仪器分析考试总结

2022-07-25

总结是在项目、工作、时期后,对整个过程进行反思,以分析出有参考作用的报告,用于为以后工作的实施,提供明确的参考。所以,编写一份总结十分重要,以下是小编整理的关于《仪器分析考试总结》,欢迎大家借鉴与参考,希望对大家有所帮助!

第一篇:仪器分析考试总结

化学仪器分析期末考试知识点总结(全面)..

分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒊简述三种定量分析方法的特点和应用要求

一、工作曲线法(标准曲线法、外标法)

特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)

特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况

三、内标法

特点:可扣除样品处理过程中的误差

应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰

1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M*

2、带光谱和线光谱

带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。

2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。

3、谱线变宽的因素(P-131):

⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些?

⑴自然变宽:无外界因素影响时谱线具有的宽度

⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?

①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。 ③富燃火焰:指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。

⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰?

一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。

消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。 二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。

消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。

(2)加入释放剂(广泛应用)

(3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。 (4)加基体改进剂 (5)分离法

三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。负误差

消除方法:加入过量消电离剂。(所谓的消电离剂, 是电离电位较低的元素。加入时, 产生大量电子, 抑制被测元素电离。) 四. 光谱干扰: 吸收线重叠:

①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线 ②谱线重叠干扰--选其它分析线

五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加。产生正误差。) 消除方法:

⑴用邻近非共振线校正背景

⑵连续光源校正背景(氘灯扣背景) ⑶Zeaman 效应校正背景 ⑷自吸效应校正背景

第3章 紫外-可见分光光度法(P21) 3.1.5 影响紫外-可见光谱的因素:溶剂的影响 极性:水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚 3.2 光的吸收定律

Lambert-Beer 定律:A =k c l = -lgT = lgI0 / I

l—cm,c--mol/L,

k 值称为摩尔吸光系数—ε(L·mol-1·cm-1) A =εlc

3.4 分析条件的选择

单光束分光光度计 特点:只有一条光束

单波长双光束分光光度计 特点:在同一台仪器中使用两个完全相同的光束。 双波长分光光度计:不需要参比溶液 透光率读数的影响:

1、分子光谱是如何产生的?它与原子光谱的主要区别是什么?

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱 它与原子光谱的主要区别在于表现形式为带光谱。

(原子光谱是由原子外层或内层电子 能级的变化产生的,它的表现形式为线光谱。)

2、试说明有机化合物紫外光谱产生的原因。机化合物紫外光谱的电子跃迁有哪几种类型?吸收带有哪几种类型?

有机化合物分子的价电子在吸收辐射并跃迁到高能级后所产生的吸收光谱。

机化合物紫外光谱电子跃迁常见的4种类型:σ→σ*,n→σ* ,π→π*,n→π* ①饱和有机化合物:σ→σ* 跃迁,n→σ*跃迁 ②不饱和脂肪族化合物:π→π*,n→π* ③芳香族化合物:E1和E2带,B带

3、在分光光度法测定中,为什么尽可能选择最大吸收波长为测量波长?

因为选择最大吸收波长为测量波长,能保证测量有较高的灵敏度,且此处的曲线较为平坦,吸光系数变化不大,对beer定律的偏离较小。

4、在分光光度测量中,引起对Lambrt-Beer定律偏离的主要因素有哪些?如何克服这些因素对测量的影响?

偏离Lambert-Beer Law 的因素主要与样品和仪器有关。 (1)与测定样品溶液有关的因素

浓度:当l不变,c > 0.01M 时, Beer定律会发生偏离。

溶剂:当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待测物具有不同的吸收光谱,出现化学偏离。

光散射:当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大,Beer定律产生正偏差。 (2)与仪器有关的因素

单色光:Beer定律只适用于单色光,非绝对的单色光,有可能造成Beer定律偏离。 谱带宽度:当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。 对应克服方法: ①c ≤ 0.01M ②避免使用会与待测物发生反应的溶剂 ③避免试样是胶体或有悬浮物

④在保证一定光强的前提下,用尽可能窄的有效带宽宽度。 ⑤选择吸光物质的最大吸收波长作为分析波长

5、极性溶剂为什么会使π→π*跃迁的吸收峰长移,却使n→π*跃迁的吸收峰短移? 溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。在π→π*跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。在n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。

第五章 分子发光分析法(P88)

1.荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。 2.激发光谱和发射光谱:

激发光谱:将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F),以F做纵坐标,激发光波长λ做横坐标作图。激发光谱反映了激发光波长与荧光强度之间的关系。

发射光谱:固定激发光波长,让物质发射的荧光通过单色器,测定不同波长的荧光强度,以荧光强度F做纵坐标,荧光波长λ做横坐标作图。荧光光谱反映了发射的荧光波长与荧光强度的关系。

3. 荧光和分子结构的关系

发射荧光的物质应同时具备以下两个条件:

物质分子必须具有能够吸收紫外或可见光的结构,并且能产生π→π* 或 n→π* 跃迁。

荧光物质必须有较大的荧光量子产率。

(1)跃迁类型:π→π*较n→π*跃迁的荧光效率高。

(2)共轭结构:凡是能提高π电子共轭度的结构,都会增大荧光强度,并使荧光光谱长移。 (3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。

(4)取代基效应:在芳香化合物的芳香环上,给电子基团增强荧光,吸电子基团减弱荧光。 荧光分析法的特点

优点:灵敏度高(提高激发光强度,可提高荧光强度),达ng/ml;选择性强(比较容易排除其它物质的干扰),重现性好;取样少。

缺点:许多物质本身不能发射荧光,因此,应用不够广泛。 荧光分析法与UV-Vis法的比较

相同点:都需要吸收紫外-可见光,产生电子能级跃迁。

不同点:

荧光法测定的是物质经紫外-可见光照射后发射出的荧光的强度 (F); UV-Vis法测定的是物质对紫外-可见光的吸收程度 (A) ; 荧光法定量测定的灵敏度比UV-Vis法高。

1、名词解释:

单重态:当基态分子的电子都配对时,S = 0,多重性 M=1,这样的电子能态称为单重态。 单重电子激发态:当基态分子的成对电子吸收光能之后,被激发到某一激发态上。如果它的自旋方向不变, S=0,M=1,这时的激发态叫单重电子激发态。

三重态:若通过分子内部的一些能量转移,或能阶间的跨越,成对电子中的一个电子自旋方向倒转,使两个电子自旋方向相同而不配对,这时S=1,M=3,这种电子激发态称三重电子激发态(三重态)

系间跨越:指的是不同多重度状态间的一种无辐射跃迁过程。 振动弛豫:

内转换:指的是相同多重度等能态间的一种无辐射跃迁过程。

量子产率:也称荧光效率或量子效率,其值在0~1之间,它表示物质发射荧光的能力。 荧光猝灭:指荧光物质分子与溶剂分子或其他溶质分子相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。 重原子效应:

第4章

红外吸收光谱法( IR ) P53 IR 与 UV-Vis 的比较

相同点:都是分子吸收光谱。 不同点:

UV-Vis 是基于价电子能级跃迁而产生的电子光谱;主要用于样品的定量测定。

IR 则是分子振动或转动能级跃迁而产生的吸收光谱;主要用于有机化合物的定性分析和结构鉴定。

★4.2 基本原理

吸收峰由何引起?每个基团或化学键能产生几个吸收峰?都出现在什么位置?不同吸收峰为什么有强有弱?

物质分子产生红外吸收的基本条件

(1)分子吸收的辐射能与其能级跃迁所需能量相等; (2)分子发生偶极距的变化(耦合作用)。

只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱,称红外活性。 分子振动自由度:多原子分子的基本振动数目,也是基频吸收峰的数目。 为什么实际测得吸收峰数目远小于理论计算的振动自由度? ①没有偶极矩变化的振动不产生红外吸收,即非红外活性; ②相同频率的振动吸收重叠,即简并; ③仪器分辨率不够高;

④有些吸收带落在仪器检测范围之外。 4.2.5 分子振动频率(基团频率) 1. 官能团具有特征频率 基团频率:不同分子中同一类型的基团振动频率非常相近,都在一较窄的频率区间出现吸收谱带,其频率称基团频率。 基团频率区(也称官能团区):在4000~1300cm-1 范围内的吸收峰,有一共同特点:既每一吸收峰都和一定的官能团相对应,因此称为基团频率区。在基团频率区,原则上每个吸收峰都可以找到归属。

主要基团的红外特征吸收峰(P59~63)(4000 ~ 400 cm-1 ) ★1900~1200cm-1:双键伸缩振动区羰基(C=O):1650~1900cm–1。在羰基化合物中,此吸收一般为最强峰。

红外谱图解析顺序:先看官能团区,再看指纹区。 1. 产生红外吸收光谱的条件

2. 分子基本振动类型和振动自由度 3. 影响吸收峰强度的因素 4. 基团频率及谱图解析 5. 影响基团频率的因素

干涉仪:是FT-IR光谱仪的核心部件,作用是将复色光变为干涉光。 4.5 红外光谱法的应用

一、定性分析

已知物的鉴定--谱图比对,未知物结构的确定,收集试样的有关数据和资料,确定未知物的不饱和度(P71)

不饱和度有如下规律: 链状饱和脂肪族化合物不饱和度为0; 一个双键或一个环状结构的不饱和度为1; 一个三键或两个双键及脂环的不饱和度为2; 一个苯环的不饱和度为4。

二、定量分析

理论依据:朗伯-比尔定律 优点:

(1)有许多谱带可供选择,有利于排除干扰; (2)气、液、固均可测定。

1.分子产生红外吸收的条件是什么?

(1)分子吸收的辐射能与其能级跃迁所需能量相等; (2)分子发生偶极距的变化(耦合作用)。

2.何谓特征吸收峰?影响吸收峰强度的主要因素是什么?

能代表基团存在、并有较高强度的吸收谱带称基团频率,其所在位置称特征吸收峰。 ①与分子跃迁概率有关,②与分子偶极距有关(P59) 3.红外谱图解析的三要素是什么?

