高等数学c2复习范围

2022-09-27

第一篇:高等数学c2复习范围

2012高等数学A期末考试命题范围

教学基本执行教学进度表的内容,教材中带星号的章节都没有讲。建议考试范围如下,其中蓝字显示内容为重点,另外建议不要出题的部分都在括号中说明。书中所提到的所有的物理应用不要考,

第八章 空间解析几何和向量代数

向量的运算(线性运算、数量积、向量积)(避开向量在轴上的投影);

求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面的方程;

空间曲线在坐标平面上的投影方程;

求平面方程和直线方程;判定平面与平面、平面与直线、直线与直线之间的位置关系。

第九章 多元函数微分法及其应用

二元函数的极限与连续性的概念;多元函数极限、连续、偏导数和全微分的关系, 求全微分;多元复合函数偏导数的求法;求由一个方程确定的隐函数的偏导数; 曲线的切线和法平面及曲面的切平面和法线的方程(避开向量函数及导数);方向导数与梯度;多元函数的极值与最值。

第十章 重积分

二重积分在直角坐标系、极坐标系的计算、三重积分在直角坐标系的计算;二重积分的应用(只考表面积和体积)。

第十一章 曲线积分与曲面积分

第一、二类曲线积分的计算,格林公式,曲面积分与路径无关的的条件应用;第

一、二类曲面积分的计算。

(第十一章第

6、7小节不做要求)

第十二章 无穷级数

数项级数收敛的必要条件,收敛的数项级数的基本性质,比较审敛法、比值审敛法; 交错级数的莱布尼茨判别法;绝对收敛与条件收敛的关系;

幂级数的收敛半径、收敛区间及收敛域的求法;

一些简单函数间接展开成幂级数方法。(第十二章第

5、

6、

7、8小节不做要求)

第二篇:高等数学上册复习

第一章复习提要 第一节 映射与函数

1、注意几个特殊函数:符号函数,取整函数,狄利克雷函数;这些函数通常用于判断题中的反例

2、注意无界函数的概念

3、了解常用函数的图像和基本性质(特别是大家不太熟悉的反三角函数) 第二节 数列的极限 会判断数列的敛散性 第三节 函数的极限

1、函数极限存在的充要条件:左右极限存在并相等。(重要)

2、水平渐近线的概念,会求函数的水平渐近线(p37)。(重要)

3、了解函数极限的局部有界性、局部保号性。 第四节 无穷大和无穷小

1、无穷小和函数极限的关系:limf(x)Af(x)A,其中是无穷小。

xx0x

2、无穷大和无穷小是倒数关系

3、铅直渐近线的概念(p41), 会求函数的铅直渐近线

4、无界与无穷大的关系:无穷大一定无界,反之不对。

5、极限为无穷大事实上意味着极限不存在,我们把它记作无穷大只是为了描述函数增大的这种状态 第五节 极限的运算法则

1、极限的四则运算法则:两个函数的极限都存在时才能用。 以乘法为例比如f(x)x,g(x)但是limf(x)g(x)1

x01。limf(x)0,limg(x)。 xx0x0

2、会求有理分式函数

p(x)的极限(P47 例3-例7)(重要) q(x)xx0时:若分母q(x0)0,则极限为函数值

0型极限,约去公因子 0 若只是分母为零,则极限为无穷大。(p75页9(1))

x时,用抓大头法,分子、分母同时约去x的最高次幂。 第六节 极限存在的准则,两个重要极限(重要)

1、利用夹逼准则求极限: 例 p56也习题4(1)(2),及其中考试题(B)卷第三题(1)

2、利用两个重要极限求其他的极限(p56习题2)

1sinxsinx0;lim1 3 注意下面几个极限:limxsin0;limx0xx0xxx第七节 无穷小的比较(重要)

1、会比较两个无穷之间的关系(高阶、低阶、同阶,k 阶还是等价穷小) 若分子和分母同时为零,则为

x

22、常见的等价无穷小:sinx,tanx,arcsinx~x;1cosx~

2ex1~x;(1x)~1nx n

13、若(x)为无穷小,则sin(x)~(x),(1(x))n~(x)n,

ln(1(x))~(x),e(x)1~(x)。

4、替换无穷小时必须是因式

x0limtanxsinxx3limxx3x0x0

应该

x2xtanxsinxtanx(1cosx)1limlimlim2

2x0x0x0x3x3x

35、会利用等价无穷小计算极限(p60页习题4)

第八节 函数的连续性与间断点(重要)

