aRa,故R自反。 a,b∈A,若aRb ,则a,b∈Ai,即b,a∈Ai,所以bRa,故R对称。

a,b,c∈A,若aRb 且bRc,则a,b∈Ai及b,c∈Aj。因为i≠j时Ai∩Aj=,故i=j,即a,b,c∈Ai,所以aRc,故R传递。

总之R是A上的等价关系。

七、若f:A→B是双射,则f:B→A是双射(15分)。

证明:对任意的x∈A,因为f是从A到B的函数,故存在y∈B,使∈f,∈f。所以,f是满射。

对任意的x∈A,若存在y1,y2∈B,使得∈f且∈f,则有∈f且∈f。因为f是函数,则y1=y2。所以,f是单射。

因此f是双射。

八、设是群,和是的子群,证明:若A∪B=G,则A=G或B=G(10分)。

证明 假设A≠G且B≠G,则存在aA,aB,且存在bB,bA(否则对任意的aA,aB,从而AB,即A∪B=B,得B=G,矛盾。)

对于元素a*bG,若a*bA,因A是子群,aA,从而a * (a*b)=b A,所以矛盾,故a*bA。同理可证a*bB,综合有a*bA∪B=G。 综上所述,假设不成立,得证A=G或B=G。

九、若无向图G是不连通的,证明G的补图G是连通的(10分)。

证明 设无向图G是不连通的,其k个连通分支为G

1、G

2、„、Gk。任取结点u、v∈G,若u和v不在图G的同一个连通分支中,则[u,v]不是图G的边,因而[u,v]

-

1-1-1

-1

-1

-1-1-1-1是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支Gi(1≤i≤k)中,在不同于Gi的另一连通分支上取一结点w,则[u,w]和[w,v]都不是图G的边,,

因而[u,w]和[w,v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和v的任意性可知,G是连通的。

离散数学试题(B卷答案5)

一、(10分)求命题公式(P∧Q)(PR)的主合取范式。

解:(P∧Q)(PR)((P∧Q)(PR))∧((PR)(P∧Q)) ((P∧Q)∨(P∧R))∧((P∨R)∨(P∨Q)) (P∧Q)∨(P∧R) (P∨R)∧(Q∨P)∧(Q∨R)

(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) M1∧M3∧M4∧M5

二、(8分)叙述并证明苏格拉底三段论

解:所有人都是要死的,苏格拉底是人,所以苏格拉底是要死的。 符号化:F(x):x是一个人。G(x):x要死的。A:苏格拉底。 命题符号化为x(F(x)G(x)),F(a)G(a) 证明:

(1)x(F(x)G(x)) P (2)F(a)G(a) T(1),US (3)F(a) P (4)G(a) T(2)(3),I

三、(8分)已知A、B、C是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) 证明:∵x A∩(B∪C) x A∧x(B∪C)

 x A∧(xB∨xC)

( x A∧xB)∨(x A∧xC)  x(A∩B)∨x A∩C  x(A∩B)∪(A∩C)

∴A∩(B∪C)=(A∩B)∪(A∩C)

四、(10分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R∩S=[a]R∩[a]S。

解:x∈A,因为R和S是自反关系,所以∈R、∈S,因而∈R∩S,

故R∩S是自反的。

x、y∈A,若∈R∩S,则∈R、∈S,因为R和S是对称关系,所以因∈R、∈S,因而∈R∩S,故R∩S是对称的。

x、y、z∈A,若∈R∩S且∈R∩S,则∈R、∈S且∈R、∈S,因为R和S是传递的,所以因∈R、∈S,因而∈R∩S,故R∩S是传递的。

总之R∩S是等价关系。

2)因为x∈[a]R∩S∈R∩S

∈R∧∈S x∈[a]R∧x∈[a]S x∈[a]R∩[a]S 所以[a]R∩S=[a]R∩[a]S。

五、(10分) 设A={a,b,c,d},R是A上的二元关系,且R={,,,},求r(R)、s(R)和t(R)。

解 r(R)=R∪IA={,,,,,,,} s(R)=R∪R={,,,,,} R={,,,} R={,,,} R={,,,}=R

t(R)=R={,,,,,,,

4232-1d>,}

六、(15分) 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×CB×D且∈A×C,h()=。证明h是双射。