红外谱图解析三要素:位置、强度、峰形。 4.解释名词:基团频率区

指纹区

相关峰

5.如何利用红外吸收光谱区别烷烃、烯烃、炔烃? 利用基团的红外特征吸收峰区别:

烷烃:饱和碳的C-H吸收峰< 3000cm –1,约3000~2800 cm –1 烯烃、炔烃:不饱和碳的C-H吸收峰> 3000cm-1, C = C 双键:1600~1670cm–1 C≡C-叁键:2100~2260 cm–1 6.红外光谱法对试样有哪些要求? (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水;

(3)要选择合适的浓度和测试厚度。

7.简述振动光谱的特点以及它们在分析化学中的重要性。

优点:特征性强,可靠性高、样品测定范围广、用量少、测定速度快、操作简便、重现性好。 局限性:有些物质不能产生红外吸收;有些物质不能用红外鉴别; 有些吸收峰,尤其是指纹峰不能全部指认;定量分析的灵敏度较低。 第十九章

质谱法(P400) 思考题

2.质谱仪由哪几部分组成?各部分的作用是什么?(划出质谱仪的方框示意图) 进样系统:高效重复地将样品引到离子源中并且不能造成真空度的降低。 离子源:将进样系统引入的气态样品分子转化成离子。

质量分析器:依据不同方式,将样品离子按质荷比m/z分开。 检测器:检测来自质量分析器的离子流并转化成电信号。 显示系统:接收来自检测器的电信号并显示在屏幕上。

真空系统:保证质谱仪离子产生及经过的系统处于高真空状态。

3.离子源的作用是什么?试述EI(电子电离源)和CI(化学电离源)离子源的原理及特点。 离子源:将进样系统引入的气态样品分子转化成离子。 EI(电子电离源)原理:失去电子 特点:电离效率高,灵敏度高;离子碎片多,有丰富的结构信息;有标准质谱图库;但常常没分子离子峰;只适用于易气化、热稳定的化合物。 CI(化学电离源)原理:离子加合

特点:准分子离子峰强, 可获得分子量信息;谱图简单;但不能进行谱库检索, 只适用于易气化、热稳定的化合物 4.为何质谱仪需要高真空? 质谱仪需要在高真空下工作:10-4 ∼10 -6 Pa ①大量氧会烧坏离子源的灯丝;

②用作加速离子的几千伏高压会引起放电;

③引起额外的离子-分子反应,改变裂解模型,谱图复杂化; ④影响灵敏度。

5.四极杆质量分析器如何实现质谱图的全扫描分析和选择离子分析? ①当U/V维持一个定值时,某一U或V值对应只有一个离子能稳定通过四极杆; ②连续改变U或V值,可得到一张全扫描图,此谱图可用于定性;

③固定一个或多个U值,可得到高灵敏度的分析结果,此方法用于定量分析。 第十五章

色谱法引论(P300) 2.按固定相外形不同色谱法是如何分类的? 是按色谱柱分类:

①平面色谱法:薄层色谱法、纸色谱法 ②柱色谱法:填充柱法、毛细管柱色谱法 6.分配系数在色谱分析中的意义是什么?

①K值大的组分,在柱内移动的速度慢,滞留在固定相中的时间长,后流出柱子; ②分配系数是色谱分离的依据;

③柱温是影响分配系数的一个重要参数。 7.什么是选择因子?它表征的意义是什么?

是A,B两组分的调整保留时间的比值α= t’r(B)/t’r(A)>1 意义:表示两组分在给定柱子上的选择性,值越大说明柱子的选择性越好。 8.什么是分配比(即容量因子)?它表征的意义是什么?

是指在一定温度和压力下,组分在两相分配达到平衡时,分配在固定相和流动相的质量比。K=ms/mm 意义:是衡量色谱柱对被分离组分保留能力的重要参数; 同一色谱柱对不同物质的柱效能是不一样的 15.分离度可作为色谱柱的总分离效能指标。 第十六章

气相色谱法(P318) 1.气相色谱法适合分析什么类型的样品?

适用范围:热稳定性好,沸点较低的有机及无机化合物分离。 2.哪类固定液在气相色谱法中最为常用? 硅氧烷类是目前应用最广泛的通用型固定液。(使用温度范围宽(50~350℃),硅氧烷类经不同的基团修饰可得到不同极性的固定相。) 3.气相色谱法固定相的选择原则? 相似相溶原则

①非极性试样选用非极性固定液,组分沸点低的先流出; ②极性试样选用极性固定液,极性小的先流出

③非极性和极性混合物试样一般选用极性固定液,非极性组分先出; ④能形成氢键的试样一般选择极性大或是氢键型的固定液,不易形成氢键的先流出。 6.气相色谱法各检测器适于分析的样品? 热导检测器:

通用 浓度型 所有 氢火焰检测器:

通用 质量型 含碳 电子捕获检测器:选择 浓度型 电负性 火焰光度检测器:选择 质量型 硫、磷

7.气相色谱法常用的定量分析方法有哪些?各方法的适用条件。(1)外标法

适用条件:对进样量的准确性控制要求较高;操作条件变化对结果准确性影响较大;操作简单,适用于大批量试样的快速分析。 (2)归一化法

适用条件:仅适用于试样中所有组分全出峰的情况;操作条件的变动对测定结果影响不大;归一化法简便、准确。

(3)内标法(内标标准曲线法)

适用条件:试样中所有组分不能全部出峰时;定量分析中只要求测定某一个或几个组分;样品前处理复杂

第17章 高效液相色谱法(HPLC) P348

2、现代高效液相色谱法的特点:

(1)高效;(2)高压;(3)高速;(4)高灵敏度

3、色谱分离的实质:

色谱分离的实质是样品分子(即溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。

5、高压输液泵

性能:⑴足够的输出压力

⑵输出恒定的流量

⑶输出流动相的流量范围可调节

⑷压力平稳,脉动小

6、在线脱气装置

在线脱气、超声脱气、真空脱气等

作用:脱去流动相中的溶解气体。流动相先经过脱气装置再输送到色谱柱。 脱气不好时有气泡,导致流动相流速不稳定,造成基线飘移,噪音增加。

7、梯度洗脱装置

以一定速度改变多种溶剂的配比淋洗,目的是分离多组容量因子相差较大的组分。 作用:缩短分析时间,提高分离度,改善峰形,提高监测灵敏度

8、影响分离的因素

影响分离的主要因素有流动相的流量、性质和极性。

9、选择流动相时应注意的几个问题: (1)尽量使用高纯度试剂作流动相。

(2)避免流动相与固定相发生作用而使柱效下降或损坏柱子。 (3)试样在流动相中应有适宜的溶解度。 (4)流动相同时还应满足检测器的要求。

10、提高柱效的方法(降低板高):

①固定相填料要均一,颗粒细,装填均匀。

②流动相粘度低。

③低流速。

④适当升高柱温。

11、固定相的选择:

液相色谱的固定相可以是吸附剂、化学键合固定相(或在惰性载体表面涂上一层液膜)、离子交换树脂或多孔性凝胶;流动相是各种溶剂。被分离混合物由流动相液体推动进入色谱柱。根据各组分在固定相及流动相中的吸附能力、分配系数、离子交换作用或分子尺寸大小的差异进行分离。

12、高效液相色谱法的分离机理及分类 类

主要分离机理 吸附色谱

吸附能,氢键 分配色谱

疏水分配作用 尺寸排斥色谱

溶质分子大小 离子交换色谱

库仑力

13、反相色谱的优点 易调节k或a 易分离非离子化合物,离子化合物和可电离化合物 流动相便宜 可预言洗脱顺序 适宜梯度洗脱

第十章 电分析化学引论(P218)

4、盐桥:

组成和特点:高浓度电解质溶液

正负离子迁移速度差不多 (饱和KCl溶液+3%琼脂所成凝胶) 盐桥的作用:

1)防止两种电解质溶液混和,消除液接电位,确保准确测定。 2)提供离子迁移通道(传递电子)。

5、被测电极的电极电位:以标准氢电极为负极,被测电极为正极组成电池,所测电池的电动势。

6、指示电极和参比电极应用:

测得电动势计算出待测离子的活度或浓度;主要用于测定过程中溶液本体浓度不发生变化的体系。

7、金属︱金属离子电极 (银、铜、锌、汞)√ (铁、钴、镍、铬)×

8、参比电极—甘汞电极: 特 点:

a.制作简单、应用广泛;

b.使用温度较低且受温度影响较大;

c.当温度改变时,电极电位平衡时间较长; d. Hg (Ⅱ)可与一些离子发生反应。

11、膜电极:

特点(区别以上三种——第

一、二和三类电极):

1)无电子转移,靠离子扩散和离子交换生膜电位

2)对特定离子具有响应,选择性好

12、中性载体膜电极:

中性载体:电中性、具有中心空腔的紧密结构的大分子化合物。例如:颉氨霉素、抗生素、冠醚等;典型组成为:离子载体1%,非极性溶剂66%,PVC33%

13、酶电极:指示电极表面覆盖了一层酶活性物质,发生酶的催化反应。

应用:选择性相当高,用于有机及生物物质分析 缺点:酶的精制困难,且寿命较短

14、直接电位法的优点:

(1)设备简单、操作方便;

(2)电极响应快,直接显示离子的浓度;

(3)样品不需预处理;

(4)用于微量分析;

(5)实现连续和自动分析。

15、直接电位法的缺点: (1)误差较大;

(2)电极的选择性不理想;

(3)电极的品种少;

(4)重现性差。

16、电位滴定法:利用电极电位的突跃指示滴定终点的滴定分析方法。关键:选择指示电极 比较AAS与UV—VIS的异同。

相同点都是光谱的类型,实质也都是吸收光谱。

但是AAS是包含了紫外和可见波段,通过锐线光源发射特定波长的光,让物质吸收。UV—VIS是用氘灯或是钨灯发射连续波长的光,其中某个波长被待测物吸收。 AAS:原子光谱,线光谱

UV—VIS:分子光谱,带光谱 1.

根据所学仪器分析方法,分析下列对象:(1)鱼肉中的Hg(~x ug/mL);(2) 废水中Fe、Mn、Al、Ni、Co、Cr(10-6~10-3);(3) 电厂用水中离子含量; (4)生物体中的电化学过程研究;(5) 萘和甲基萘;(6) 喹啉和异喹啉; (7)水果中的残留有机磷农药。 1.