1、函数在点x0连续 limf(x)f(x0)

xx0左连续limf(x)f(x0)且

xx0f(x)f(x0)

右连续limxx0

2、会判断间断点及其类型。讨论分段函数的连续性。

3、f(x)在点a连续f(x)在点a连续;但反之不对。

第九节 连续函数的运算与初等函数的连续性

初等函数在其定义域上都是连续的,因而求某点处极限时可以直接把点代入求值。

4. 注意三个例题:例6-例8(重要)

5、幂指函数u(x)v(x)求极限,可以利用等式u(x)v(x)=ev(x)lnu(x)来求。(重要)

6、若含有根式,则分子或者分母有理化(p75页9(2))是求极限的一种重要方法。(重要)

7、利用分段函数的连续性求未知数的值(如p70页 6)(重要) 第十节 闭区间上连续函数的性质

最大值最小值定理、零点定理、介值定理的内容 会零点定理证明方程根的存在性。(重要) 补充说明 请熟悉函数e当x0,x0,x时的极限。 第二章复习提要

1、导数的定义

(1)利用导数的定义求一些极限的值:例如P86页第6题 例

1、设f(0)0,f(0)k0,则limf(x)____.

x0x1x例

2、设f(x0)存在,则limf(x0h)f(x0)________.(重要)

hh0(2)利用左右导数讨论函数的可导性:P125页第7题

sinx,x0例

3、已知f(x),求f(x)

x,x0注意分点处的导数应该用定义来求。(重要)

(3)利用左右导数求未知数的值:P87页第17题(重要)

sinx,x0例

4、设f(x)为可导的,求a的值

ax,x0(4)利用导数几何意义求切线和法线方程(重要)

(5)可导连续,反之不成立!

2、求导法则

(1)复合函数求导不要掉项;

(2)幂指函数u(x)v(x)ev(x)lnu(x)转化成指数来求导

3、高阶导数

(1)一般的函数求到2阶即可; (2)几个初等函数的n阶导数:

(eax)(n)aneax;y(n)sin(xn);(cosx)(n)cos(xn)

22[ln(1x)](n)(1)n1(n1)!(1x)n,

(n1)!(1x)n[ln(1x)](n)(1)n1(1)n(n1)!(1x)n

由上面的求导公式我们容易推出下列求导公式:

1(n)n! ()[ln(1x)](n1)(1)nn11x(1x)1(n)n! ()[ln(1x)](n1)n11x(1x)(1(n)n! )[ln(ax)](n1)(1)nn1ax(ax)1(n)n! )[ln(1x)](n1)n1ax(ax)((3) 二项式定理

(uv)(n)(nk)(k)Ckuv nk0n(4)间接法求高阶导数:

1x2例

5、求y的n阶导数:提示y1。

1x1x(5)注意下列函数的求导

6、求下列函数的二阶导数:P103页第3题(重要) (1)yf(x2);(2)yln[f(x)]

4、隐函数及参数方程求导(重要) (1)一般方法,两边对x球到后解出

dy。 dx(2)会求二阶导数

(3)对数求导法适用于幂指函数和连乘或连除的函数 (4)注意参数方程二阶导数的公式

dydyd()2()tdydtdx。(重要) dxdx2dtdxdxdt(5)相关变化率问题:

根据题意给出变量x和y之间的关系;

两边对t(或者是其他变量)求导

dydx和之间的关系,已知其中一个求另外一个。 dtdt

5、函数的微分

(1)微分与可导的关系:可微可导且dyf(x)dx (2)利用微分的形式不变性求隐函数或显函数的微分: 显函数的例子见课本的例题;下面给出隐函数的例子 例

7、设ysinxcos(xy)0,求dy。 解: 利用一阶微分形式不变性 , 有

d(ysinx)d(cos(xy))0

sinxdyycosxdxsin(xy)(dxdy)0

dyycosxsin(xy)dx。

sin(xy)sinx(3)近似计算公式:注意x0的选取原则。(一般不会考) f(x)f(x0)f(x0)(xx0)

第三章:微分中值定理与导数的应用复习提要 3.1 微分中值定理(重要)

罗尔定理、拉格朗日定理、柯西定理应用: 证明等式,一般通过证明导数为零

证明不等式:若不等式中不含x,则取x作为辅助函数的自变量;若含有x,则取t作为辅助函数的自变量。(重要)

判断方程的根(存在性用零点定理,唯一性或判断根的个数用中值定理,有时还要结合单调性,见153也习题6)(重要)