证明:1)先证h是满射。

∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()==,所以h是满射。

2)再证h是单射。

、∈A×C,若h()=h(),则= ,所以f(a1)=f(a2),g(c1)=g(c2),因为f是A到B的双射,g是C

到D的双射,所以a1=a2,c1=c2,所以=,所以h是单射。

综合1)和2),h是双射。

七、(12分)设是群,H是G的非空子集,证明是的子群的充要条件是若a,bH,则有a*bH。

证明: a,b∈H有b∈H,所以a*b∈H。 a∈H,则e=a*a∈H a=e*a∈H ∵a,b∈H及b∈H,∴a*b=a*(b)∈H ∵HG且H≠,∴*在H上满足结合律 ∴是的子群。

八、(10分)设G=是简单的无向平面图,证明G至少有一个结点的度数小于等于5。

解:设G的每个结点的度数都大于等于6,则2|E|=d(v)≥6|V|,即|E|≥3|V|,与简单无向平面图的|E|≤3|V|-6矛盾,所以G至少有一个结点的度数小于等于5。 九.G=,A={a,b,c},*的运算表为:(写过程,7分) -

1-1

-1-1-1-1-1

-1-1 (1)G是否为阿贝尔群?

(2)找出G的单位元;(3)找出G的幂等元(4)求b的逆元和c的逆元 解:(1)(a*c)*(a*c)=c*c=b=a*b=(a*a)*(c*c) (a*b)*(a*b)=b*b=c=a*c=(a*a)*(b*b) (b*c)*(b*c)=a*a=a=c*b=(b*b)*(c*c) 所以G是阿贝尔群

(2)因为a*a=a a*b=b*a=b a*c=c*a=c 所以G的单位元是a (3)因为a*a=a 所以G的幂等元是a (4)因为b*c=c*b=a,所以b的逆元是c且c的逆元是b

十、(10分)求叶的权分别为

2、

4、

6、

8、

10、

12、14的最优二叉树及其权。

解:最优二叉树为

权=148 离散数学试题(B卷答案6)

一、(20分)用公式法判断下列公式的类型: (1)(P∨Q)(PQ) (2)(PQ)(P∧(Q∨R)) 解:(1)因为(P∨Q)(PQ)(P∨Q)∨(P∧Q)∨(P∧Q)

(P∧Q)∨(P∧Q)∨(P∧Q) m1∨m2∨m3 M0

所以,公式(P∨Q)(PQ)为可满足式。

(2)因为(PQ)(P∧(Q∨R))(( P∨Q))∨(P∧Q∧R))

(P∨Q)∨(P∧Q∧R))

(P∨Q∨P)∧(P∨Q∨Q)∧(P∨Q∨R) (P∨Q)∧(P∨Q∨R)

(P∨Q∨(R∧R))∧(P∨Q∨R) (P∨Q∨R)∧(P∨Q∨R)∧(P∨Q∨R) M0∧M1

m2∨m3∨m4∨m5∨m6∨m7

所以,公式(PQ)(P∧(Q∨R))为可满足式。

二、(15分)在谓词逻辑中构造下面推理的证明:每个科学家都是勤奋的,每个勤奋

又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人或事业半途而废的人。

解:论域:所有人的集合。Q(x):x是勤奋的;H(x):x是身体健康的;S(x):x是科学家;C(x):x是事业获得成功的人;F(x):x是事业半途而废的人;则推理化形式为:

x(S(x)H(x))Q(x)),x(Q(x)∧H(x)C(x)),x(S(x)∧x(C(x)∨F(x)) 下面给出证明:

(1)x(S(x)∧H(x))

P (2)S(a)∧H(a)

T(1),ES (3)x(S(x)Q(x))

P (4)S(a)Q(a)

T(1),US (5)S(a)

T(2),I (6)Q(a)

T(4)(5),I (7)H(a)

T(2),I (8)Q(a)∧H(a)

T(6)(7),I (9)x(Q(x)∧H(x)C(x))

P (10)Q(a)∧H(a)C(a)

T(9),Us (11)C(a)

