氧化锌避雷器工作原理

2023-04-28

第一篇:氧化锌避雷器工作原理

串联间隙氧化锌避雷器的应用与试验

摘 要:文中通过分析碳化硅避雷器与无间隙氧化锌避雷器在电力系统应用的不足比较,阐述了串联间隙氧化锌避雷器的优越性。并针对缺乏串联间隙氧化锌避雷器试验项目的情况,简单分析了串联间隙氧化锌避雷器在应用中的试验问题。

关键词:避雷器 比较 间隙 试验

1. 避雷器应用的比较

目前在电力系统中运行的避雷器主要有两种类型。一类是以串联火花间隙与碳化硅阀片为主要元件的传统阀型避雷器;另一类是以氧化锌电阻片为主要元件的金属氧化物避雷器。其主要元件的伏安特性如下图一二所示。

从图一可以看到,对于单个间隙而言当很大的雷电流流过非线性电阻时,非线性电阻将呈现很大的电导率,使避雷器上出现的残压U0不致过高。当雷电流过去后,加在阀片上的电压是系统电压Ux时,非线性电阻的电导率突然下降而将工频续流限制到很小的数值。事实上阀型避雷器的间隙由数个或数十个单间隙组成而形成的一个电容链。由于电极片对地和对高压端盖的部分电容的影响,电压在各间隙上分布是不均匀的。严重的是这种不均匀非常的不稳定,它受瓷套表面情况影响很大,使得避雷器的工频放电电压很不稳定。虽然可以通过在每个间隙或间隙组上并联一个分路电阻来解决,但分路电阻中将长期有电流流过(泄漏电流);且经长期运行非线性并联电阻会逐渐老化,表现为阻值增加,电导电流下降,影响避雷器性能。

从图二可以看到氧化锌电阻片在击穿区域具有较好的非线性,使得氧化锌避雷器在正常工作电压下电阻值很大,泄漏电流很小;在过电压情况下其电阻值又很小,过电压能量释放即恢复到高阻值状态,无工频续流,所以无间隙氧化锌避雷器得到了广泛应用。

但是,作为过电压保护电器,针对其所释放的能量,其自身仍存在过电压防护问题。对于能量有限的过电压(如雷电过电压和操作过电压),避雷器泄流能起限压保护作用。对能量是无限(有补充能源)的过电压,如暂态过电压(工频过电压和谐振过电压的总称),其频率或为工频或为工频的整数倍或分数倍,与工频电源频率总有合拍的时候,如因某些原因而激发暂态过电压,工频电源能自动补充过电压能量,即使避雷器泄流过电压幅值不衰减或只弱衰减,暂态过电压如果进入避雷器保护动作区,势必长时反复动作直至热崩溃,避雷器损坏爆炸,因此暂态过电压对避雷器有致命危害。如果已将全部暂态过电压限定在保护死区内不受其危害的避雷器,称之为暂态过电压承受能力强,反之称暂态过电压承受能力差。碳化硅避雷器暂态过电压承受能力强,但由于运行中动作特性稳定性差,常因冲击放电电压(保护动作区起始电压)值下降,仍可能遭受暂态过电压危害,动作负载重寿命短。无间隙氧化锌避雷器因其拐点电压(可近似地把参考电压当作拐点电压)偏低,仅2.21~2.56Uxg(最大相电压),而有些暂态过电压最大值达2.5~3.5Uxg,故有暂态过电压承受能差,损坏爆炸率高和寿命短等缺点。

对暂态过电压危害有效防护办法是加结构性能稳定的串联间隙将全部暂态过电压限定在保护死区内,使避雷器免受其危害。串联间隙氧化锌避雷器有此独具优点。结构上串联间隙氧化锌避雷器既有间隙又用氧化锌阀片,其间隙结构不同于碳化硅避雷器。其间隙数量少,当过电压达到冲击放电电压时,间隙无时延击穿,同时因隙距大动作特性稳定,可避免碳化硅避雷器间隙带来的缺点。串联间隙氧化锌避雷器的间隙已将全部暂态过电压限定在保护死区内免受其危害,故又可避免无间隙氧化锌避雷器因拐点电压偏低带来的缺点。