利用辅助函数和中值定理证明等式(一个函数用拉格朗日,二个用柯西) 例1 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)0,证明至少存在一点(0,1)使得f()2f()。

证明:上述问题等价于f()2f()0。

令f(x)x2f(x),则f(x)在[0,1]上满足罗尔定理条件,于是少存在一点(0,1)使得

()2f()2f()0 即有f()2f()0。

(5)请熟悉132页例1. 3.2 洛必达法则(重要)

(1)(其他类型的未定式)最终转化成

0型和型未定式 0(2)每次用前需判断

(3)结合等价无穷小效果更佳。 3.3 泰勒公式

(1)一般方法:求各阶导数代入公式即可;

(2)常见函数ex,ln(1x),sinx,cosx的麦克劳林公式 3.4 函数的单调性和凹凸性 (1)会用列表法求函数的单调区间和凹凸区间(注意一般是闭区间),拐点。 注意不要漏掉导数不存在的点也可能是单调区间的分点; 二阶导数不存在的点也可能是拐点。 (2)利用单调性证明不等式(重要) (3)利用单调性判断方程的根(重要) 3.5 极值和最值(重要)

(1)列表法求极值(极值可能点为驻点或不可导点) (2)最值(找出极值可能点再与端点比较)

(3)对于时间问题,若极值点唯一,则也为最值点。 3.6 函数图形的描绘 注意渐近线 3.7 曲率

(1)弧微分公式

(2)曲率和曲率半径的计算公式(重要) 第四章复习提要

4.1 不定积分的概念和性质

1、基本积分表

2、公式f(x)dxf(x)和f(x)dxf(x)C 

3、注意如下问题:(填空、选择、判断) 若ex是f(x)的原函数,则x2f(lnx)dx若f(x)是ex的原函数,则12xC 2f(lnx)1dx C0lnxC xx若f(x)的导数为sinx,则f(x)的一个原函数是(B)。 A 1sinx; B 1sinx; C 1cosx; D 1cosx

4.2 换元积分法(重要)

1、第一换元法的原理:g(x)dx

把被积函数g(x)凑成g(x)f((x))(x)的形式, 因而这种方法也称为凑微分法。

2、一些规律: ①f(x)1xdx2f(x)(x)2f(x)dx

11f(axb)(axb)dxf(axb)d(axb)

aa②f(axb)dx1③f(lnx)dxf(lnx)(lnx)dxf(lnx)d(lnx)

x④sin(2k1)xcosnxdxsin2kxcosnxsinxdx(1cos2x)cosnxdcosx ⑤cos(2k1)kxsinxdxcosxsinxcosxdx(1sinx)sinnxdsinx n2kn2k注:sin(2k1)xdx和cos(2k1)xsinnxdx可以看做④和⑤的特殊情形。 ⑥sin2kxcos2nxdx用公式sin2x⑦tanxsecn2k2n2k1cos2x1cos2x和cos2x降次。 22n2kxdxtanxsecxdtanxtanx(1tanx)dtanx

注sec2kxdx可以看做⑦的特殊情形

⑧csc2k2xdxcsc2kxcsc2xdx(1cot2x)dcotx

⑨tan(2k1)xsecnxdxtan2kxsecn1xdsecx(sec2x1)secn1xdsecx ⑩利用积化和差公式:

1cosAcosB[cos(AB)cos(AB)]

21sinAcosB[sin(AB)sin(AB)]

21cosAsinB[sin(AB)sin(AB)]

21sinAsinB[cos(AB)cos(AB)]

2第二换元法

被积函数中含有a2x2,利用代换xasint,t(被积函数中含有a2x2,利用代换xatant,t(kk,) 22,) 22被积函数中含有x2a2,利用代换xasect,t(0,)(一般要分情况讨论) 被积函数为分式,分母次数比分子次数高,到代换 利用下列积分公式:

⒃tanxdxln|cosx|C;⒄cotxdxln|sinx|C

⒅secxdxln|secxtanx|C;⒆cscxdxln|cscxcotx|C ⒇dx1xdx1xaarctanC;(21)lnx2a22axaC aa2x2a(22)xdxarcsinC;ln(xa2x2)C (23)ax2a2a2x2dx(24)dxx2a2lnxx2a2C

4.3 分部积分法(重要)

1、分部积分公式:udvuvvdu

2、u的选取原则:反对幂指三。

这个原则不是绝对的,如通常exsinxdxsinxdex。

3、如果遇到反三角函数和对数函数的高次幂,通常先换元更容易算。 如(arcsinx)2dxarcsinxtt2dsint;

ln2x2ttdxlnxtedt x2遇到根式axb,先令taxb去根号。 会做形如例

7、8那样具有典型特点的题目。

4.4 有理函数的积分(重要)