T(8)(10),I (12)xC(x)

T(11),EG (13)x(C(x)∨F(x))

T(12),I

三、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。 解

P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

四、(15分)设R和S是集合A上的任意关系,判断下列命题是否成立? (1)若R和S是自反的,则R*S也是自反的。 (2)若R和S是反自反的,则R*S也是反自反的。 (3)若R和S是对称的,则R*S也是对称的。

(4)若R和S是传递的,则R*S也是传递的。 (5)若R和S是自反的,则R∩S是自反的。 (6)若R和S是传递的,则R∪S是传递的。

(1)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R*S,故R*S也是自反的。

(2)不成立。例如,令A={1,2},R={<1,2>},S={<2,1>},则R和S是反自反的,但R*S={<1,1>}不是反自反的。

(3)不成立。例如,令A={1,2,3},R={<1,2>,<2,1>,<3,3>},S={<2,3>,<3,2>},则R和S是对称的,但R*S={<1,3>,<3,2>}不是对称的。

(4)不成立。例如,令A={1,2,3},R={<1,2>,<2,3>,<1,3>},S={<2,3>,<3,1>,<2,1>},则R和S是传递的,但R*S={<1,3>,<1,1>,<2,1>}不是传递的。

(5)成立。对任意的a∈A,因为R和S是自反的,则∈R,∈S,于是∈R∩S,所以R∩S是自反的。

五、(15分)令X={x1,x2,„,xm},Y={y1,y2,„,yn}。问 (1)有多少个不同的由X到Y的函数?

(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射? (3)当n、m满足什么条件时,存在双射,且有多少个不同的双射?

(1)由于对X中每个元素可以取Y中任一元素与其对应,每个元素有n种取法,所以不同的函数共nm个。

(2)显然当|m|≤|n|时,存在单射。由于在Y中任选m个元素的任一全排列都形成X到

mY的不同的单射,故不同的单射有Cnm!=n(n-1)(n―m―1)个。

(3)显然当|m|=|n|时,才存在双射。此时Y中元素的任一不同的全排列都形成X到Y的不同的双射,故不同的双射有m!个。

六、(5分)集合X上有m个元素,集合Y上有n个元素,问X到Y的二元关系总共有多少个?

X到Y的不同的二元关系对应X×Y的不同的子集,而X×Y的不同的子集共有个2mn,所以X到Y的二元关系总共有2mn个。

七、(10分)若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=

b。

证明 设e是群的幺元。令x=a1*b,则a*x=a*(a1*b)=(a*a1)*b=e*b=b。

-

-

-所以,x=a1*b是a*x=b的解。 -若x∈G也是a*x=b的解,则x=e*x=(a1*a)*x=a1*(a*x)=a1*b=x。所以,x

-

-

-=a1*b是a*x=b的惟一解。 -

八、(10分)给定连通简单平面图G=,且|V|=6,|E|=12。证明:对任意f∈F,d(f)=3。

证明

由偶拉公式得|V|-|E|+|F|=2,所以|F|=2-|V|+|E|=8,于是d(f)=2|E|=

fF24。若存在f∈F,使得d(f)>3,则3|F|<2|E|=24,于是|F|<8,与|F|=8矛盾。故对任意f∈F,d(f)=3。

离散数学试题(B卷答案7)

一、(15分)设计一盏电灯的开关电路,要求受3个开关A、B、C的控制:当且仅当A和C同时关闭或B和C同时关闭时灯亮。设F表示灯亮。

(1)写出F在全功能联结词组{}中的命题公式。 (2)写出F的主析取范式与主合取范式。

(1)设A:开关A关闭;B:开关B关闭;C:开关C关闭;F=(A∧C)∨(B∧C)。 在全功能联结词组{}中:

A(A∧A)AA A∧C( A∧C)( AC)(AC)(AC)

A∨B(A∧B)(( AA)∧(BB))( AA)(BB) 所以

F((AC)(AC))∨((BC)(BC)) (((AC)(AC))((AC)(AC)))(((BC)(BC))((BC)(BC))) (2)F(A∧C)∨(B∧C)