(1)冷原子蒸气法;(2)ICP-AES;(3)电导分析法或离子交换法;(4)伏安法;(5)液液相色谱或气液分配色谱;(6)液固色谱;(7)气相色谱—火焰光度检测器

第二篇:仪器分析与检测考试重点

一,标准品:系指用于生物检定、抗生素或生物药品中含量或效价测定的标准物质。

滴定度概念:指每毫升标准溶液相当于医学教育网搜集整理的待测组分的质量。

空白试验:指不加供试品或以等量溶剂替代供试品的情况下,按同法操作所得结果。

生物检定法:是利用药物对生物体的作用以测定其效价或生物活性的一种方法。

炽灼残渣:指有机药物经加热碳化后再被硫酸破坏,于高温(700~800)炽灼,有机物质被破坏分解为挥发性物质逸出,残留的非挥发性无机杂质成为硫酸盐

碱量法:以冰醋酸或其它溶剂为溶剂,以高氯酸为滴定液,测定弱碱性药物含量的滴定法。

杂质限量:指药物中所含杂质的最大允许量,通常以百分之几或百万分之几来表示。

外标法:是以待测组分纯品配置标准溶液和待测试样同时作色谱分析来进行比较的定量分析方法

朗伯比尔定律:一束单色光,垂直的通过一定厚度的均匀稀溶液时,吸光度A与浓度C和厚度

生物药物检定工作的流程:取样 性状观测 鉴别 检查 含量测定 写出检验报告

朗伯比尔定律的应用条件:必须是稀溶液必须使用单色光

药物中杂质来源:生产过程中引入存储过程中受外界条件的影响,引起药物结构发生变化而产生

一般杂质:指在自然界中分布较广泛,在多种药物的生产和储藏过程中最容易引入杂质,如酸 碱 水分 氯化物 硫酸盐 砷盐 重金属

特殊杂质:指在个别药物生产和储藏过程中引入的杂质。

酶活力测定的原理:以酶能专一而高效地催化某些化学反应为基础,通过对酶反应速度的测定确定酶活力单位的大小。步骤:根据酶催化的专一性选择合适的底物,并配置成一定浓度的底物溶液根据酶的动力学性质确定催化反应的温度PH等反应条件在一定条件下,将一定量的酶液和底物溶液混合均匀,适时记下反应时间。④用取样测定法或连续法测定反应过程中产物或底物或辅酶的变化量,测出酶反应的初速度⑤根据酶定义计算酶活力

滴定度:每摩尔浓度的滴定液所相当的被测药物的质量。 二填空

1,国家规定的药品质量标准;药典部颁标准全称《中华人民共和国药典》 chp最新;2010年版 内容包括;范例正文附录和索引 2,药品质量标准的内容一般有;品名 有机药物的结构式分子式于分子量来源或有机物的化学名称含量或效价规定制法性状鉴别检查含量或效价测定类别规格 贮藏制剂等。

3,对药品质量控制的全过程指导作用的法令文件有;

GLP《良好实验研究规范》GMP《良好生产规范》GAP《中药材生产质量规范》

GSP《良好供应规范》GCP《良好临床实验规范》AQC《分析质量管理规范》

4,生物药物质量检验的程度及意义; 1),取样代表性科学性真实性能代表一般药物

2),形状观测 ;反映药物优劣 3),鉴别;用物理 化学来判断真伪 4),检查;判定药物优劣杂质限量法 5),含量测定

6),写出检验报告

1.朗伯-比尔定律的试用条件:(1)必须使用单色光为入色光;(2)溶液必须为稀溶液。

2.定量分析常采用的方法;(1)标准曲线法;(2)标准对照法;(3)百分吸收系数法

C测=A测.C标/A标百分含量=<(A供.C对/A对).V.n>/m取样②百分含量=C.V.n/m取

3.药物杂质来源:(1) 生产过程中引入;(2)储藏过程中加入。

4.药物中杂质的分类及举例:一般杂质是指在自然界中分布较广泛,在多种药物的生产和储藏过程中易引入的杂质,如酸、碱、水分、氯化物、硫酸盐、砷盐、重金属等。特殊杂质是指在个别药物中的生产和储藏过程中引入的杂质。

5.信号杂质:指本身一般无害,但其含量多少可反映药物纯多水平,指示工艺水平是否合理。

6.氯化物的检查法:原理:药物的微量氯化物在酸姓条件下与硝酸银反应,生成银胶体微粒而显白色浑浊。与一定量的标准氯化钠溶液相同条件下产生的氯化银浑浊程度比较。 (1)黑色背景上比浊;(2)稀硝酸10ml;(3)暗处放置5min,防止AgCl见光分解产生沉淀;(4)对照溶液:标准NaCl溶液;(5)氯化物浓度以50ml中含有0.05~0.08mg的Cl-为宜。此范围氯化物所显浑浊度明显,便于比较;(6)加硝酸可避免弱酸银盐如碳酸银、氧化银沉淀的干扰。 7.外消法:(1)在对照溶液中加入一定的有色物(如稀焦糖等),使对照溶液的颜色与供试品颜色接近;(2)经过处理,降低供试品溶液的色度,不干扰测定。 8.铁盐检查法:白色背景下比色。 硫氰酸盐法(盐酸酸性ag中)

原理:铁盐在HCl酸性ag中与硫氰酸盐作用生成红色可溶性的硫氰酸离子与一定量标准铁ag用同法处理进行

9.重金属检查法:是指在实验条件下能与硫代乙酰胺或硫化钠作用显色的金属杂质.(适用溶于水.稀酸和乙醇的药物) 原理:CH3CNH2在弱酸性条件下水解,产生H2S与重金属离子生成黄色到棕黄色的硫化物混悬液,与一定量标准铅ag经同法处理后所呈颜色比较,判定供试品中重金属是否符合规定。

1.炽灼温度在700℃--800℃(不做重金属检查)500℃~600℃(作重金属检查)

2.炽灼后的硫代乙酰胺法适用于含苯环.杂环.以及难溶于水.稀酸乙醇的有机物。

3.硫代钠法适用于溶于碱性水aq而难溶于稀酸或在稀酸中即生成沉淀的药物.如磺胺类.四比妥类等药物。 4.微孔滤膜过滤法适用于含2~5υg重金属杂质的检查.

5.古蔡法:原理.金属锌与酸作用产生新生态氢,与药物中微量砷盐反应生成具有挥发性的砷化氢,遇溴化汞试纸,产生黄色至棕色的砷斑,与一定量标准砷溶液所生成的砷斑比较,判断供试品重金属是否合限规。 6.KI作用:①将五价砷还原成三价砷。②有利于生成砷化氢的反映不断进行。③可抑制锑化氢的生成。 7.SnCl2作用:将五价砷还原成三价砷。②可抑制锑化氢的生成。③于锌作用在锌粒表面形成锌锡齐起点去极化作用,从而使H2均匀连续发生。 8.乙酸铅棉花作用:吸收H2S,使砷化氢以适宜的速度通过。

9.溴化汞作用:与AsH3反应产生砷斑。

10.自由道夫法:检查含锑药物中的砷盐。6HCl+3SnCl2+2As(3+)→2As(棕褐色)+3SnCl4+6H(+) 11.Ag(DDC)法:[=乙基=硫代氨基甲酸银法]:原理.金属新预算作用产生新生态氢,与微量砷盐反应生成聚挥发性的砷化氢.还原二乙基二硫代氨基甲酸银,产生红色胶态银,同时在相同条件下使用一定量标准砷溶液比色,用目视比色法测定吸光度进行比较。

12.红外光度法不能侧含量,只能鉴别,药物杂质检查不须测含量。 13.热原检查法:原理.是将一定剂量供试品,静脉注入家兔体内,在规定时间内,观察家兔体温升高的过程,以判定供试品中所含热原的限度是否符合规定。

步骤:①准备挑选家兔三只。②检查并准备(实验器具,饲养环境,要求温度,安静,供试兔子体温确认,灭除热源1250℃加热60分)。③检查。④结果判断。

14.酶活力测定:是以酶专一而有效地催化某些化学反应为基础,通过对酶反应速度的测定来确定酶活力大

小。

步骤:①制底物(生成物对照品ag,供试品酶ag等,)②确定酶催化反应的温度,Ph,温度,辅助因子等反应。③进行酶促反应,准确记录反应时间。④终点法(终点反应)测定产物的增加量。⑤根据酶活力单位定义计算酶活力。

15.酸值:反映脂肪中游离酸含量多少,12

16.核酸药物的鉴别试验:⑴一般鉴别实验:依据某一药物的化学结构或理化性质的特征通过化学反应来鉴别药物的真伪。⑵专属鉴别试验:①紫外吸收法.根据化合物的紫外吸收光谱特征吸收峰的波长和强度来进行物质鉴定或纯检。②红外吸收光谱法.应用于有机物的定性和结构分析。③薄层色谱法(TLC).将供试品ag类样与薄层板上,经展开,检视所得出色谱图于适宜的对照物按同法色谱图比较,用于H2的鉴别和杂质检查。4,高效液相色谱法. 17.Fehhng反应:蔗糖不能用于鉴定,可水解后再鉴定,葡萄糖可以。 还原糖的鉴定

18.熊去氧胆酸和鹅去氧胆酸因其分子结构中均含有羧基,可以用酚酞指示剂,用NaOH滴定液进行滴定。 19.碘滴定液应用算是滴定管。(对照品:K2SO4)硫酸盐检查法是在稀盐酸酸性条件下与氯化钡反应。

第三篇:仪器分析总结

1.绪论

要求:

1.仪器分析概念及性质* 2.仪器分析方法的分类* 3.仪器分析方法的主要评价指标*

仪器分析概念:现代仪器分析是以物质的物理性质或化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,借助比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析和动态分析的一类分析方法。 仪器分析的特点:

1.灵敏度高,试样用量少。 2.选择性好。

3.操作简便,分析速度快,自动化程度高。 4.用途广泛。

5.相对误差较大,价格昂贵。 仪器分析方法分类:

光分析法、分离分析法、电化学分析法、质谱法、分析仪器联用技术。

光分析法:光分析法是利用待测组分的光学性质(发射、吸收、散射、折射、衍射、偏振)进行分析测定的一种仪器分析方法。光分析法分为光谱法和非光谱法,光谱法又分为原子吸收发射光谱,紫外可见吸收光谱,红外光谱,拉曼光谱法。