1、P(x),先用多项式除法化成真分式; Q(x)P(x)的分解式: Q(x)

2、对Q(x)分解因式,根据分解结果用待定系数法确定x1x1AB:应设

(x2)(x3)(x2)(x3)x2x3 x2x2ABxC:应设 (2x1)(x2x1)(2x1)(x2x1)(2x1)(x2x1)x2x2ABx3Cx2DxE(2x1)(x2x1)2:应设(2x1)(x2x1)(2x1)(x2x1)2

原则就是分子的次数总是要比分母低一次。

3、三角函数可以通过如下换元法转化为有理函数的积分

xxx2tan1tan22tan2;cosx2;tanx2 sinxxxx1tan21tan21tan2222x令tant,则三角函数就转化成为有理函数

24. 被积函数含有naxb或naxbcxd,则令tnaxb或tnaxbcxd 几个典型题目 P207页(42)x1dxdx,(43)x1x2P211页例

7、8 x22x3补充说明:这一章的内容需要大家在掌握一定规律的前提下多做练习,方能取得比较好的效果 第五章:定积分

5.1 定积分的概念和性质

1、定积分的定义:f(x)dxlimf(i)xi

abni0

2、定积分的几何意义:曲边梯形的面积

3、定积分的性质:利用定积分的性质判断积分的取值范围或比较两个积分的大小(p235,10,13)(重要) 5.2 微积分基本公式

1、yf(x),axb的积分上限的函数(重要)

(x)xaf(t)dt,axb

及其导数: (如p243,5题) (1)(x)f(x)

d(x)f(t)dtf((x))(x) adxda(3)f(t)dtf((x))(x)

dx(x)d(x)(4) f(t)dtf((x))(x)f((x))(x)

dx(x)

2、利用上面的公式计算极限、判断函数单调性等: 相应例题(p242,例7,8),相应习题(p243-244: 习题9,12,12,14)(重要) (2)

3、牛顿-莱布尼茨公式:函数F(x)为函数f(x)在区间[a,b]上的一个原函数,则

baf(x)dxF(b)F(a),记作[F(x)]a或F(x)bba

注意:分段函数(或者带绝对值的函数)的积分应为分段积分的和:典型题目p244,习题10. 5.3 定积分的换元法和分布积分法(重要)

1、第一换元公式:f[(x)](x)dtf(t)dt

ab

2、第二还原公式:f(x)dxf[(t)](t)dt

ab注意:一般来说应用第一换元公式,我们一般不需要把新变量写出来,因而也就

cos2不需要写出新变量的积分限,如cossinxdx 但是应用第二换元。

30公式,一般要写出新变量及其积分限,如

2023aasinta2x2dx(a0)xa22cos2tdt

00

3、分布积分公式:u(x)dv(x)u(x)v(x)av(x)du(x)

baabb说明:无论是还原法还是分布积分法,定积分和不定积分的计算过程都是相似的。

4、利用下面的公式能帮助我们简化计算:(重要) (1)偶倍寄零

00(2)2f(sinx)dx2f(cosx)dx (3)xf(sinx)dx020f(sinx)dx(p248, 例6,p270, 10(6))

(4)设f(x)是周期为T的连续函数:则

aTaf(x)dxf(x)dx;0TanTaf(x)dxnf(x)dx(nN).(p249,例7,p253,

0T1(26))

5、形如例9这样的积分。 5.4 反常积分

1、无穷限的反常积分:设F(x)是f(x)的原函数,引入记号

F()limF(x); F()limF(x)

xx则

af(x)dxF(x)|aF()F(a);f(x)dxF(x)|F()F().

bf(x)dxF(x)|bF(b)F();

反常积分收敛意味着相应的F(),F()存在;特别的积分F(),F()同时存在。

f(x)dx收敛必须注意:对于无穷限积分来说,偶倍寄零原则不在成立!