2. 串联间隙氧化锌避雷器试验问题

随着现代防雷技术的发展,在小电流接地系统中交流串联间隙氧化锌避雷器正逐步在变压器开关、母线、电动机、发电机、线路、电容器组等电气设备得到应用。作为电气设备本身,同样存在着阀片性能、参数设计、绝缘材质、装配不良、密封缺陷等问题;掌握其性能状况亦显得十分必要。对于中性点非直接接地的3—63KV电力系统中的氧化锌避雷器,我国电力行业标准DL/T 596—1996《电力设备预防性试验规程》(以下简称《规程》)明确规定其试验项目为:1.绝缘电阻;2.直流1mA下的电压U1mA及75%U1mA下的电流。众所周知,该规程关于氧化锌避雷器的试验项目是源于《交流无间隙金属氧化物避雷器》(GB11032—89)的规定要求,是针对交流无间隙氧化锌避雷器的。《规程》规定的试验项目是否适用带串联间隙的氧化锌避雷器值得商榷。

《规程》规定碳化硅避雷器FS系列的试验项目为1.绝缘电阻;2.工频放电。FCD系列试验项目为1.绝缘电阻;2.电导电流。结合无间隙氧化锌避雷器和有间隙碳化硅避雷器因结构不同而在试验上的不同,我们认为目前在小电流接地系统中广泛使用的带串联间隙的氧化锌避雷器试验项目应为1.绝缘电阻;2.工频放电。对于一些为了解决电压分布问题,而在间隙两侧并联电阻的串联间隙氧化锌避雷器还应做电导电流。

由于采用ZnO阀片,其绝缘电阻测量同无间隙氧化锌避雷器。测量值决定于阀片外和内部绝缘部件和瓷套。测量使用2500V兆欧表,35kV及以下避雷器绝缘电阻值不低于1000MΩ;35kV以上避雷器不低于25000MΩ。

由于存在间隙,直流1mA下的电压U1mA及75%U1mA下的电流试验项目是不适合有间隙氧化锌避雷器的。而工频放电试验是检验间隙避雷器电气性能的一个基本项目。虽然由于氧化锌电阻片具有在低电压下良好的高阻和限流的特点,可不考虑放电间隙的切断比;但是,其工频放电电压同样不能过高和过低。过高的工频放电电压就会使冲击放电电压升高,从而影响避雷器的性能。过低的工频放电电压就可能造成在被保护设备的绝缘能耐受而不需要保护的操作过电压下动作。所以,工频放电电压应根据避雷器保护对象有相应的放电电压范围。目前,由于《规程》的相对滞后,很难在有关规程中查到相应的试验标准。所以,预防性试验应参照出厂试验报告。

现提供目前保护高压电动机常用的TBP系列A、B、C三型串联间隙氧化锌避雷器工频放电电压范围,供参考。

工频放电电压测试数值标准 额定电压(kv)

型号 3.156.310.5注意

A型4.9--7.29.8--14.416.3--23.7

1、此标准为测3次的平均值;

2、所测值为出厂值90%--120%视为合格;

3、每次升压应均匀,时间控制在3.5--7S;

4、每次间隔不小于10S;

5、除TBP内部间隙放电,其它任何部位闪络视为不合格。

6、接线同FS工频放电试验

B型6.6--9.713.2--19.321.9--32.0

C型7--10.213--20.123.1--33.6

电导电流试验是检查避雷器内部是否受潮,并联电阻有无断裂、老化的一个重要指标。其试验接线与FCD系列试验接线一致;要求电导电流不大于50µA。

3. 结束语

串联间隙氧化锌避雷器使用了间隙和ZnO阀片,两者互为保护。间隙使电荷率为零,解决了ZnO阀片老化问题;间隙在续流时易损坏,ZnO阀片优越的性能使其无续流。保护设备的绝缘免受雷电和操作等过电压的损坏起到良好的作用。优越性的逐步体现,使得串联间隙氧化锌避雷器将被越来越多的使用;其试验标准也将逐步完善和规范。

参考文献:

1、电气试验技能培训教材 中国电力出版社 1998.3

2、电力设备预防性试验规程(DL/T596-1996) 原电力工业部

第二篇:变压器侧如何正确加装氧化锌避雷器

在农村电气建设过程中发现有些配电台区的接地是将变压器和氧化锌避雷器分开接地,常常将氧化锌避雷器的接地线直接接地,这样一来,氧化锌避雷器,变压器中性点和变压器外壳没有连一起。正确的做法是采用氧化锌避雷器接地线与变压器低压侧中性点以及变压器外壳连接在一起的接地方式方法。这样在当雷电入侵变压器时,高压绕组对变压器外壳等仅是氧化锌避雷器的残压,变压器压绕组与低压绕组,高压绕组对变外壳的绝缘才不会被击穿。

氧化锌避雷器应尽靠近变压器安装,应昼缩短接地引下线。但有人认为氧化锌避雷器安装位置远近无所谓,不会影响运行安全,这种想法是不正确的。如果氧化锌避雷器安装位置距配电变压器过远,将造成成氧化锌避雷器引下线过长,电感较大。受到雷击时,雷电流在接地引下线上产生的压降和氧化锌避雷器残压一作用在配电变压器上,将配电变压器绝缘击穿,导致配电变压器损坏。如果氧化锌避雷器安装位置距配电变压器过近,一则是氧化锌避雷器爆炸损坏变压器瓷套管,二则是不能保证检修时满足《电业安全工作规程》中规定的安全距离,危及人身安全。一般认为氧化锌避雷器的安装位置距变压器端盖应大于0.5米,小于0.4米,距熔丝应大于0.7米

目前大多人只重视在配变的高压侧装设氧化锌避雷器,而忽视低压侧也需装设氧化锌避雷器的问题,尤其是在多雷地区,更应该在低压侧装设氧化锌避雷器向大地泄放很大的雷电流时,在接地装置上产生电压阡,此电压经配变外壳同进作用在低压侧绕组的中性点,而绕组通过低压线路的波阻抗接地。因此,低压侧绕组中流过雷电流,它使高压侧绕组按变比感应出很高的电势,即“反变换”电势。电势力与高压侧绕组的雷电侵入波电压叠加,会使高压侧绕组中性点电位变得很高击穿中性点附近的绝缘。如果低压侧装了氧化锌避雷器,当高压侧氧化锌避雷器放电,接地装置上电位升高到一定值时,则低压侧氧化锌避雷器就会放电,使低压侧绕组出线端电位与其中性点及外壳的电位减小,就能消除或减小“反变换”电势。

第三篇:避雷器元件工作原理及设计原理

作者: 来源:

时间:2010-01-27 避雷器元件工作原理及设计原理

电涌保护器(Surge Protection Devices,简称SPD),也称浪涌保护器、过电压保护器,俗称避雷器、防雷器。

针对现在市场上出现了各种各样的防雷器,质量参差不齐,有一些甚至闻所未问(如:不用接地的避雷器,到现在为止,都弄不明白它的工作原理),因此,通过介绍避雷器的工作原理及组成,对客户甄别真假、优劣,有所帮助。

防雷器元件从响应特性看,有软硬两种。属于硬响应特性的放电元件有火花间隙(基于斩弧技术的角型火花隙和同轴放电火花隙)和气体放电管,属于软响应特性的放电元件有金属氧化物压敏电阻和瞬态抑制二极管。这些元件的区别在于放电能力、响应特性和残压,避雷器就是利用它们不同的优缺点,扬长避短,组合成各种避雷器,保护电路。推荐迪舰防雷器品质有保障安全系数高

一、火花间隙(Arc chopping)

1、放电间隙:原理是两个如牛角现状的电极,距离很短,用绝缘材料分开,当两个电极间的电场强度达到击穿强度时,电极之间形成电流通路。当雷电波来到的时候首先在间隙处击穿,使间隙的空气电离,形成短路,雷电流通过间隙流入大地,而此时间隙两端的电压很低,从而达到保护线路的目的。电场强度低于击穿间隙时,放电间隙型避雷器又恢复绝缘状态。常用于高压线路的避雷防护中。在低压系统,常用于电源的前级保护。

火花间隙型避雷器产品的优劣,在于制成电极的材料、间隙距离及绝缘材料。

优点:具有很强放电能力、通流量大,10/350μs脉冲波形能够疏导50KA的脉冲电流,用于8/20μs脉冲电流,可以大于100KA,很高的绝缘电阻以及很小的寄生电容,漏电流小。对正常工作的设备不会带来任何有害影响。 缺点:残压高(2.5~3.5KV),反应时间长(≦100ns),动作电压精度较低,有工频续流,因此在保护电路中应串联一个熔断器,使得工频续流迅速被切断。