(A∧(B∨B)∧C)∨((A∨A)∧B∧C) (A∧B∧C)∨(A∧B∧C)∨(A∧B∧C)∨(A∧B∧C) m3∨m5∨m7

主析取范式 M0∧M1∧M2∧M4∧M6

主合取范式

二、(10分)判断下列公式是否是永真式? (1)(xA(x)xB(x))x(A(x)B(x))。 (2)(xA(x)xB(x))x(A(x)B(x)))。 解

(1)(xA(x)xB(x))x(A(x)B(x)) (xA(x)∨xB(x))x(A(x)B(x)) (xA(x)∨xB(x))∨x(A(x)∨B(x)) (xA(x)∧xB(x))∨xA(x)∨xB(x) (xA(x)∨xA(x)∨xB(x))∧(xB(x)∨xA(x)∨xB(x)) x(A(x)∨A(x))∨xB(x) T

所以,(xA(x)xB(x))x(A(x)B(x))为永真式。

(2)设论域为{1,2},令A(1)=T;A(2)=F;B(1)=F;B(2)=T。

则xA(x)为假,xB(x)也为假,从而xA(x)xB(x)为真;而由于A(1)B(1)为假,所以x(A(x)B(x))也为假,因此公式(xA(x)xB(x))x(A(x)B(x))为假。该公式不是永真式。

三、(15分)设X为集合,A=P(X)-{}-{X}且A≠,若|X|=n,问 (1)偏序集是否有最大元? (2)偏序集是否有最小元?

(3)偏序集中极大元和极小元的一般形式是什么?并说明理由。 解

偏序集不存在最大元和最小元,因为n>2。

考察P(X)的哈斯图,最底层的顶点是空集,记作第0层,由底向上,第一层是单元集,第二层是二元集,…,由|X|=n,则第n-1层是X的n-1元子集,第n层是X。偏序集与偏序集相比,恰好缺少第0层和第n层。因此的极小元就是X的所有单元集,即{x},x∈X;而极大元恰好是比X少一个元素,即X-{x},x∈X。

四、(10分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

五、(10分)设函数g:A→B,f:B→C,

(1)若fg是满射,则f是满射。 (2)若fg是单射,则g是单射。

证明

因为g:A→B,f:B→C,由定理5.5知,fg为A到C的函数。

(1)对任意的z∈C,因fg是满射,则存在x∈A使fg(x)=z,即f(g(x))=z。由g:A→B可知g(x)∈B,于是有y=g(x)∈B,使得f(y)=z。因此,f是满射。

(2)对任意的x

1、x2∈A,若x1≠x2,则由fg是单射得fg(x1)≠fg(x2),于是f(g(x1))≠f(g(x2)),必有g(x1)≠g(x2)。所以,g是单射。

六、(10分)有幺元且满足消去律的有限半群一定是群。

证明

设是一个有幺元且满足消去律的有限半群,要证是群,只需证明G的任一元素a可逆。

考虑a,a2,„,ak,„。因为G只有有限个元素,所以存在k>l,使得ak=al。令m=k-l,有al*e=al*am,其中e是幺元。由消去率得am=e。

于是,当m=1时,a=e,而e是可逆的;当m>1时,a*am-1=am-1*a=e。从而a是可逆的,其逆元是am-1。总之,a是可逆的。

七、(20分)有向图G如图所示,试求: (1)求G的邻接矩阵A。

(2)求出A

2、A3和A4,v1到v4长度为

1、

2、3和4的路有多少?

(3)求出ATA和AAT,说明ATA和AAT中的第(2,2)元素和第(2,3)元素的意义。 (4)求出可达矩阵P。 (5)求出强分图。

(1)求G的邻接矩阵为:

00A00101011

101100(2)由于

002A001110220130

1 A0211102011120322044A

031201012313 2322所以v1到v4长度为

1、

2、3和4的路的个数分别为

1、

1、

2、3。 (3)由于

00ATA000002131212TAA

21011102132110 2121再由定理10.19可知,所以ATA的第(2,2)元素为3,表明那些边以v2为终结点且具有不同始结点的数目为3,其第(2,3)元素为0,表明那些边既以v2为终结点又以v3为终结点,并且具有相同始结点的数目为0。AAT中的第(2,2)元素为2,表明那些边以v2为始结点且具有不同终结点的数目为2,其第(2,3)元素为1,表明那些边既以v2为始结点又以v3为始结点,并且具有相同终结点的数目为1。