2、无界函数的反常积分(瑕积分):设F(x)是f(x)的原函数,则 若b为瑕点,f(x)dx F(x)aF(b)F(a);

bab若a为瑕点,则f(x)dxF(x)aF(b)F(a);

bab若a,b都为瑕点,f(x)dx F(x)aF(b)F(a);

bab则c(a,b)为瑕点,则f(x)dxf(x)dxf(x)dxF(x)c。 aF(x)caacbcbb反常积分收敛意味着相应的F(a),F(b)存在;特别的积分f(x)dx(c(a,b)ab为瑕点)收敛必须F(c),F(c)同时存在。

说明:由上面的公式看出,反常积分与定积分的计算方法是一样的。都是先求原函数然后代入两个端点,只是对于非正常点(如和瑕点)算的是函数的极限。

3、换元法也适用于反常积分

4、会利用下面的两个重要反常积分来讨论一些函数的收敛性(重要)

ap1,dx(a0) 1,p1xpp1(p1)a(ba)1qb,q1dx 1qa(xa)q,q1练习:p260,2题;求积分bdx的收敛性。

b(xb)qa

5、遇到形如f(x)dx积分时,注意[a,b]是否含有瑕点。否则会得到错误的结果:

adx。 1x第六章 定积分的应用

6.2 定积分在几何学上的应用

1、平面图形的面积(直角坐标系和极坐标下)(重要)

2、体积(特别是旋转体的体积)(重要)

3、三个弧长公式(重要)

6.3 定积分在物理学上的应用(做功、水压力重要,引力了解) 如1

第三篇:高等数学复习》教程

第一讲函数、连续与极限

一、理论要求 1.函数概念与性质 2.极限

3.连续

二、题型与解法 A.极限的求法

函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 极限存在性与左右极限之间的关系 夹逼定理和单调有界定理

会用等价无穷小和罗必达法则求极限

函数连续(左、右连续)与间断

理解并会应用闭区间上连续函数的性质(最值、有界、介值)

(1)用定义求

(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法 (4)两个重要极限法

(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法

(8)其他(微积分性质,数列与级数的性质) 1.(等价小量与洛必达) 2.已知 解:

(洛必达) 3.

(重要极限) 4.已知a、b为正常数, 解:令 (变量替换) 5. 解:令 (变量替换) 6.设连续,,求

(洛必达与微积分性质) 7.已知在x=0连续,求a 解:令

(连续性的概念)

三、补充习题(作业) 1. (洛必达)

2.

(洛必达或Taylor) 3.

(洛必达与微积分性质)

第二讲导数、微分及其应用

一、理论要求 1.导数与微分

2.微分中值定理 3.应用

二、题型与解法 A.导数微分的计算

B.曲线切法线问题 C.导数应用问题

D.幂级数展开问题 导数与微分的概念、几何意义、物理意义

会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程

理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题

会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)

基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求

解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则

4.求对数螺线处切线的直角坐标方程。

解:

5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0

6.已知, ,求点的性质。 解:令,故为极小值点。

7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域

8.求函数的单调性与极值、渐进线。 解:,

9. 或: 10.求 解: =

E.不等式的证明 11.设, 证:1)令

2)令

F.中值定理问题 12.设函数具有三阶连续导数,且, ,求证:在(-1,1)上存在一点 证: 其中

将x=1,x=-1代入有 两式相减: 13.,求证:

证: 令 令

(关键:构造函数)

三、补充习题(作业) 1. 2.曲线 3. 4.证明x>0时

证:令

第三讲不定积分与定积分

一、理论要求 1.不定积分 2.定积分 掌握不定积分的概念、性质(线性、与微分的关系) 会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 理解定积分的概念与性质

理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分

会用定积分求几何问题(长、面、体)

会用定积分求物理问题(功、引力、压力)及函数平均值

二、题型与解法 A.积分计算 1. 2. 3.设,求 解: 4.

B.积分性质 5.连续, ,且,求并讨论在的连续性。 解:

6.

C.积分的应用 7.设在[0,1]连续,在(0,1)上,且,又与x=1,y=0所围面积S=2。求,且a=?时S绕x轴旋转体积最小。 解:

8.曲线,过原点作曲线的切线,求曲线、切线与x轴所围图形绕x轴旋转的表面积。

解:切线绕x轴旋转的表面积为

曲线绕x轴旋转的表面积为

总表面积为

三、补充习题(作业) 1. 2. 3.