注:由于两只放电管分别装在一个回路的两根导线上,有时会不同时放电,使两导线之间出现电位差,为了使两根导线上的放电管能接近统一时间放电,减少两线之间的电位差,又研制了三级放电管。可以看作是由两只二级放电管合并在一起构成的。三级放电管中间的一级作为公共地线,另两级分别接在回路的两条导线上。

2、气体放电管(Gas discharge tube,GDT):是一种陶瓷或玻璃封装,管内再充以一定压力的惰性气体(如氩气),开关型的保护元件,有二电极和三电极两种结构。当电场强度达到击穿惰性气体强度时,就引起间隙放电,从而限制极间的电压。8/20μs脉冲电流能够疏导10KA。放电电压不稳定,当电压大于12V、电流电压100mA时,会产生后续电流。通常用于测量、控制、调节技术电路和电子数据处理传输电路中。

二、金属氧化物压敏电阻(Metal oxide varistor,MOV): 以氧化锌为主要成分的金属氧化物半导体非线性电阻,当加在电阻两端的电压小于压敏电压时,压敏电阻呈高阻状态,如果并联在电路上,该阀片呈断路状态;当加在压敏电阻两端的电压大于压敏电压时,压敏电阻就会击穿,呈现低阻值,甚至接近短路状态。压敏电阻这种被击穿状态是可以恢复的,当高于压敏电压的电压被撤销以后,它又恢复高阻状态。当电力线被雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电力线上的类电压被钳制在安全范围内。

氧化锌压敏电阻避雷器,现在市场上流通很多,我国在20世纪80年代末才大批生产,被认为目前最新型、技术最先进,会做专题详细介绍。现在我国的输电线路的避雷器,都采用氧化锌避雷器。

优点:开关电压范围宽:6V~1.5KV,反应速度快(25ns),残压低(可以达到终端设备的安全工作电压),通流量大(2KA/cm2),无续流,寿命长。 缺点:容易老化,动作几次后,漏电流会增大,从而导致压敏电阻过热,最终导致老化失效。

电容较大,许多情况下不在高频、超高频系统中使用。该电容又与导线电容构成一个低通。该低通会造成信号的严重衰减。但在频率低于30KHZ时,这种衰减可以忽略。

三、瞬态抑制式二极管(Transient voltage suppressor,TVS):

1、二极放电管:有两种形式:一是齐纳型(为单向雪崩击穿),二是双向的硅压敏电阻。性能类似开关二极管等。在规定的反向电压作用下,两端电压大于门限电压时,其工作阻抗能立即降至很低的水平以允许大电流通过,并将两端电压钳制在很低的水平,从而有效地保护末端电子产品中的精密元件避免损坏。双向TVS可在正反两个方向吸收瞬时大脉动功率,并把电压钳制在预定水平。适用于交流电路。

优点:动作时间极快,达到皮秒级。限制电压低,击穿电压低,应用于各种电子领域。

缺点:电流负荷量小,电容相当高,一般在20pF以下,现在的陶瓷放电管能够做到3~5pF。

电子信息系统所需的浪涌保护系统一般采用两级或三级组成。采用气体放电管、压敏电阻和抑制二极管,并利用各种浪涌抑制器的特点,实现可靠保护。气体放电管一般放在线路输入端作为一级浪涌保护器件,承受大的浪涌电流,属于泄流型器件。二级保护器件采用压敏电阻,可在极短时间内(ns)将浪涌电压限制在较低的水平。对于高度灵敏的电子电路,可采用抑制二极管作为三级保护。在更短的时间内将浪涌电压限制在末端电子设备的绝缘水平以内。如图,当雷电等浪涌到来时,抑制二极管首先导通,把瞬间过电压精确地控制在一定的水平,如果浪涌电流较大,则压敏电阻启动并泄放一定的浪涌电流,这时压敏电阻两端的电压会有所升高,直至推动前级气体放电管放电,把大电流泄放到地。当三种器件在线路中的距离较远时,导通顺序会从气体放电管开始,依次导通。 避雷器的工作,是从反应时间最快、设备的最末端开始的,然后逐级往前端启动的。 推荐迪舰防雷器品质有保障安全系数高