电化学分析法:电化学分析法是利用组分在溶液中的电化学性质进行分析测定的一种仪器分析方法,电化学分析法分为电导分析法、电位分析法等。

分离分析法:利用物质中各组分间的溶解能力、亲和能力、吸附和解吸能力、渗透能力、迁移速率等性能差异,先分离后分析的一类仪器分析方法,分离分析法分为气相色谱法、液相色谱法、超临界流体色谱法、离子色谱法等。

质谱法:质谱法是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。

联用分析技术:联用分析技术已成为当前仪器分析的重要发展方向,将几种方法结合起来,特别是分离方法(如色谱法)和检测方法(红外吸收光谱法、质谱法、原子发射光谱法)的结合,汇集了各自的优点,可以更好地完成试样分析。 气相色谱-质谱法(GC-MS)、气相色谱-质谱法-质谱法(GC-MS-MS)、液相色谱-质谱法(HPLC-MS) 仪器分析方法的主要评价指标:

精密度、准确度、选择性、标准曲线、灵敏度、检出限。 精密度:旨在相同条件下用同一方法对同一样品进行多次平行测定结果之间的符合程度。用标准偏差S或相对标准偏差Sr(或RSD)表示,S、Sr越小,精密度越高。

准确度:指测定值与真实值相符合的程度。用相对误差Er来描述,Er越小,准确度越高。 精密度和准确度的关系:

1.精密度是保证准确度的先决条件。

2.精密度高不一定准确度高,主要由于有系统误差存在。

选择性:指分析方法不受试样中基体共存物质干扰的程度。选择性越好,干扰越少。 标准曲线:标准曲线是待测物质浓度与仪器响应信号的关系曲线。 灵敏度:待测组分单位浓度或单位质量变化引起响应信号的变化程度。

检出限:指某一分析方法在给定的置信度能够被仪器检出的待测物质的最低含量。

精密度、准确度和检出限是评价仪器性能及分析方法的最主要技术指标。

2.光分析法

要求:

1.光分析法概述

2.光(电磁辐射)的波粒二象性* 3.光的吸收、发射* 4.光的吸收定律** 5.光谱法的分类* 6.光谱产生原理

7.分子光谱与原子光谱区别*

光分析法概念:给予电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法。

光分析法仪器三个基本组成部分:信号发生系统、色散系统、信号检测系统。

电磁辐射的波粒二象性:光在传播时主要表现出波动性,可用波长λ波数σ描述;在与其他物质相互作用时,主要表现出粒子性,可用能量描述。 普朗克公式:E=hv=hcλ。

透射率:T=II0

吸光度:A=lg(1/T)=lg(I0/I) 光的吸收定律——朗伯比尔定律:A=kcLεcL ε=α·M

kε:摩尔吸光系数,与介质性质、温度和入射光波长有关。 c :浓度

L :厚度 光谱分类:

按照产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱。 按照产生光谱方式不同:吸收光谱、发射光谱、散射光谱。 按照光谱的性质和形状:线光谱、带光谱、连续光谱。

光谱产生原理:通常的物质分子处于稳定基态,当它收到光照或其他能量激发时,将根据分子吸收能量的大小引起分子的转动、振动、电子能级跃迁,同时伴随着光子的吸收或发射,光子能量等于前后两个能级的能量差。由于物质内部能级跃迁是量子化的,物质只能吸收或发射特定波长的光,形成特征光谱,不同物质特征光谱不同,可以根据物质的特征光谱研究物质的组成和结构。 原子光谱是线光谱(line spectra),分子光谱是带光谱(band spectra),固体光谱是连续光谱。

分子光谱为带光谱的根本原因:当外界能量引起分子振动能级发生跃迁时,必然同时叠加转动能级的跃迁;同样,在分子的电子能级跃迁的同时,总伴随着分子的振动跃迁和转动能级跃迁。分子的振动光谱、电子光谱是由许多线光谱聚集的谱带组成的。 章末一个简答题,在前面。

3.原子发射光谱(Atomic Emission Spectrometry, AES)

要求:

1.原子发射光谱法的定义* 2.原子发射光谱的产生、分析过程 3.谱线强度与试样中元素含量的关系。 4.谱线的自吸和自蚀* 5.原子发射光谱仪主要部件的作用* 6.光谱定性分析相关概念和定性方法* 7.光谱定量分析工作曲线法和标准加入法* 8.原子荧光的产生、特点*、共振荧光* 9.原子荧光光度计的组成*、AFS与AES和AAS之间的区别和联系*

原子发射光谱法:根据原子或离子在一定条件下受激后所发射的特征光谱来研究物质化学组成及含量的方法,称为原子发射光谱法。(Atomic Emission Spectrometry, AES). 分析过程:激发源提供外部能量使被测试样蒸发、解离,产生气态原子,并使气态原子的外层电子激发至高能态,处于高能态的原子自发跃迁回低能态时,以辐射形式释放出多余能量。经分光系统分光后形成一系列按波长顺序排列的谱线。用检测系统记录和检测谱线的波长和强度。 定性分析原理:根据某元素的特征频率或波长的谱线是否出现,即可确定样品中是否存在该原子。 定量分析原理:分析样品中待测元素浓度越高,在激发源中该元素的激发态原子数目越多,特征谱线强度越大,和已知含量标样的谱线强度相比即可确定该元素含量。 原子发射光谱特点:

优点:可多元素同时检测、分析速度快、检出限低、选择性好、准确度高、试样用量少。 缺点:不适合卤素和惰性气体分析、只能确定总量不能确定空间结构和官能团。 谱线强度与试样中元素含量关系:I=a·c 浓度较大时,发生自吸:I=a·cb

a 为常数,c为被测元素含量, b为自吸系数 b=1无自吸,b<1 有自吸。 谱线的自吸和自蚀:

自吸:原子在高温区发射某一波长的辐射,被处在边缘的低温状态的同种原子吸收的现象。 自蚀:当样品达到一定含量,由于自吸严重,谱线中心辐射完全被吸收,称为自蚀。 原子发射光谱仪主要部件:激发源、分光系统、检测系统。(激发源有火焰、电弧、ICP;分光系统有棱镜、光栅;检测器有感光板、光电倍增管、CCD)。

光谱定性分析依据:元素不同导致电子结构不同导致光谱不同产生特征光谱。 灵敏线:每种元素的原子光谱中,凡是具有一定强度、能标记某元素存在的特征谱线,称为该元素的灵敏线。

最后线:当元素含量减少到最低限度时,仍能够坚持到最后出现的谱线,称为最后线或最灵敏线。 主共振线:由第一激发态与基态之间跃迁产生的共振线称为主共振线。通常也是最后线。 特征线组:是指为某种元素所特有、容易辨认的多重线组。 分析线:用来进行定性或定量分析的特征谱线。

定性方法:目前常用标准试样光谱比较法和铁光谱比较法。

标准试样光谱比较法:将待测元素的纯物质与试样在相同条件下同时并列摄谱于同一感光板,然后再映谱仪上进行光谱比较,如果样品光谱出现于纯物质光谱相同波长的谱线(一般看最后线)则表明样品中含有与纯物质一样的元素。

铁光谱比较法:以铁的光谱线做标尺,将各个元素的最后线按波长插在标尺上方,制成标准光谱图。将待测试样和纯铁同时并列摄谱于同一感光板,然后再映谱仪上用元素标准管谱图与样品光谱图对照检查,如二者最后线重合,则认为样品存在该元素。 选择铁光谱的原因:谱线多、间距均匀、定位准确。

元素存在判定:多条灵敏线出现,含有该元素;只有一条最灵敏线,可能有该元素;只有非灵敏线,不含该元素;无某一元素谱线,一定不存在。

原子荧光分析法:原子荧光分析法是一种通过测量待测元素的原子蒸汽在辐射能激发下所产生荧光的发射强度,来测定待测元素含量的一种发射光谱分析方法(Atomic Fluorescence Spectrometry, AFS)。

区别:AFS与AES的区别是激发源不同,AFS属于光致激发的原子发射光谱法,但所用仪器与原子吸收光谱法(AAS)相近。 原子荧光特点:

1.属于光致发光:十二次发光过程,激发光远停止时,在发光过程立即停止。 2.发射的荧光强度与照射光强有关。 3.不同元素的荧光波长不同。(原子结构不同,电子能级排布不同)。 4.浓度很低时,强度与蒸汽中该元素浓度成正比。(定量依据,用于痕量分析) 共振荧光:荧光线的波长=激发线的波长

原子荧光分析仪基本组成:激发光源、原子化器、分光系统、检测系统。(激发源是高强度空心阴极灯、无极放电灯、高压氙弧灯;原子化器是将待测元素转化为原子蒸汽,有Ar稀释的火焰;分光系统极为简单,滤光片或光栅;检测系统是光电倍增管PMT)。 AES,AFS,AAS三者区别和联系: 联系:产生光谱的对象都是原子。 区别:AAS是基于基态原子选择性吸收光辐射能,并使该辐射强度降低而产生的光谱(共振吸收线)。 AES是基态原子受到热电光的作用,原子从基态跃迁到激发态,然后返回基态时产生的光谱(共振发射线。)AFS是气态原子吸收光源的特征辐射后,原子外层电子跃迁到激发态,然后返回到基态发射的与原子激发波长相同的辐射即为原子荧光,是光致二次发光,本质上仍是发射光谱。

4.原子吸收光谱(Atomic Absorption Spectrometry, AAS)

要求:

1.原子吸收光谱法概念*、特点。 2.原子吸收光谱的产生。

3.基态原子与待测元素含量的关系。 4.特征频率和半宽度*、了解变宽因素。

5.原子吸收线测量的积分吸收法、峰值吸收法*。 6.原子吸收分光光度计主要组成*。 7.HCL和原子化器*,光谱通带*。 8.原子吸收光谱法分析法中测定条件的选择*,定量分析法,灵敏度与检出限*。 9.干扰及消除方法*。

原子吸收光谱法:基于测量待测元素基态原子对其特征谱线的吸收程度来确定物质含量的分析方法称为原子吸收光谱法(Atomic Absorption Spectrometry, AAS)。 特点:

优点:检出限低、选择性好、精密度和准确度高、进样量少,分析速度快。 缺点:不能进行多元素同时分析,非金属元素不能直接测定。

原子吸收光谱的产生:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。原子由基态跃迁到第一电子激发态所需能量最低,跃迁最容易(这时产生的吸收线称为主共振吸收线或第一共振吸收线),因此大多数元素主共振吸收线就是该元素的灵敏线,也是原子吸收法中最主要的分析线。

原子吸收光谱相比于原子发射光谱优点:激发态原子数受温度的影响大,而基态原子数受温度的影响小,所以原子吸收光谱法的准确度优于原子发射光谱分析法;基态原子数远大于激发态原子数,因此原子吸收光谱法的灵敏度高于原子发射光谱法。

原子吸收谱线的轮廓与谱线变宽:表示原子吸收线轮廓的特征量是吸收线的特征频率v0和半宽度△v。特征频率由原子的能及分布特征决定,半宽度除谱线本身具有的自然宽度外,还受多种因素影响(热变宽、压力变宽) 。

原子吸收线测量:积分吸收法、峰值吸收法。

峰值吸收法:采用锐线光源作为辐射源测量谱线的极大吸收(峰值吸收)。

锐线光源:发射线与吸收线特征频率一致且发射线半宽度远远小于吸收线半宽度的光源,如空心阴极灯。

峰值吸收的测量条件:1.光源发射线的半宽度应小于吸收线半宽度(△v发射<△v吸收)2.通过原子蒸气的发射线的特征频率恰好与吸收线的特征频率重合。(ν0发射 = ν0吸收)

峰值吸收法定量分析依据——光吸收定律:A=Kc 在特定条件下,吸光度A与待测元素浓度c呈线性关系。 原子吸收分光光度计组成: 1.光源:作用是发射待测元素的特征共振辐射,必须使用待测元素制成的锐线光源。可用待测元素作阴极材料制成相应空心阴极灯(HCL)。特点是只有一个灯电流操作参数,辐射光强度大,稳定,谱线窄,灯泡容易更换;每测一种元素需要更换相应灯泡。 2.原子化器:

分类是1.火焰原子化器 2.石墨炉原子化器 3.低温原子化技术。作用是将试样中待测元素转化为基态原子,以便对特征谱线进行吸收。提供能量,使试样干燥、蒸发和原子化。常用火焰是空气-乙炔火焰。

3.分光系统:分光系统的作用是将待测元素的分析线与干扰线分开,使待测系统只能接受分析线。在原子吸收光度计中,单色其通常位于火焰之后,这样可分掉火焰的杂散光并防止光电管疲劳。 4.检测系统:组成是光电转换器、放大器和显示器。作用是吧单色器分出的光信号转换为电信号,经放大器放大后以透射率或吸光度形式显示出来。 原子吸收分析中需要研究的测定条件(三个)

测定条件的选择:分析线、空心阴极灯电流、狭缝宽度、原子化条件。

分析线:常选待测元素的主共振线作为分析线;为了避免邻近谱线干扰,可选次灵敏线;测量高浓度样品时,可选次灵敏线。

空心阴极灯电流:电流过小,光强低且不稳定;电流过大,发射线变宽,灵敏度下降,且影响光源寿命;选择原则是保证稳定和合适光强输出条件下,尽量选低工作电流。 狭缝宽度:原则是在不减小吸光度值的条件下,尽可能使用较宽的狭缝。 原子化条件: 火焰原子化:火焰类型(温度-背景),使待测元素获得最大原子化效率;助燃比(温度-氧还环境);助燃器高度;进样量。

石墨炉原子化:升温程序的优化。

定量分析法:1.标准曲线法(会出现正偏离和负偏离) 2.标准加入法(可消除基体干扰,不能消除背景吸收影响)。 灵敏度与检出限:

干扰和消除方法:

干扰:物理干扰、化学干扰、电离干扰、光谱干扰。

物理干扰及消除:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起的吸收强度变化的效应。这类干扰是非选择性的,对试样中各元素的测定影响基本相同。

消除物理干扰的方法:配制与待测溶液组成相似的标准溶液、浓度高的溶液可用稀释法、采用标准加入法

化学干扰及消除:化学干扰是指在溶液或原子化过程中待测元素与其它组分之间的化学反应所引起的干扰效应,主要影响待测元素的原子化效率。原子吸收法的主要干扰,具有选择性。典型的化学干扰是待测元素与共存物作用生成了难挥发的化合物,致使参与吸收的基态原子数减少。 消除化学干扰的方法:

加释放剂:加入一种过量的金属元素,与干扰元素形成更稳定或更难挥发的化合物,从而使待测元素释放出来。

例:锶和镧可有效消除磷酸根对钙的干扰。

加保护剂:保护剂与待测元素形成稳定的络合物,防止干扰物质与其作用。 例:加入EDTA生成EDTA-Ca,避免磷酸根与钙作用

电离干扰及消除:在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低的现象。电离干扰在火焰温度高、待测元素电离电位低的情况下最容易发生,随被测元素浓度的增高而减小。 消除电离干扰的方法:

加入过量消电离剂,抑制被测元素的电离—碱金属。 例如Ca测定在高温下产生电离现象,加入KCl可消除。 光谱干扰及消除:

1、非共振线干扰——缩小狭缝宽度

2、背景吸收

分子吸收是指试样在原子化过程中生成的分子对光辐射的吸收而引起的干扰,使吸收值增高。光散射是指原子化过程中产生的微小固体颗粒使光产生散射,造成透过光减小,吸收值增加。 消除背景吸收的方法:空白校正法、连续光源校正法、塞曼效应校正法。

5.紫外-可见吸收法

(Ultraviolet and Visible Absorption Spectrometry, UV-Vis) 要求:

1.物质对光的选择性吸收

2.紫外-可见吸收光谱法概念* 3.紫外-可见吸收光谱基本原理* 4.Lambert-Beer定律的成立条件* 5.摩尔吸收系数ε的讨论* 6.朗伯-比尔定律的加和性* 7.偏离朗伯-比尔定律的原因* 8.电子跃迁的类型* 9.发色团、助色团和吸收带* 10.影响紫外吸收光谱的因素* 11.紫外分光光度计基本构造* 12.测量条件的选择* 13.定性、结构、定量*分析

物质对光的选择性吸收:物质溶液之所以呈现颜色,是由于物质溶液对光的选择性吸收引起的。物质所显示的颜色是吸收光的互补色。透射光与吸收光可组成白色。

紫外可见吸收光谱法:紫外可见吸收光谱法是基于分子内电子能级跃迁产生的吸收光谱进行分析的光谱分析法。属于分子吸收光谱。 紫外可见吸收光谱法的基本原理:利用光的吸收定律——朗伯比尔定律:当一束平行光通过单色溶液时,溶液的吸光度A与吸光物质浓度c及液层厚度L的乘积成正比。

朗伯比尔定律成立条件:朗伯-比尔定律只适用于低浓度、均匀、非散射的溶液,并且溶质不能有解离、缔合、互变异构等化学变化。

摩尔吸光系数:在温度和介质条件一定时,ε仅与吸光物质的结构与性质有关;ε不随浓度c和光程长度L改变而变化;ε是吸光能力与测定灵敏度的度量,εmax越大表明该物质的吸光能力越强,测定灵敏度越高;ε数值上等于浓度为1mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度。 朗伯比尔定律的加合性:如果在一溶液中有多个组分对同一波长的光有吸收作用,则总吸光度等于各组分的吸光度之和(条件是各组分的吸光质点不发生作用),这就是物质对光吸收的加和性。 偏离朗伯比尔定律的原因:

1.入射光并非完全意义的单色光而是复色光。 2.溶液的不均匀性导致部分入射光因散射而损失。 3.溶液发生了解离、缔合、配位等化学变化。 电子跃迁的类型:σ电子、π电子、n电子。

σ→σ*跃迁:σ电子跃迁到σ*轨道所需能量最大(饱和烃类C-C键)。

n →σ*跃迁:分子中未共用n电子跃迁到σ*轨道,能量较大,大部分在远紫外区。 π→π*跃迁:成键π电子由基态跃迁到π*轨道,属强吸收。

K吸收带由共轭非封闭体系中π→π*月前产生。

n →π*跃迁:未共用n电子跃迁到π*轨道:所需能量小。R吸收带由n→π*跃迁产生。 发色团:是指含有不饱和键,能吸收紫外、可见光产生π→π*或n→π*跃迁的基团。

助色团:是指含有为成键n电子,本身没有生色功能,但与发色团相连时,能使发色团吸收峰向长波长方向移动,吸收强度增强的杂原子基团称为助色团。

吸收带:吸收峰在紫外-可见光谱中的波带位置称为吸收带。有R、K、B、E吸收带。 B、E吸收带是由芳香族化合物π→π*跃迁产生。 影响紫外可见吸收光谱的因素:

1.助色效应:助色团与生色团相连,由于助色团n电子与生色团π电子共轭,使吸收峰红移,吸收强度增强的过程。

2.共轭效应和超共轭效应:π电子共轭体系增大,λmax红移,εmax增大;σ→π超共轭效应增强,λmax红移,εmax增大。

3.空间位阻效应:空间阻碍使得共轭体系被破坏,λmax蓝移,εmax减小。

4.溶剂效应:溶剂极性增大,π→π*跃迁吸收带红移;n→π*跃迁吸收带蓝移。极性溶剂往往使吸收峰的振动精细结构消失。

紫外分光光度计基本构造:光源、单色器、吸收池、检测器、显示器。

光源:连续光源,提供激发能,使待测分子产生吸收。可见光区用钨灯或卤钨灯(热辐射光源),紫外光区用氢灯氘灯(气体放电光源)。

单色器:将光源辐射的复合光色散成单色光。有光栅单色器和棱镜单色器。与原子吸收分光光度计不同,在UV-Vis光度计中,单色器置于吸收池前面以防止强光照射吸收池引起物质分解。 吸收池(比色皿):盛放被测样品。有玻璃吸收池(可见光)和石英吸收池(紫外和可见)。吸收池(比色皿)使用前要用溶剂洗涤,加入池高4/5,手拿毛玻璃,避免测定强酸强碱,使用后要清洗,定量分析使用之前要校正。