第四讲向量代数、多元函数微分与空间解析几何

一、理论要求 1.向量代数 理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示

2.多元函数微分 理解二元函数的几何意义、连续、极限概念,闭域性质 理解偏导数、全微分概念 能熟练求偏导数、全微分 熟练掌握复合函数与隐函数求导法 3.多元微分应用 4.空间解析几何 理解多元函数极值的求法,会用Lagrange乘数法求极值 掌握曲线的切线与法平面、曲面的切平面与法线的求法 会求平面、直线方程与点线距离、点面距离

二、题型与解法

A.求偏导、全微分 1.有二阶连续偏导,满足,求

解: 2. 3.,求

B.空间几何问题 4.求上任意点的切平面与三个坐标轴的截距之和。 解:

5.曲面在点处的法线方程。

C.极值问题

三、补充习题(作业) 1. 2. 3. 6.设是由确定的函数,求的极值点与极值。

第五讲多元函数的积分

一、理论要求 1.重积分 2.曲线积分 熟悉

二、三重积分的计算方法(直角、极、柱、球)

会用重积分解决简单几何物理问题(体积、曲面面积、重心、转动惯量) 理解两类曲线积分的概念、性质、关系,掌握两类曲线积分的计算方法

熟悉Green公式,会用平面曲线积分与路径无关的条件

3.曲面积分 理解两类曲面积分的概念(质量、通量)、关系 熟悉Gauss与Stokes公式,会计算两类曲面积分

二、题型与解法 A.重积分计算 1.为平面曲线绕z轴旋转一周与z=8的围域。 解:

2.为与围域。( 3., 求

(49/20)

B.曲线、曲面积分 4.

解:令

5. ,。

解:取包含(0,0)的正向,

6.对空间x>0内任意光滑有向闭曲面S,

,且在x>0有连续一阶导数, ,求。 解:

第六讲常微分方程

一、理论要求 1.一阶方程 2.高阶方程 3.二阶线性常系数 熟练掌握可分离变量、齐次、一阶线性、伯努利方程求法 会求 (齐次) (非齐次) (非齐次)

二、题型与解法 A.微分方程求解 1.求通解。(

2.利用代换化简并求通解。()

3.设是上凸连续曲线,处曲率为,且过处切线方程为y=x+1,求及其极值。 解:

三、补充习题(作业)

1.已知函数在任意点处的增量。() 2.求的通解。() 3.求的通解。() 4.求的特解。(

第七讲无穷级数

一、理论要求 1.收敛性判别 级数敛散性质与必要条件

常数项级数、几何级数、p级数敛散条件 正项级数的比较、比值、根式判别法 交错级数判别法 2.幂级数 幂级数收敛半径、收敛区间与收敛域的求法

幂级数在收敛区间的基本性质(和函数连续、逐项微积分) Taylor与Maclaulin展开

3.Fourier级数 了解Fourier级数概念与Dirichlet收敛定理 会求的Fourier级数与正余弦级数

第八讲线性代数

一、理论要求 1.行列式 2.矩阵 会用按行(列)展开计算行列式

几种矩阵(单位、数量、对角、三角、对称、反对称、逆、伴随) 矩阵加减、数乘、乘法、转置,方阵的幂、方阵乘积的行列式 矩阵可逆的充要条件,会用伴随矩阵求逆 矩阵初等变换、初等矩阵、矩阵等价

用初等变换求矩阵的秩与逆

理解并会计算矩阵的特征值与特征向量

理解相似矩阵的概念、性质及矩阵对角化的冲要条件 掌握将矩阵化为相似对角矩阵的方法 掌握实对称矩阵的特征值与特征向量的性质

3.向量 理解n维向量、向量的线性组合与线性表示

掌握线性相关、线性无关的判别

理解并向量组的极大线性无关组和向量组的秩 了解基变换与坐标变换公式、过渡矩阵、施密特方法 了解规范正交基、正交矩阵的概念与性质

4.线性方程组 理解齐次线性方程组有非零解与非齐次线性方程组有解条件 理解齐次、非齐次线性方程组的基础解系及通解

掌握用初等行变换求解线性方程组的方法

5.二次型 二次型及其矩阵表示,合同矩阵与合同变换 二次型的标准形、规范形及惯性定理

掌握用正交变换、配方法化二次型为标准形的方法

了解二次型的对应矩阵的正定性及其判别法

第九讲概率统计初步

一、理论要求 1.随机事件与概率 了解样本空间(基本事件空间)的概念,理解随机事件的关系与运算

会计算古典型概率与几何型概率

掌握概率的加减、乘、全概率与贝叶斯公式

2.随机变量与分布 理解随机变量与分布的概念 3.二维随机变量

4.数字特征 5.大数定理 6.数理统计概念

7.参数估计

8.假设检验

第十讲总结

1.极限求解

2.导数与微分

3.一元函数积分 理解分布函数、离散型随机变量、连续型变量的概率密度

掌握0-

1、二项、超几何、泊松、均匀、正态、指数分布,会求分布函数

理解二维离散、连续型随机变量的概率分布、边缘分布和条件分布 理解随机变量的独立性及不相关概念

掌握二维均匀分布、了解二维正态分布的概率密度 会求两个随机变量简单函数的分布

理解期望、方差、标准差、矩、协方差、相关系数的概念

掌握常用分布函数的数字特征,会求随机变量的数学期望

了解切比雪夫不等式,了解切比雪夫、伯努利、辛钦大数定理 了解隶莫弗-Laplace定理与列维-林德伯格定理

理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩 了解分布、t分布、F分布的概念和性质,了解分位数的概念 了解正态分布的常用抽样分布