中,单纯用气体放电管保护后端的设备会出现下列问题:导通时间过长,残压过大,有可能超过后端设备的耐压水平。放电后,会产生工频续流。为避免上述问题,采用另外一种电路(图三)。为了解决产生工频续流的问题,同时也避免压敏电阻因漏电流过大而发热自爆或老化,我们在气体放电管上串联一个压敏电阻,这样就可避免产生工频续流,又可以防止压敏电阻因漏电流而自爆、老化。但新的问题又产生了,这样避雷器的动作时间为气体放电管的导通时间和压敏电阻导通时间的总和。假设气体放电管的导通时间为100ns,压敏电阻的导通时间为25ns,则它们总的反应时间为125ns。为了减小反应时间,在电路中并入一个压敏电阻,这样可使总的反应时间为25ns。:当过电压出现时,抑制二极管作为动作最快的元件首先动作,线路设计为,在抑制二极管可能毁坏之前,放电电流即随着幅值的上升转换到前置的放电路径上,即充气式放电路上。

Us+△u≥Ug

Us:抑制二极管上的电压

△u:去耦感应线圈上的电压

Ug:气体放电管的动作电压

如果放电电流小于该值,则充气放电管不动作。采用这种线路不仅可以在低保护水平的条件下利用放电器动作迅速的优点,同时还可以达到很高的放电电容。这样就可以消除抑制二极管过载一级熔断器在出现电源续流时频繁切断电路的缺点。

频率较高的线路也可以采用欧姆式电阻作为去耦元件,与低电容桥接线路共同使用。

2、三极放电管:在两根的导线上,安装两个二极放电管,会出现电位差,因此就有三极放电管,多了一极做公共接地,可以减少时间差(0.15~0.2μs),及由此产生的横向雷电压幅值。 市场上普通电源避雷器器件一般采用压敏电阻,用于一级、二级和三级电源。这种组合方式在距离大于5米时,导通时间从第一级开始逐级向后导通。

若第一级采用气体放电管,二级和三级采用压敏电阻,则必须满足第一级与第二级满足大于十米的距离,第二级与第三级满足大于5米的距离,这样才能保证前一级先动作。否则可能导致第一级不动作的现象,而二级和三级避雷器又没有那么大的通流量,导致避雷器无法切实保护设备。这点在工程设计中一定要引起注意。

四、避雷器的种类: 避雷器的种类基本上分三大类型:一是电源避雷器(安装时主要是并联方式,也串联方式),按电压的不同,分22V的单相电源避雷器和380V的三相电源避雷器。二是信号避雷器,多数用于计算机网络、通信系统上,安装的方式是串联。三是天馈线避雷器,是它适用于有发射机天线系统和接收无线电信号设备系统,连接方式也是串联。 推荐迪舰防雷器品质有保障安全系数高

第四篇:GY-BL三通道氧化锌避雷器测试仪使用说明书

TE1013-MOA 三通道氧化锌避雷器测试仪

使用说明书

- 1

目录

一、安全提示„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5 1.1、电源方面„„„„„„„„„„„„„„„„„„„„„„„„„„„5 1.

2、接线方面„„„„„„„„„„„„„„„„„„„„„„„„„„„5 1.3、操作方面„„„„„„„„„„„„„„„„„„„„„„„„„„„5 1.

4、测试准确度„„„„„„„„„„„„„„„„„„„„„„„„„„5

二、开箱检查„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6

三、布局说明„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 3.1、仪器布局„„„„„„„„„„„„„„„„„„„„„„„„„„„6 3.

2、各部件说明„„„„„„„„„„„„„„„„„„„„„„„„„„6 3.3、按键说明„„„„„„„„„„„„„„„„„„„„„„„„„„„7

四、测试前准备„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8

五、测试流程„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8

详细说明

一、仪器介绍„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 1.1、用途„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 1.

2、性能特性„„„„„„„„„„„„„„„„„„„„„„„„„„„10

二、技术参数„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10 2.1、名称和分类„„„„„„„„„„„„„„„„„„„„„„„„„„10 2.

2、主机结构型式与尺寸„„„„„„„„„„„„„„„„„„„„„„10 2.3、使用电源„„„„„„„„„„„„„„„„„„„„„„„„„„„11 2.