(4)00B4AA2A3A40000所以求可达矩阵为P0000(5)因为PPT0010100110+10101000111111。

11111111101111∧1111111100001110=01110111000111,所以{v1},{v2,v3,v4}

111111因

1110



2010

+

1110

0110

2120312204+

2120320101231323220

000

741

747

747

434构成G的强分图。

离散数学试题(B卷答案8)

一、(10分)证明(P∨Q)∧(PR)∧(QS)S∨R

证明

因为S∨RRS,所以,即要证(P∨Q)∧(PR)∧(QS)RS。 (1)R

附加前提 (2)PR

P (3)P

T(1)(2),I (4)P∨Q

P (5)Q

T(3)(4),I (6)QS

P (7)S

T(5)(6),I (8)RS

CP (9)S∨R

T(8),E

二、(15分)根据推理理论证明:每个考生或者勤奋或者聪明,所有勤奋的人都将有所作为,但并非所有考生都将有所作为,所以,一定有些考生是聪明的。

设P(e):e是考生,Q(e):e将有所作为,A(e):e是勤奋的,B(e):e是聪明的,个体域:人的集合,则命题可符号化为:x(P(x)(A(x)∨B(x))),x(A(x)Q(x)),x(P(x)Q(x))x(P(x)∧B(x))。

(1)x(P(x)Q(x))

P (2)x(P(x)∨Q(x))

T(1),E (3)x(P(x)∧Q(x))

T(2),E (4)P(a)∧Q(a)

T(3),ES (5)P(a)

T(4),I (6)Q(a)

T(4),I (7)x(P(x)(A(x)∨B(x))

P (8)P(a)(A(a)∨B(a))

T(7),US (9)A(a)∨B(a)

T(8)(5),I (10)x(A(x)Q(x))

P

(11)A(a)Q(a)

T(10),US (12)A(a)

T(11)(6),I

(13)B(a)

T(12)(9),I (14)P(a)∧B(a)

T(5)(13),I (15)x(P(x)∧B(x))

T(14),EG

三、(10分)某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数。

设A、B、C分别表示会打排球、网球和篮球的学生集合。则:

|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2,|(A∪C)∩B|=6。 因为|(A∪C)∩B|=(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2=6,所以|(A∩B)|=3。于是|A∪B∪C|=12+6+14-6-5-3+2=20,|ABC|=25-20=5。故,不会打这三种球的共5人。

四、(10分)设A

1、A2和A3是全集U的子集,则形如Ai(Ai为Ai或Ai)的集合称

i13为由A

1、A2和A3产生的小项。试证由A

1、A2和A3所产生的所有非空小项的集合构成全集U的一个划分。

证明

小项共8个,设有r个非空小项s

1、s

2、…、sr(r≤8)。

对任意的a∈U,则a∈Ai或a∈Ai,两者必有一个成立,取Ai为包含元素a的Ai或Ai,则a∈Ai,即有a∈si,于是Usi。又显然有siU,所以U=si。

i1i1i1i1i13rrrr任取两个非空小项sp和sq,若sp≠sq,则必存在某个Ai和Ai分别出现在sp和sq中,于是sp∩sq=。

综上可知,{s1,s2,…,sr}是U的一个划分。

五、(15分)设R是A上的二元关系,则:R是传递的R*RR。

证明

(5)若R是传递的,则∈R*Rz(xRz∧zSy)xRc∧cSy,由R是传递的得xRy,即有∈R,所以R*RR。

反之,若R*RR,则对任意的x、y、z∈A,如果xRz且zRy,则∈R*R,于是有∈R,即有xRy,所以R是传递的。

六、(15分)若G为连通平面图,则n-m+r=2,其中,n、m、r分别为G的结点数、边数和面数。

证明

对G的边数m作归纳法。

当m=0时,由于G是连通图,所以G为平凡图,此时n=1,r=1,结论自然成立。 假设对边数小于m的连通平面图结论成立。下面考虑连通平面图G的边数为m的情况。

设e是G的一条边,从G中删去e后得到的图记为G,并设其结点数、边数和面数分别为n、m和r。对e分为下列情况来讨论:

若e为割边,则G有两个连通分支G1和G2。Gi的结点数、边数和面数分别为ni、mi和ri。显然n1+n2=n=n,m1+m2=m=m-1,r1+r2=r+1=r+1。由归纳假设有n1-m1+r1=2,n2-m2+r2=2,从而(n1+n2)-(m1+m2)+(r1+r2)=4,n-(m-1)+(r+1)=4,即n-m+r=2。

若e不为割边,则n=n,m=m-1,r=r-1,由归纳假设有n-m+r=2,从而n-(m-1)+r-1=2,即n-m+r=2。

由数学归纳法知,结论成立。

七、(10分)设函数g:A→B,f:B→C,则: (1)fg是A到C的函数;

(2)对任意的x∈A,有fg(x)=f(g(x))。

证明

(1)对任意的x∈A,因为g:A→B是函数,则存在y∈B使∈g。对于y∈B,因f:B→C是函数,则存在z∈C使∈f。根据复合关系的定义,由∈g和∈f得∈g*f,即∈fg。所以Dfg=A。

对任意的x∈A,若存在y

1、y2∈C,使得、∈fg=g*f,则存在t1使得∈g且∈f,存在t2使得∈g且∈f。因为g:A→B是函数,则t1=t2。又因f:B→C是函数,则y1=y2。所以A中的每个元素对应C中惟一的元素。

综上可知,fg是A到C的函数。

(2)对任意的x∈A,由g:A→B是函数,有∈g且g(x)∈B,又由f:B→C是函数,得∈f,于是∈g*f=fg。又因fg是A到C的函数,则可写为fg(x)=f(g(x))。

八、(15分)设是的子群,定义R={|a、b∈G且a1*b∈H},

-则R是G中的一个等价关系,且[a]R=aH。

证明

对于任意a∈G,必有a1∈G使得a1*a=e∈H,所以∈R。

-

-

若∈R,则a1*b∈H。因为H是G的子群,故(a1*b)1=b1*a∈H。所以

-

-

-a>∈R。

若∈R,∈R,则a1*b∈H,b1*c∈H。因为H是G的子群,所以(a

-

-

-1*b)*(b1*c)=a1*c∈H,故∈R。 --综上可得,R是G中的一个等价关系。

对于任意的b∈[a]R,有∈R,a1*b∈H,则存在h∈H使得a1*b=h,b=a*h,

-

-于是b∈aH,[a]RaH。对任意的b∈aH,存在h∈H使得b=a*h,a1*b=h∈H,

-b>∈R,故aH[a]R。所以,[a]R=aH。

离散数学试题(B卷答案9)

一、(10分)证明(P∧Q∧AC)∧(AP∨Q∨C)(A∧(PQ))C。 证明:(P∧Q∧AC)∧(AP∨Q∨C)(P∨Q∨A∨C)∧(A∨P∨Q∨C)

(P∨Q∨A∨C)∧(A∨P∨Q∨C) ((P∨Q∨A)∧(A∨P∨Q))∨C ((P∧Q∧A)∨(A∧P∧Q))∨C ( A∧((P∧Q)∨(P∧Q)))∨C ( A∧(PQ))∨C (A∧(PQ))C。

二、(10分)举例说明下面推理不正确:xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))。

解:设论域为{1,2},令P(1)=P(2)=T;Q(1)=Q(2)=T;R(1)=R(2)=F。则: xy(P(x)Q(y))x((P(x)Q(1))∨(P(x)Q(2)))

((P(1)Q(1))∨(P(1)Q(2)))∧((P(2)Q(1))∨(P(2)Q(2))) ((TT)∨(TT))∧((TT)∨(TT)) T yz(R(y)Q(z))y((R(y)Q(1))∨(R(y)Q(2)))

((R(1)Q(1))∨(R(1)Q(2)))∧((R(2)Q(1))∨(R(2)Q(2)))

((FT)∨(FT))∧((FT)∨(FT))