检测器:检测光信号,并将光信号转变成可测量的电信号,光电池→光电管→光电倍增管→光电二极管阵列检测器。

紫外分光光度计类型:单光束分光光度计、双光束分光光度计、双波长分光光度计、光电二极管阵列分光光度计。

UV-Vis分光光度计测定条件选择:

3.入射光波长的选择:根据吸收大,干扰小的原则选择最佳入射波长。 2.吸光度读数范围选择

3.参比溶液选择:用于调节A=0 UV-Vis吸收光谱法应用:定性分析、结构分析、定量分析 定量分析:根据朗伯比尔定律 1.单组分定量分析:

比较法:在相同条件下配制样品溶液和标准溶液(与待测组分的浓度相近),在相同的实验条件和最大波长λmax处分别测得吸光度为Ax和As,然后进行比较,求出样品溶液中待测组分的浓度。 标准曲线法:首先配制一系列已知浓度的标准溶液,在λmax处分别测得标准溶液的吸光度,作A-c的标准曲线。在完全相同的条件下测出试液的吸光度,并从曲线上求得相应的试液的浓度。

2.多组分定量分析:依据吸光度具有加合性

课后题:

6.红外吸收光谱(Infrared Absorption Spectrum, IR)

要求:

1.红外吸收光谱法概念和特点* 2.红外吸收光谱产生的两个条件* 3.分子的基本振动形式* 4.红外吸收光谱的分区及其特点* 5.影响基团频率位移的因素

6.色散型红外光谱仪和FI-IR光谱仪基本组成部件、作用和特点* 7.定性、定量分析

8.了解有机化合物的红外谱图解析方法

红外吸收光谱法:利用红外分光光度计测量物质对红外光的吸收及所产生的红外吸收光谱对物质的组成和结构进行分析测定的方法。 红外吸收光谱法的特点: 1.除了单原子分子、对称双原子分子外,几乎所有的化合物都有红外吸收,能提供丰富的结构信息; 2.任何气态、液态和固态样品均可进行红外光谱测定; 3.样品用量少,分析速度快;

4.与色谱等联用(GC-FTIR)具有强大的定性功能。 红外吸收光谱的产生条件:

(一)辐射应具有恰好能满足物质产生振动跃迁所需能量。

(二)辐射与物质间有相互偶合作用,产生偶极矩的变化。 分子基本振动形式:

1.双原子分子振动:沿键轴方向伸缩振动v(键长变化键角不变的振动) 2.多原子分子振动:伸缩振动v(键长变化键角不变的振动)、弯曲振动δ(基团键角发生周期性变化,但键长不变的振动);伸缩振动的吸收峰波数比相应键的弯曲振动峰波数高

谱带强度:影响吸收峰强度的主要因素是振动能级的跃迁概率和振动过程中偶极矩的变化。 红外吸收光谱图的分区:

1.官能团区:将4000-1300cm-1区域称为官能团区,这个区域内每个红外吸收峰都和一定官能团对应。

2.指纹区:将1300-670 cm-1区域称为红外光谱中的指纹区,由于各振动之间的相互偶合,使得这个区域中的吸收带变得非常复杂,对结构上的微小变化表现极其敏感。指纹区可以表征整个分子的结构特征。

从官能团区可找出该化合物存在的官能团,指纹区的吸收可以用来与标准谱图进行比较,从而得出与已知物结构相同或不同的确切结论。二者相互补充。

影响基团频率的因素:化学键的振动频率不仅与其性质有关,还受分子的内部结构和外部因素影响。

内部因素:诱导效应(T效应)、共扼效应(C效应)、氢键效应、空间位阻等。 外部因素:溶剂、试样状态、制样方法等。

色散型红外吸收光谱仪基本结构:光源、吸收池、单色器、检测器、记录系统。 UV-Vis与IR区别:

UV-Vis——吸收池放在单色器之后(可防止强光照射引起吸收池中一些物质的分解)。

IR——吸收池放在光源与单色器之间(红外光源能量小,不会引起试样的分解,而且可以减小来自试样和吸收池的杂散光对检测器的影响)。

工作波段范围不同,两者的光源、透光材料与检测器等有很大的差别。

以光栅为分光元件的色散型红外光谱仪缺点:

1.色散型红外吸收光谱仪是扫描式的仪器,扫描速度慢, 不能测定瞬间光谱的变化,也不能实现与色谱仪的联用。

2.分辨率较低,要获得0.1~0.2 cm-1的分辨率已相当困难。 傅里叶变换红外吸收光谱仪(FT-IR):根据光的相干性原理设计,没有色散元件,不需要分光。主要由光源、干涉仪、吸收池、检测器、计算机和记录系统组成。 FT-IR特点:

1.测定速度极快。1s内,实现红外光谱仪与色谱仪的联用。 2.灵敏度和信噪比高。(无狭缝装置,输出能量无损失;多次测定、多次累计) 3.分辨率提高, 波数精度可达10-2 cm-1。 4.测定的光谱范围宽,10~104 cm-1。

红外光谱解析三要素:吸收峰位置、强度、峰形。 近红外光谱在食品检测方面应用:

 在粮油检测方面,它可以同时测定小麦中蛋白质、淀粉、水分、灰分、干面筋等含量,快速测定其他粮食中淀粉和蛋白质含量,评价和控制面粉生产过程中原料与产品的品质。

 在肉制品加工中,测定原料肉或肉制品中的水分、蛋白质、脂肪含量等指标,甚至可以在屠宰分割过程中即时测定肉的水分、蛋白质含量及颜色。

 在发酵工业中,近红外技术可以用来测定发酵乳的蛋白质、脂肪和总固形物含量,检测葡萄酒发酵过程中各种香味成分以及各种糖类的含量,测定酱油中主要成分,食品的掺伪检测等。  在油脂工业中,近红外技术可用来检测油料中油分含量及游离脂肪酸、碘值等指标。 中红外光谱在食品检测方面应用:  结构鉴定  成分含量测定  掺假检测 课后题:

7.分子发光分析法

要求:

1.定义*、分类* 2.单重态和三重态

3.激发态到基态的能量传递途径 4.光谱曲线* 5.荧光强度与浓度关系* 6.荧光与分子结构关系(内因)* 7.影响荧光强度的因素 8.荧光分析仪器* 9.分子荧光定量分析法* 10.荧光分析法特点

11.化学发光分析法基本原理* 12.化学发光分析装置与技术*

分子发光分析:某些物质的分子吸收一定能量(光能、电能、化学能等)跃迁到较高的电子激发态后,在返回电子基态的过程中伴随有光辐射,这种现象称为分子发光(Molecular Luminescence),以此建立起来的分析方法称为分子发光分析法。 分子发光分类:

1.光致发光(PL)-光能(荧光、磷光) 2.电致发光(EL)-电能 3.化学发光(CL)-化学能

4.生物发光(BL)-生物体,酶,法学发光。

分子发光光谱:属于分子发射光谱,带光谱,在近紫外区和可见光区(200-800nm)。 单重态与三重态:

激发单重态:电子自旋相反-S 激发三重态 :电子自旋平行-T 激发态到基态能量传递途径:

光谱曲线:

 激发光谱的形状与发射波长无关,发射光谱的形状与激发波长无关,变化的只是If—光谱曲线高低;在最大激发波长和最大发射波长下,荧光强度最大。  Stokes位移:λem>λex(>20 nm)。

 同一物质的激发光谱与吸收光谱形状相似,最大激发波长与最大吸收波长一致。  同一组分的激发光谱(吸收光谱)波长最短,磷光波长最长,荧光波长处于中间。 荧光强度与浓度关系:If=Kc (必须A<0.05) 荧光与分子结构的关系(内因):

1.共轭π键体系:提高共轭程度有利于增加荧光效率,并产生红移。 2.刚性平面结构:刚性和平面性增加,有利于荧光发射。

3.取代基效应:给电子取代基增强荧光;的电子取代基减弱荧光、加强磷光;对位、邻位取代基增强荧光,间位取代基抑制荧光。

4.电子跃迁类型:含N、O、S杂原子的有机物,S1→T1系间窜跃强烈,荧光很弱或不发荧光。不含N、O、S原子的有机荧光体系多发生π→π*类型的跃迁,这是电子自旋允许的跃迁,摩尔吸收系数大,荧光辐射强。

影响荧光强度的因素(外因): 1.荧光猝灭

2.温度、酸度和溶剂影响 3.表面活性剂影响

荧光分析仪器组成:激发光源、样品池、双单色器系统、检测器、显示器。特殊点:有两个单色器,光源与检测器通常成直角。

激发光源:高压汞灯、高压氙弧灯:强度高、紫外可见区有连续光谱。 样品池:四面透光的比色皿,手拿棱或者最上端。 双单色系统:

激发单色器:选择激发光波长。 发射单色器:选择发射光波长。

紫外可见分光光度计构成和荧光分光光度计构成: 紫外:光源-单色器-样品池-检测器-数据处理

荧光:光源-激发单色器-样品池-发射单色器-检测器-数据处理 磷光特点:

 磷光波长比荧光的长(T1

 磷光寿命和强度对重原子敏感。 荧光定量分析法:If=Kc

1.工作曲线法(直接荧光工作曲线法最常用,还有荧光淬灭工作曲线法) 2.比较法:

Ifx—样品溶液的荧光强度 Ifs—标准溶液的荧光强度 If0—试剂空白的荧光强度

荧光分析法特点:

灵敏度高:比紫外-可见分光光度法高2~4个数量级 选择性好:可同时用激发光谱和荧光发射光谱定性 重现性好 取样量少 仪器不复杂

缺点:应用范围小

化学发光法:与荧光相同的是都电子从激发态跃迁到基态时放出辐射,不同的是荧光靠吸收紫外-可见光,化学是吸收化学能。 化学发光类型:气相化学发光、液相化学发光、固相化学发光、异相化学发光。 化学发光分析装置:进样系统-发光反应室-光检测器PMT-信号放大器-显示与记录发光反应可采用静态或流动注射的方式进行:

静态方式:用注射器分别将试剂加入到反应器中混合,测最大光强度或总发光量;试样量小,重复性差;

流动注射方式:用蠕动泵分别将试剂连续送入混合器,定时通过测量室,连续发光,测定光强度;试样量大。

化学发光分析特点: 1.灵敏度高 2.仪器设备简单

3.发射光强度测量无干扰 4.线性范围宽 5.分析速度快

缺点:可供化学发光用的试剂少、发光反应效率低、研究少。 课后题:

9.分离分析法(这章计算多,建议看PPT)

要求:

1.色谱分析法简介(掌握概念和分离原理) 2.色谱分析法的分类* 3.色谱图及色谱常用术语* 4.搭板理论和速率理论、分离度* 5.色谱定性和定量方法* 分离分析法:利用样品中共存组分间各种性能上的差异,西安将他们分离然后进行分析测定的分析方法。分为色谱分析法、高效毛细管电泳法、色谱-质谱联用法、色谱-光谱、波谱联用法。 色谱分析法简介:色谱法是一种分离分析方法。它利用样品中各组分与流动相和固定相的作用力不同(吸附、分配、交换等性能上的差异),先将它们分离,后按一定顺序检测各组分及其含量的方法。

色谱法分离原理:当混合物随流动相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按一定顺序从柱中流出。这种利用各组分在两相中性能上的差异,使混合物中各组分分离的技术,称为色谱法。色谱法与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 色谱法的特点: (1)分离效率高

复杂混合物,有机同系物、异构体。 (2) 灵敏度高

可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。 (3) 分析速度快

一般在几分钟或几十分钟内可以完成一个试样的分析。 (4) 应用范围广

气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。 (5)高选择性:对性质极为相似的组分有很强的分离能力. 不足之处:

被分离组分的定性较为困难 色谱分析法的分类

 按两相状态分类:气相色谱(GC)、液相色谱(LC)、超临界流体色谱(SFC)。

 按操作形式分类:柱色谱(CC,固定相装在管柱内)、纸色谱(PC,固定相为滤纸,采用适当溶剂在滤纸上展开进行分离)、薄层色谱(TLC,固定相压成土层或涂成薄层)

 按分离原理分类:吸附色谱(利用固体吸附剂表面对各组分吸附能力不同进行分离)、分配色谱(利用固定液对各组分溶解能力不同进行分离)、离子交换色谱(利用离子交换剂对各组分的亲和力不同进行分离)、凝胶色谱(利用凝胶对分子大小、形状不同的组分产生的阻滞作用不同进行分离)。

气相色谱:流动相为气体。常用的气体流动相为N2,H2,He。按分离柱不同分为:填充柱色谱和毛细管柱色谱;按固定相不同分为:气固色谱和气液色谱。

液相色谱:流动相为液体。常用液体流动相为H2O,CH3OH等液体。按固定相不同分为:固液色谱和液液色谱。

固定相可分为固体吸附剂和涂在固体载体上或毛细管内壁上的液体。

超临界流体色谱:流动相为超临界流体。超临界流体是一种介于气体和液体之间的状态,具有介于气体和液体之间的极有用的分离性质。常用的超临界流体有CO2,NH3,CH3CH2OH,CH3OH等。 超临界流体色谱法是集气相色谱法和液相色谱法的优势而发展起来的一种新型的色谱分离分析技术,不仅能够分析气相色谱不宜分析的高沸点、低挥发性的试样组分,而且具有比高效液相色谱更快的分析速率和更高的柱效率。 色谱图:组分在检测器上产生的信号强度对时间(t)所作的图,由于它记录了各组分流出色谱柱的情况,所以又叫色谱流出曲线。流出曲线的突起部分称为色谱峰。 基本术语:

1.基线:在正常实验操作条件下,没有组分流出,仅有流动相通过检测器时,检测器所产生的响应值。稳定的基线是一条直线,若基线下斜或上斜,称为漂移,基线的上下波动,称为噪音(或噪声)。 2.色谱峰:

① 峰高h:从色谱峰顶到基线的距离

② 区域宽度:色谱峰的区域宽度用来衡量色谱柱的效率及反映色谱分离过程的动力学因素。

•标准偏差σ:0.607倍峰高处色谱峰宽度的一半。

•峰底宽Y或Wb:色谱峰两个拐点处所作切线与基线相交点之间的距离

Y=4σ

•半峰宽Y1/2:色谱峰高一半处的宽度

③ 峰面积A:色谱峰与峰底之间的面积;是色谱定量的依据。 对称色谱峰面积:

3.色谱保留值:(详看PPT,太几把多了)

①时间表示的保留值

②体积表示的保留值

③相对保留值

搭板理论:

速率理论: 分离理论:

色谱定性分析方法: 1.与标样对照的方法 利用保留值定性:通过对比试样中具有与纯物质相同保留值的色谱峰,来确定试样中是否含有该物质及在色谱图中的位置。不适用于不同仪器上获得的数据之间的对比。 利用加入法定性:将纯物质加入到试样中,观察各组分色谱峰的相对变化。 2.利用文献保留值定性: 利用相对保留值r21定性

相对保留值r21仅与柱温和固定相性质有关。在色谱手册中都列有各种物质在不同固定相上的保留数据,可以用来进行定性鉴定。

3.保留指数:又称Kovats指数(Ⅰ),是一种重现性较好的定性参数。 色谱定量分析方法: 1.定量校正因子

2.定量方法:归一化法、外标法、内标法

气相色谱(GC)

要求:

1.气相色谱仪工作过程 2.气相色谱仪主要部件* 3.气相色谱检测器(掌握类型,了解原理) 4.气相色谱固定相 5.操作条件的选择 6.毛细管柱气相色谱 7.气相色谱法的应用

高效液相色谱(HPLC)

要求:

1.高效色谱法的特点

2.高效液相色谱仪工作流程和主要部件* 3.高效液相色谱法类型* 4.固定相和流动相* 5.化学键合相色谱法** 6.影响分离的因素

7.HPLC分离类型的选择 8.高效液相色谱法的应用 高效色谱法特点:高压、高速、高效、高灵敏度、高沸点、热不稳定有机物及生化试样的高效分离分析方法。

工作流程:高压泵将贮液罐的溶剂经进样器送入色谱柱中,然后从检测器的出口流出。当待分离样品从进样器进入时,流经进样器的流动相将其带入色谱柱中进行分离,然后以先后顺序进入检测器,记录仪将进入检测器的信号记录下来,得到液相色谱图。

主要部件:高压输液系统、进样系统、分离系统、检测系统、数据处理系统。

流动相:由于高效液相色谱中流动相是液体,它对组分有亲和力,并参与固定相对组分的竞争。因此,正确选择流动相直接影响组分的分离度。 对流动相要求:

 流动相不与色谱柱发生不可逆化学变化,以保持柱效或柱子的保留性质较长时间不变。  对待测样品有足够的溶解能力,以提高测定的灵敏度。

 与所用检测器相匹配。如应用紫外吸收检测器时,不能用对紫外光有吸收的溶剂。  粘度尽可能小,以获得较高的柱效。

 流动相纯度要高,价格便宜,毒性小。不纯溶剂会引起基线不稳,或产生“伪峰”。溶剂中痕量杂质的存在,长期积累会导致检测器噪声增加,同时也影响手机的馏分纯度。 对固定相要求:  粒径较小且分布均匀  机械强度高,耐压  传质速度快  化学性质稳定,不与流动相发生反应。 化学键合相色谱法: 化学键合固定相:

化学键合固定相是利用化学反应将有机分子键合到载体表面上,形成均

一、牢固的单分子薄层而构成各种性能的固定相。 载体:硅胶

键合反应:酯化键合(Si-O-C型)、硅烷化键合(Si-O-Si-C型)、硅氮键合( Si-N型) 存在双重分离机制: 高覆盖率:分配为主 地覆盖率:吸附为主 化学键合固定相特点:

 固定相不易流失,柱的稳定性和寿命较高  能耐受各种溶剂,可用于梯度洗脱

 表面较为均一。没有液坑,传质快,柱效高

 能键合不同基团以改变其选择性。例如,键合氰基、氨基等极性基团用于正相色谱法,键合离子交换基团用于离子色谱法,键合C2,C4,C6,C8,C18,C16,C18,C22烷基和苯基等非极性基团用于反相色谱法等。 因此它是HPLC较为理想的固定相。

反相键合相色谱法是HPLC中应用最广的模式,优点:

(1)用单柱和流动相常常就能分离非离子化合物、离子化合物和可电离化合物,有时能同时分离它们;

(2)若采取某些措施,尤其是控制pH,则键合相柱会比较稳定,利于组分的分离;

(3)作为流动相主体的水价廉易得,流动相的紫外截止波长低(水为195nm,甲醇为205nm,乙腈为190nm),本底吸收少,有利于痕量组分的测定; (4)更换溶剂和梯度洗脱非常方便。 影响分离的因素; 1.提高柱效 2.流速

3.固定相和分离柱 分离类型选择:

①根据相对分子质量选择 ②根据溶解度选择 ③根据分子结构选择

思考题:教材思考题与习题第

6、

7、9题。

质谱分析(Mass Spectrometry, MS)

要求:

1.质谱定义*、作用、质谱分析基本原理*、质谱分析过程 2.质谱仪主要部件及作用* 3.质谱的表示方法

4.质谱中主要离子峰的类型*

质谱法定义:质谱法是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。

质谱图:质谱图是以m/z为横坐标,离子相对强度为纵坐标来表示质谱数据。由质谱图很直观地观察到整个分子的质谱信息。

有机化合物分析四大工具:红外吸收光谱、紫外-可见吸收光谱、核磁共振波谱、质谱。 质谱的作用:

 准确测定物质的分子量

 质谱法是唯一可以确定分子式的方法  根据碎片特征进行化合物的结构分析

质谱法原理:质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比(m/z)的大小依次排列收集成质谱。根据质谱中的分子离子峰(M•+)可以获得样品分子的相对分子质量信息;根据各离子峰(分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等)及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。

质谱分析过程:进样-离子化-撞击形成碎片离子-正电荷离子被加速电场加速-加速正离子进入磁场发生偏转-按质荷比分离形成质谱图。

质谱仪主要部件:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。 真空系统:减少离子碰撞损失

进样系统:高效重复将样品引入到离子源中并且不能造成真空度降低。

离子源或电离室:使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率。分为电子电离源、化学电离源、快原子轰击源、电喷雾源。