4、使用环境要求„„„„„„„„„„„„„„„„„„„„„„„„„11 2.5、安全性能„„„„„„„„„„„„„„„„„„„„„„„„„„„11 2.

6、测量精度„„„„„„„„„„„„„„„„„„„„„„„„„„„11

- 3

第一部分:快速使用 一.安全提示

1.1电源方面

使用AC220(1±10%)V,50(1±2%)Hz电源,外接电源电压偏差可能引起测量误差、仪器工作不正常或仪器损坏。

1.2接线方面

(1)为了仪器及操作人员的安全,仪器必须可靠接地。 (2)试验准备时最先接好地线,工作完毕时,最后拆除接地线。

(3)当在线测试取电流信号时,必须戴绝缘手套,并且手臂不能抬得过高,防止高压对人体的伤害。

(4)在从PT处取参考电压时,应小心接地,以避免PT二次侧试验电压短路。

(5)当被试品低压侧无计数器时,请在地线中串入一个100的电阻,然后 在100电阻两端取电流信号,以免在仪器上产生高压。 (6)在通电情况下,任何人不得插拔任何接线。 (7)当在室外时,请勿将仪器长时间置于太阳下曝晒。

(8)请勿随意更换测试线。 (9)使用正确的保险管。

(10)当有可疑的问题出现时,请立即停止操作,请本公司技术人员检查。

1.3操作方面

(1)电缆线航插插头应锁紧,鳄鱼夹连接处应保证接触良好。

(2)接线完毕后,应检查一遍,看看是否有接线错误,接插件是否接触良好。 (3)测试过程中,如有打火,以及开机时无任何显示等异常现象,应立即关闭电源并重新检查接线。

1.4测试准确度方面

应取与被检测的避雷器母线电压同相位的低压信号(一般取PT信号)作为电压参考信号,三相测试时取B相的低压信号,防止相间干扰,否则无法准确测量泄漏电流的有功及无

- 5

3.2各部件说明

(1)液晶显示器:以中文方式显示菜单及测试结果。 (2)触摸按键:详见3.3。

(3)打印机:前换纸型中文打印机,用于测试数据的记录。 (4)电源开关:闭合该开关,仪器电源接通. (5)接地端子:为保障操作者的安全及仪器正常工作,使用前应将该接线端子可靠接地。

(6)电源插座:接220V市电,该插座内含保险管盒,本仪器 应安装1A保险管。

(7)电流输入插座:泄露电流输入,一般接计数器两端。

(8)电压输入插座:参考电压输入(与避雷器两端电压同相位的低压信号),一般取PT信号。

(9)通讯接口:网口,U盘,在线编程,扩展等通讯接口。

3.3按键说明

仪器有四个触摸按键,每个按键对应正上方屏幕显示的相应功能菜单,按下后,该功能生效。

如图1.3.3,按下测试功能按键后,测试功能生效。功能按键介绍请见第二部分详细介绍相关章节。

- 7

五.测试流程:

(1)按图1.5.1接好测试接线。

(2)合上电源开关,显示主菜单后(见图1.3.3),按测试功能按键,进入测试参数设置界面(见图1.5.2),按选择和修改按键完成设置,再次按测试开始测试。 (3)几秒钟后,测试完毕,显示如图1.5.3所示结果

第二部分:详细说明

- 9

(5)数据记录:仪器能记录多组测试数据,以测试日期、时间的形式存储,日后可调用查看或打印,有利于历史数据的纵向比较和历史台帐的建立。

(6)携带方便:便携式高度,体积、重量只有同类产品的30%~70%,携带十分方便。

二、技术参数:

2.1名称

(1)名称:TE1013三通道氧化锌避雷器测试仪。

(2)环境组别:属GB6587.1-86《电子测量仪器环境实验总纲》中的Ⅲ组仪器(即可在室外环境使用)。

2.2主机结构型式与尺寸

(1)结构型式:一体化便携式、铝合金机箱 (2)外形尺寸:长350mm*宽300mm*高170mm

2.3使用电源

本仪器使用220(1±10%)V,50(1±2%)Hz电源。

2.4使用环境要求

环境温度:-10℃~40℃,相对湿度:≤80% 2.5安全性能

(1)绝缘电阻:>2MΩ,泄漏电流:<1.000mA (2)介电强度:电源连线对机壳能承受1500V(50Hz有效值)1分钟耐压

2.6测量精度

本仪器的电流精度等级为±(1%×读数+0.1%×量程)。

2.7相角补偿范围

0.000360.0

2.8测试项目及范围

- 11

由32位单片机运用计算机数字化实时采集方法,对数以万计的采样数据按电工学原理处理后进行矢量运算,通过测量电压信号幅值,根据电压比例关系,可推算出母线电压值,通过测量电流信号幅值可计算出泄漏全电流,根据两者相位关系,便可计算出电流的阻性分量、容性分量等关键数据。

四、软件操作说明:

4.1测试

测试页面,如图2.4.1所示

在此页面,按“选择”功能按键,用来移动光标,选择要修改的项目。 按“修改”功能键,对测试模式、电压比例进行修改。 按“测试”功能键,直接进行测试。 按“返回”功能键,返回上一页面

- 13

4.1.2三相测试

测试模式选择三相测试后,再次按“测试”键,仪器将进入三相测试数据页面(图2.4.4)。

三相测试进入数据页面后,一般还要先进行相位校正,按“相位校正”按键,进入页面(图2.4.5)。

在此页面,可改变相位校正角,按“修改”键,进入到输入数值页面,直接输入相位校正角度。通过补相位校正角度,使得φCA为120度。(所输入相位校正角不可太大,否则将提示报错。)

通过按“”和“”按键改变数 值,按“”键切换,按“”按键确 定(图2.4.6)。

相位校正角确定后,仪器页面会自动 返回到测试数据页面,按“翻页”键, 显示更多测试数据(图2.4.7)。

其它操作页面与单相测试页面一样。

- 15

在查看数据页面,可以对数据进行打印或删除。按“打印”功能按键,打印数据;按“删除”功能按键删除该数据。按“”功能按键,仪器返回读取数据菜单。

4.4数据打印

在测试结果页面按“打印”按键,仪器将自动打印本次测试数据。

4.5使用输入法

在“数据存储”页面,按“编号”或“人员”功能按键后,进入“输入法”页面(图2.4.10):

在输入法页面可以输入汉字、大小写字母、数符、及常用词组。此处以输入汉字“特试特”为例讲解输入法页面:

按“”键光标移动到“退格”功能,退格功能可以对字符候选区的字

”键,光标移动到保存,按“

”键选择“汉字”功符进行删除;再按“能,此时按“”键界面切换至汉字功能页面(进入输入法页面时,系统默认

”为汉字功能页面,当需要输入其它字符时,可用此方法进行功能切换),按“及“ ”键选择“t”,然后按“

”键,进入声母

- 17

4.6时钟设置

在设置菜单中,选择“时钟设置”将进入时钟设置页面(图2.4.12)。

按“返回。 ”键选择,按“”“”键可以对时间进行修改,按“”键确认4.7数据库管理

在设置菜单中,选择“数据管理”将进入输入验证页面(图2.4.13)。 首先要输入密码,出厂时默认为“1234”,按“可以对数字进行修改,按“

”键确认进入。

”键选择,按“

”“

”键输入密码进入数据管理页面后,通过““”键返回上一级菜单。

”“”键选择,按“”确认,按4.8帮助

- 19

按“测试图例”功能按键,仪器进入测试图例页面;此页面主要显示仪器使用时的一部份接线图。用户在使用仪器时,可参考测试图例进行接线。使用“翻阅内容,使用“”菜单返回“帮助”页面。

”、“

”功能按键按“ ”功能按键,仪器返回主菜单页面。

五、硬件操作说明

5.1更换打印纸

本仪器选用前换纸型打印机,不需拆机就可换纸,使用十分方便。 (1)按下弹出按钮,打开打印机前盖板。 (2)取出剩余打印纸或纸轴。

(3)装上打印纸,请将打印纸的光面朝弹出按钮方向,并用打印机光感头压住打印纸,盖上打印机前盖板即可。

5.2更换保险管

在电源插座下方有一个保险管盒,用平口起子将该保险管盒往上拉出即可更换保险管。本仪器使用的保险管规格为1A。

- 21

七.故障排除:

1.开机无显示

1)供电电源故障(电压,频率). 2)电源线故障(断路或短路,插座接触不良等) 3)保险管烧坏

2.测试中电压或电流通道无测试值或测试值明显不对

1)测试线接错或故障。 2)测试航插未接好或接触不良。 3)外界存在强大的干扰信号。 4)测试时间过长。

3.打印机无法打印

1)打印纸装反(热敏纸只能在一面打印)

- 23

二、校正的原理

为了便于分析,设A,C相的交流小电流特性接近,由于B相对A、C相氧化锌避雷器的作用是对称的,使A、C相氧化锌避雷器阻性电流的相位差大于实际值,设偏差为2φ,A、C相各偏移φ,把校正角输入主机,仪器就能判断出干扰信号,从而准确测量出A、C相氧化锌避雷器阻性电流。

三、校正角的确定

本仪器自动测试φCA及φ的角度值,如φCA不为120度,可通过补偿φ角,使得φCA为120度。可使用软件自动计算值,也可由用户手动输入相位补偿角。

一、氧化锌避雷器运行中的主要问题

1、氧化锌避雷器由于取消了串联间隙,长期承受系统电压,流过电流。电流中的有功分量阀片发热,引伏安特性的变化,长期作用的结果会导致阀片老化,甚至热击穿。

2、氧化锌避雷器受到冲击电压的使用,阀片也会在冲击电压能量的作用下发生老化。

3、氧化锌避雷器内部受潮或绝缘性能不良,会使工频电流增加,功耗加剧,严重时会导致内部放电。

4、氧化锌避雷器受到雨、雪、凝露或灰尘的污染,由于内外电分布不同而使内部阀片与外部瓷套之间产生较电位差,导致径向放电现象发生。

二、本仪器所要完成的任务

判断氧化锌避雷器阀片是否发生老化或受潮,通常观察正常运行流过氧化锌阀片的阻泄漏电流的变化,即观察阻性是否增大作为判断依据。

- 25

第五篇:避雷器SPD工作原理和结构

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:

1.按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

2.按用途分:

(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

二、SPD的基本元器件及其工作原理:

1.放电间隙(又称保护间隙):

它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。

2.气体放电管:

它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频耐受电流In;冲击耐受电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)

气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)

在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效

3.压敏电阻:

它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。

压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。

SPD工作原理和结构

压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)

最小参考电压:Ulma≥(1.8~2)Uac (直流条件下使用)

Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)

压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。

4.抑制二极管:

抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7。

抑制二极管的技术参数主要有

(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10~11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。扼流线圈使用在平衡线路中能有效地抑制共模干扰信号(如雷电干扰),而对线路正常传输的差模信号无影响。 这种扼流线圈在制作时应满足以下要求:

(1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

(2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

(3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

(4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

6. 1/4波长短路器

1/4波长短路器是根据雷电波的频谱分析和天馈线的驻波理论所制作的微波信号电涌保护器,这种保护器中的金属短路棒长度是根据工作信号频率(如900MHZ或1800MHZ)的1/4波长的大小来确定的。此并联的短路棒长度对于该工作信号频率来说,其阻抗无穷大,相当于开路,不影响该信号的传输,但对于雷电波来说,由于雷电能量主要分布在n+KHZ以下,此短路棒对于雷电波阻抗很小,相当于短路,雷电能量级被泄放入地。

由于1/4波长短路棒的直径一般为几毫米,因此耐冲击电流性能好,可达到30KA(8/20μs)以上,而且残压很小,此残压主要是由短路棒的自身电感所引起的,其不足之处是工频带较窄,带宽约为2%~20%左右,另一个缺点是不能对天馈设施加直流偏置,使某些应用受到限制。

三、SPD的基本电路

电涌保护器的电路根据不同需要,有不同的形式,其基本元器件就是上面介绍的几种,一个技术精通的防雷产品研究工作者,可设计出五花八门的电路,好似一盒积木可搭出不同的结构图案。研制出既有效又性能价格比好的产品,是防雷工作者的重任 发布日期:2011-3-14 文章作者:雷晟转载 查看次数:1705

简 介: 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

关键字:电涌保护器 防雷 信号传输

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。

电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。

一、SPD的分类:

1.按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。

用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

上一篇:银行七五普法工作中期下一篇:用户注册服务条款范本