T

xz(P(x)R(z))x((P(x)R(1))∧(P(x)R(2))) ((P(1)R(1))∧(P(1)R(2)))∨((P(2)R(1))∧(P(2)R(2))) ((TF)∧(TF))∨((TF)∧(TF)) F 所以,xy(P(x)Q(y)),yz(R(y)Q(z))xz(P(x)R(z))不正确。

三、(15分)在谓词逻辑中构造下面推理的证明:所有牛都有角,有些动物是牛,所以,有些动物有角。

解:令P(x):x是牛;Q(x):x有角;R(x):x是动物;则推理化形式为:

x(P(x)Q(x)),x(P(x)∧R(x))x(Q(x)∧R(x)) 下面给出证明:

(1)x(P(x)∧R(x))

P (2)P(a)∧R(a)

T(1),ES (3)x(P(x)Q(x))

P (4)P(a)Q(a)

T(3),US (5)P(a)

T(2),I (6)Q(a)

T(4)(5),I (7)R(a)

T(2),I (8)Q(a)∧R(a)

T(6)(7),I (9)x(Q(x)∧R(x))

T(8),EG

四、(10分)证明(A∩B)×(C∩D)=(A×C)∩(B×D)。

证明:因为∈(A∩B)×(C∩D)x∈(A∩B)∧y∈(C∩D)x∈A∧x∈B∧y∈C∧y∈D(x∈A∧y∈C)∧(x∈B∧y∈D)∈A×C∧∈B×D∈(A×C)∩(B×D),所以(A∩B)×(C∩D)=(A×C)∩(B×D)。

五、(15分)设A={1,2,3,4,5},R是A上的二元关系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。

r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,-

<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,i11>,<5,4>,<5,5>}。

六、(10分)若函数f:A→B是双射,则对任意x∈A,有f1(f(x))=x。

-证明

对任意的x∈A,因为f:A→B是函数,则∈f,于是

-由f-1是B到A的函数,于是可写为f1(f(x))=x。

-

七、(10分)若G为有限群,则|G|=|H|·[G:H]。

证明

设[G:H]=k,a

1、a

2、…、ak分别为H的k个左陪集的代表元,由定理8.38得

G[ai]RaiH

i1i1kk又因为对H中任意不同的元素x、y∈H及a∈G,必有a*x≠a*y,所以|a1H|=…=|akH|=|H|。因此

|G||aiH|i1k|aH|k|H|=|H|·[G:H]。

ii1k

八、(20分)(1)画出3阶2条边的所有非同构有向简单图。

解:由握手定理可知,所画的有向简单图各结点度数之和为4,且最大出度和最大入度均小于或等于2。度数列与入度列、出度列为:

1、

2、1:入度列为0、

1、1或0、

2、0或

1、0、1;出度列为

1、

1、0或

1、0、1或0、

2、0

2、

2、0:入度列为

1、

1、0;出度列为

1、

1、0 四个所求有向简单图如图所示。

(2)设G是n(n≥4)阶极大平面图,则G的最小度≥3。

证明

设v是极大平面图G的任一结点,则v在平面图G-{v}的某个面f内。由于G-{v}是一个平面简单图且其结点数大于等于3,所以d(f)≥3。由G的极大平面性,v与f上的结点之间都有边,因此d(v)≥3。由v的任意性可得,G的最小度≥3。

离散数学试题(B卷答案10)

一、(10分)使用将命题公式化为主范式的方法,证明(PQ)(P∧Q)(QP)∧(P∨Q)。

证明:因为(PQ)(P∧Q)(P∨Q)∨(P∧Q)

(P∧Q)∨(P∧Q) (QP)∧(P∨Q)(Q∨P)∧(P∨Q) (P∧Q)∨(Q∧Q)∨(P∧P) ∨(P∧Q) (P∧Q)∨P

(P∧Q)∨(P∧(Q∨Q)) (P∧Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q) 所以,(PQ)(P∧Q)(QP)∧(P∨Q)。