掌握矩估计与极大似然估计法

了解无偏性、有效性与一致性的概念,会验证估计量的无偏性 会求单个正态总体的均值和方差的置信区间

掌握假设检验的基本步骤

了解单个及两个正态总体的均值和方差的假设检验

变量替换(作对数替换),洛必达法则,其他(重要极限,微积分性质,级数,等价小量替换) 1. (几何级数) 2. (对数替换) 3. 4. 5. 6.,求

复合函数、隐函数、参数方程求导 1. 2.,求dy/dx 3.决定函数,求dy 4.已知,验证 5. ,求

1.求函数在区间上的最小值。(0) 2. 3. 4. 5. 6.

4.多元函数微分 1.,求

2.由给出,求证:

3.求在O(0,0),A(1,1),B(4,2)的梯度。 4.,求 6.证明满足 7.求内的最值。

5.多元函数积分 1.求证: 2. 3. 4.改变积分次序 5.围域。

6.常微分方程 1.求通解。 2.求通解。 3.求通解。 4.求通解。 5.求特解。 6.求特解。

《高等数学考研题型分析》

填空题:极限(指数变换,罗必达)、求导(隐函数,切法线)、不定积分、二重积分、 变上限定积分

选择题:等价小量概念,导数应用,函数性质,函数图形,多元极限

计算题:中值定理或不等式,定积分几何应用,偏导数及几何应用,常微分方程及应用

第四篇:高等数学复习要点总结

★高等数学复习要点总结 希望有参考作用★ 张宇

下面是我给一个朋友写的,大概是今年4月份写的,发给同学们做个参考:

我把高数的东西整理了一下,按照这个复习,保证可以串起来,同时别忘了把基本功打好!! 高等数学

1)洛必达法则求极限,最常用,要熟练;

2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;

3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功; 4)1的∞次方的极限是重点,多练几个题;

5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;

6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;

7)记住趋向不同,结果就大不一样的极限;

8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意lnx的定义域>0;

9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。例题:无穷大无穷小有界变量无界变量;

10)注意夹逼定理的条件很强,不要漏掉要点;

11)“见根号差,用有理化”!!! 这是思维定势,很管用;

第二章

1)导数的概念非常重要!!!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;

2) 导数公式倒背如流的要求不算过分吧 呵呵;

3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;

4)由于有些函数求导会出现x在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中某个因子在某点不可导,但乘积在该点也可能可导;

5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);

6)函数性态部分是基本功,一定要耐心的按照函数作图的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;

7) 三个式子的不等事,即A 8)能用微分中值定理的,一般用积分中值定理也可以搞定,你也试试吧,体会一下数学思想和定理的联系,是有好处的;

9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);

第三章

1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;

2) 给你说几个准公式: ; ;,作题时相当有用的哦,关键是反过来用你要有意识;

3)这里特别提醒注意积分限函数,一句话:“积分限x在积分过程中是常量,在积分完毕后是变量”,这是核心的东西,抓住它就不会迷失方向;

4)旋转体的体积看来是一定要考了,当然是重点,关键:一个是公式记清,应该是绕x轴还是y轴都要搞的清清楚楚,另一个就是体会移图和移轴的不同,这里要用到积分的计算,是体现基本功的地方;

5)积分在经济中的应用也是重重之重,记清概念,把握公式,清醒审题,仔细答题,搞定;

6) 广义积分关键是计算,不是证明!!!记住重点;

7)广义积分中积分函数是加减函数时不能将加减函数拆开分别积分,应将加减函数整体积分。积分上下限代入积分函数若无意义,则理解为取极限,你做做这个题就明白了:I= .