二、(10分)证明下述推理: 如果A努力工作,那么B或C感到愉快;如果B愉快,那么A不努力工作;如果D愉快那么C不愉快。所以,如果A努力工作,则D不愉快。

解 设A:A努力工作;B、C、D分别表示B、C、D愉快;则推理化形式为: AB∨C,BA,DCAD

(1)A 附加前提 (2)AB∨C P (3)B∨C T(1)(2),I (4)BA P (5)AB

T(4),E (6)B T(1)(5),I (7)C T(3)(6),I

(8)DC P (9)D T(7)(8),I (10)AD CP

三、(10分)证明xy(P(x)Q(y))(xP(x)yQ(y))。 xy(P(x)Q(y))xy(P(x)∨Q(y)) x(P(x)∨yQ(y)) xP(x)∨yQ(y) xP(x)∨yQ(y) (xP(x)yQ(y))

四、(10分)设A={,1,{1}},B={0,{0}},求P(A)、P(B)-{0}、P(B)B。 解 P(A)={,{},{1},{{1}},{,1},{,{1}},{1,{1}},{,1,{1}}} P(B)-{0}={,{0},{{0}},{0,{0}}-{0}={,{0},{{0}},{0,{0}} P(B)B={,{0},{{0}},{0,{0}}{0,{0}}={,0,{{0}},{0,{0}}

五、(15分)设X={1,2,3,4},R是X上的二元关系,R={<1,1>,<3,1>,<1,3>,<3,3>,<3,2>,<4,3>,<4,1>,<4,2>,<1,2>} (1)画出R的关系图。 (2)写出R的关系矩阵。

(3)说明R是否是自反、反自反、对称、传递的。 解 (1)R的关系图如图所示: (2) R的关系矩阵为:

10M(R)111011101100 00(3)对于R的关系矩阵,由于对角线上不全为1,R不是自反的;由于对角线上存在非0元,R不是反自反的;由于矩阵不对称,R不是对称的;

经过计算可得

10M(R2)111011101100M(R),所以R是传递的。 00

六、(15分)设函数f:R×RR×R,f定义为:f()=。 (1)证明f是单射。 (2)证明f是满射。 (3)求逆函数f。

(4)求复合函数ff和ff。

证明 (1)对任意的x,y,x1,y1∈R,若f()=f(),则=,x+y=x1+y1,x-y=x1-y1,从而x=x1,y=y1,故f是单射。

(2)对任意的∈R×R,令x=-1-

1uwuwuwuw

,y=,则f()=<+,2222uwuw->=,所以f是满射。 22(3)f()=<-1-1uwuw,>。 22-1(4)ff()=f(f())=f

-1

()=<

xyxy,

2xy(xy)>= 2ff()=f(f())=f()==<2x,2y>。

七、(15分)给定群,若对G中任意元a和b,有a*b=(a*b),a*b=(a*b),a*b=(a*b),试证是Abel群。

证明 对G中任意元a和b。

因为a*b=(a*b),所以a*a*b*b=a*(a*b)*b,即得a*b=(b*a)。同33

333

3

2

2255

53

3

3

4

44

13

111理,由a*b=(a*b)可得,a*b=(b*a)。由a*b=(a*b)可得,a*b=(b*a)。

于是(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。同理可得,(a*b)*(b*a)=(b*a)=a*b,即b*a=a*b。

3333334

4

4

4

4

2

2

344433555444

由于(a*b)*b=a*b=b*a=b*(b*a)=b*(a*b)=(b*a)*b,故a*b=b*a。

八、(15分)(1)证明在n个结点的连通图G中,至少有n-1条边。

证明 不妨设G是无向连通图(若G为有向图,可略去边的方向讨论对应的无向图)。 设G中结点为v

1、v

2、„、vn。由连通性,必存在与v1相邻的结点,不妨设它为v2(否则可重新编号),连接v1和v2,得边e1,还是由连通性,在v

3、v

4、„、vn中必存在与v1或v2相邻的结点,不妨设为v3,将其连接得边e2,续行此法,vn必与v

1、v

2、„、vn1中的某个结点相邻,得新边en1,由此可见G中至少有n-1条边。

(2)试给出|V|=n,|E|=(n-1)(n-2)的简单无向图G=是不连通的例子。

解 下图满足条件但不连通。

12344333

上一篇:蓝天白云乡村文明建设下一篇:历史校本课程教学总结

本站热搜