作者: ypcworld2005-10-12 12:47回复此发言

------------------

2 高等数学复习要点总结

8)其实广义积分和定积分的概念很容易搞清,一句话:定积分存在有两个必要条件,即积分区间有限,被积函数有界。破坏了积分区间有限,引出无穷区间上的广义积分,破坏了被积函数有界,引出无界函数的广义积分。

9)把握住上面的这句话,就可以不晕了,看出来了吧,基本概念非常清楚的人才能学好;

10)定积分是一个数!!!这是一个经常命题的地方,好记吗?那就记住吧;

11)不定积分去根号时不用考虑绝对值,而定积分去根号时则要考虑绝对值!!!这个好错,一定要记住,会的可不要错哦,不然就惨喽;

12) 经验一个:三角有理函数式的积分,若有理函数式分母为,则可以通过分子分母同时乘上一个式子,使分母变为积的形式,另外,

还可以直接变形为积的形式来求解

13)被积函数只要是可以看成两个不同类函数的积,就要优先考虑分步积分法,经验哦:);

14)这里提一下,对于选择题中的抽象函数问题,我个人的认识是:将复杂的形式化成简单的形式,比如对抽象复合函数做变量替换,与其说是一种技巧方法,不如说是一条普遍的规律,任何事物都有由繁到简的趋势,这是可以上升到哲学层面的认识问题,(哈哈,这是英语学多了,not so much„as„用了一下);

15)一个经验:如果在一个函数或者积分等中的函数,当它是同一个x的函数时,比如f(x)g(x)的形式,可以对其中的任何一个进行放大缩小或者变形,而另一个可以不动,这样的处理往往是需要的,很有用,当你作不下去时,想想我说的这个

你自己做题和总结时,也应该有意识的做这样一些归纳。自己的东西才最管用的。

三角函数公式大全

发表日期:2007-1-28 13:15:39 文章分类:技术八卦来源:转载自从数学论坛上找到了这个列表,非常的全面,但是网页排版稍微有点不方便,故转载于此:

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tgA=tanA=sinA/cosA

两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))

tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))

三角函数和差化积公式

sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)

sin(a)-sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)

cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

二倍角公式

sin(2a)=2sin(a)cos(a)

cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)

半角公式

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

双曲函数

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)

第五篇:602高等数学复习提纲

一、课程考试内容

1、函数与极限

数列的极限,函数的极限,极限存在准则,两个重要极限,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。

2、导数与微分

导数概念,函数的四则运算求导法则,反函数的导数,复合函数求导法则,高阶导数,隐函数的导数,参数方程所确定的函数的导数,函数的微分。

3、中值定理与导数应用

四大中值定理,洛必达法则,函数单调性的判别,函数的极值和最值,曲线的凹凸与拐点。

4、不定积分

不定积分的概念与性质,换元积分法,分部积分法,几种特殊类型函数的积分。

5、定积分及其应用

定积分的概念,定积分的性质和积分中值定理,微积分基本公式,定积分的换元法, 定积分的分部积分法,广义积分;定积分的元素法,平面图形的面积和体积,平面曲线的弧长,功、水压力和引力。

6、空间解析几何与向量代数

空间直角坐标系,向量及其加减法,向量与数的乘法,数量积和向量积;曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面。

7、多元函数微分法及其应用

多元函数的基本概念,偏导数,全微分及其应用,多元复合函数的求导法则,隐函数的求导;微分法在几何上的应用,方向导数与梯度,多元函数的极值及其求法。

8、重积分

二重积分的概念与性质,二重积分的计算方法;三重积分的概念及其计算法,重积分的应用。

9、曲线积分与曲面积分

对弧长的曲线积分, 对坐标的曲线积分, 格林公式,平面上曲线积分与路径无关的条件, 二元函数的全微分求积;对面积的曲面积分, 对坐标的曲面积分,高斯公式,通量与散度, 斯托克斯公式,环流量与旋度。

10、无穷级数

常数项级数的概念和性质, 常数项级数的审敛法; 幂级数, 函数展开成幂级数, 傅里叶级数, 正弦级数和余弦级数, 周期为2l的周期函数的傅里叶级数。

11、微分方程

微分方程的基本概念,可分离变量的微分方程, 齐次方程,一阶线性微分方程, 全微分方程;可降阶的高阶微分方程, 高阶线性微分方程,二阶常系数线性微分方程。

二、考试形式与试题结构

1、试卷分值:150分

2、考试时间:180分钟

3、考试形式:闭卷

4、题型结构:填空题,计算题,证明题。

三、参考书目

1、同济大学数学教研室 《高等数学》(第五版)高等教育出版社

2、龚冬保 《高等数学典型题解法、技巧、注释》西安交通大学出版社

上一篇:广告ae专业实习报告下一篇:建党91周年活动方案