质量分析器:将离子源产生的离子按质荷比的大小分开。分为单聚焦分析器、双聚焦分析器、四级杆质量分析器、飞行时间质量分析器、离子阱质量分析器。 离子检测器:电子倍增管、渠道式电子倍增管阵列。 质谱的表示方法:

 质谱一般可用线谱或表谱两种方法表示。常用线谱。

 线谱上的各条直线表示一个离子峰,横坐标为质荷比m/z,纵坐标为离子的相对强度(相对丰度),一般将原始质谱图上最强的离子峰定为基峰并定为相对强度100%,其他离子峰以对基峰的相对百分值表示。能够很直观地观察到整个分子的质谱全貌。

 质谱表是用表格形式表示的质谱数据,质谱表中有两项即质荷比及相对强度。对定量计算较直观。

质谱图中主要离子峰的类型:  分子离子峰  同位素离子峰  碎片离子峰  亚稳离子峰  重排离子峰 质谱定性分析:  利用标准谱库检索  利用标准化合物  利用文献资料的数据 质谱定量分析:

归一化法、内标法、外标法

先进行定性分析,而后利用选择离子检测的选择离子流色谱图,一般不选择总离子流色谱图,因为选择离子流色谱图给出的色谱峰相对稳定,不受干扰,定量结果较可靠。 本章没有练习题

第四篇:仪器分析实验总结

1014061525 虞梦娜

一、红外光谱仪实验报告 1. 仪器结构

仪器设备:SHIMADZU IRPresting-21型傅立叶变换红外光谱仪

SHIMADZU IRPresting-21 仪器结构:

傅傅立叶变换红外光谱仪的工作原理图

固定平面镜、分光器和可调凹面镜组成傅立叶变换红外光谱仪的核心部件-迈克尔干涉仪。由光源发出的红外光经过固定平面镜反射镜后,由分光器分为两束:50%的光透射到可调凹面镜,另外50%的光反射到固定平面镜。

可调凹面镜移动至两束光光程差为半波长的偶数倍时,这两束光发生相长干涉,干涉图由红外检测器获得,经过计算机傅立叶变换处理后得到红外光谱图。

IRPresting-21型傅立叶变换红外光谱仪具300入射迈克尔逊密闭型干涉仪,单光束光学系统,空冷陶瓷光源,镀锗KBr基片分束器,温度可调的DLATGS检测器,波数范围7,800~350cm-1,S/N大于40000∶1(4cm-1,1分钟,2100cm-1附近,P—P),具有自诊断功能和状态监控器。可收集中红外、近红外、远红外范围光谱。

常用红外光谱-红外光谱仪

①棱镜和光栅光谱仪

光栅光谱仪

属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息。

②傅里叶变换红外光谱仪 它是非色散型的,核心部分是一台双光束干涉仪,常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。

傅里叶变换红外光谱仪

傅里叶变换光谱仪的主要优点是: ①多通道测量使信噪比提高;

②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度; ③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米-1; ④增加动镜移动距离就可使分辨本领提高;

⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实现。

上述各种红外光谱仪既可测量发射光谱,又可测量吸收或发射光谱。当测量发射光谱时,以样品本身为光源;测量吸收或反射光谱时,用卤钨灯、能斯脱灯、硅碳棒、高压汞灯(用于远红外区)为光源。所用探测器主要有热探测器和光电探测器,前者有高莱池、热电偶、硫酸三甘肽、氘化硫酸三甘肽等;后者有碲镉汞、硫化铅、锑化铟等。常用的窗片材料有氯化钠、溴化钾、氟化钡、氟化锂、氟化钙,它们适用于近、中红外区。在远红外区可用聚乙烯片或聚酯薄膜。此外,还常用金属镀膜反射镜代替透镜。 2.实验原理

(1)原理概述:红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。

3.操作步骤

(1)开机前准备

开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%时才能开机。 (2)开机

始终保持红外光谱仪右下侧黄色灯亮(除湿器指示灯);开机时,首先打开右下侧仪器电源开关,此时绿灯亮,稳定半小时,使得仪器能量达到最佳状态。开启电脑,点击用户名Administrator,输入密码,并运行仪器操作平台IRsolution软件,status栏显示仪器自检,约十几秒后窗口右方出现4个绿色方块,自检完成,表示仪器正常,可以开始使用。 (3)制样

固体样品(溴化钾压片法):取预先烘干的固体样品1~1.5 mg与KBr 200~300 mg(样品与KBr的比约为1:200)于玛瑙研钵中,研磨成混合均匀的粉末(粒度小于2微米)。如果KBr和固体样品不够干燥,研磨时要用红外灯烘干。用小药匙转入制片模具中,于油压机6~8吨压力下保持约5分钟,撤去压力后取出制成的半透明薄片,装入样品架。

液体样品(液膜法):取两片氯化钠盐片,用洁净的棉球沾少许溶剂将表面擦干净,待溶剂挥发后,滴一小滴试样在盐片上,将另一盐片压在上面,使试样均匀铺散在盐片中间形成液膜,中间不能有气泡。然后将其装入可拆式夜池架中,轻轻用螺丝固定好,插入仪器试样池中测绘谱图。 (4)扫描和输出红外光谱图

测试红外光谱图时,先在measure模式下按BKG键扫描背景(用KBr片做背景),一般背景信号强度在80%以上,否则能量太低,样品信号噪音大;在Comment栏中输入备注,在Data file中选择样品谱图存储路径(E盘个人文件夹),按sample键扫描样品信号,得到样品红外光谱图;根据需要保存红外光谱图,或者导出ASC码文本文档,或打印。 (5)关机

(1)关机时,先关闭IR solution软件,关闭电脑主机,再关闭光谱仪电源,盖上仪器防尘罩。

(2)在记录本记录使用情况。 (6)注意事项

(1)保持实验室整洁和干燥,不得在实验室内进行样品化学处理,实验完毕即取出样品。 (2)样品室窗门应轻开轻关,避免仪器振动受损。 (3)眼睛不要注视激光光源,以免受伤害。

(4)实验操作中,避免用手直接接触锭剂成型器表面,以防样品受潮,无法制样;要用镊子从锭剂成型器中取出压好的薄片,而不能用手拿,以免玷污薄片。

(5)固体样品压片法时,试样量必须合适。试样量过多,试样晶片太“厚”,透光率差,导致收集到的谱图中强峰超出检测范围;试样量太少,晶片太“薄”,收集到的谱图信号信噪比差。

(6)液体样品测定时,可拆式液体池的盐片应保持透明干燥,切不可用手接触盐片表面;盐片不能用水冲洗。以试样溶于有机溶剂,制成1~10%浓度的溶液,注入适宜厚度的液体池中测定;常用溶剂有二氯甲烷、四氯化碳、三氯甲烷、二硫化碳、己烷及环己烷等,不可用水做试样溶剂;使用完后,用相应溶剂立即将液体池清洗干净。

(7)压片机下未放压片模具时,不能进行压杆操作,避免超出可操作范围。 (8)压片完成后将试样配件,特别是压片模具擦拭干净,必要时用乙醇或水清洗干净并擦干,置干燥器中保存,以免锈蚀。 (9)不得随意改变软件参数。

(10)本仪器由专人保管,使用人员在上机前必须经过培训,待考核通过后,方可上机使用。

4.应用

(1)定性分析和结构分析:红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具。

(2)定量分析:红外光谱有许多谱带可供选择,更有利于排除干扰。红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103吸收池厚度小、单色器狭缝宽度大,测量误差也较大。对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法。

举例:有一化合物分子式为C7H6O2,其红外光谱如下图,试推断其结构。

由图观察可得出:

(1)U=1+7+0.5×(-6)=5,可能有苯环、双键各一个。 (2)1684cm-1强峰是C=O吸收(对不饱和贡献为1)。

(3)在3300-2500cm-1区域有宽而散的O-H吸收峰;935cm-1为羧酸二聚体的 O-H吸收;-1400和-1300cm-1为羧酸的C-O和O-H吸收。

(4)1600、1582cm-1是苯环的C=C特征吸收;3070、3012cm-1是苯环的C-H特征 吸收;7

15、699cm-1是单取代苯的特征吸收。因此分子中肯定存在苯环结构(对不饱和贡献为4),并具有羧酸的特征吸收,所以是芳酸。又因C=O在较低频率的1684cm-1,这表明:羧基直接与苯环相连。综上所述,该化合物结构为苯甲酸——

OCOH

二、紫外­可见分光光度计实验报告

1.仪器结构 ○1.仪器的分类

紫外­可见分光光度计按使用波长范围可分为:可见分光光度计和紫外­可见分光光度计两类(统称为分光光度计)。前者的使用波长范围是400~780 nm;后者的使用波长范围为200~1000 nm。可见分光光度计只能用于测量有色溶液的吸光度,而紫外­可见分光光度计可测量在紫外、可见及近红外光区有吸收的物质的吸光度。紫外-可见分光度计按光路可分为单光束式及双光束式两类;按测量时提供的波长数又可分为单波长分光光度计和双波长分光光度计两类。

○2.仪器的基本组成部分

目前,紫外­可见分光光度计的型号较多,但它们的基本构造都相似,都由光源、单色器、样品吸收池、检测器和信号显示系统等五大部件组成,其组成框图见图2­1 。

由光源发出的光,经单色器获得一定波长单色光照射到样品溶液,被吸收后,经检测器将光强度变化转变为电信号变化,并经信号指示系统调制放大后,显示或打印出吸光度A(或透射比τ),完成测定。

(1)光源 光源是提供入射光的装置。可见光区常用的光源为钨灯,可用的波长范围为350~1000 nm;紫外光区常用的光源为氢灯或氘灯(其中氘灯的辐射强度大,稳定性好,寿命长,因此近年生产的仪器多使用氘灯),它们发射的连续波长范围为180~360 nm。

(2)单色器 单色器是将光源辐射的复合光分成单色光的光学装置。单色器一般由狭缝、色散元件及透镜系统组成,其中色散元件是单色器的关键部件。最常用的色散元件是棱镜和光栅(现在的商品仪器几乎都使用光栅) 。 (3)吸收池 吸收池是用于盛装被测量溶液的装置。一般可见光区使用玻璃吸收池,紫外光区使用石英吸收池。紫外­可见分光光度计常用的吸收池规格有:0.5cm、1.0cm、2.0cm、3.0cm、5.0cm等,使用时,根据实际需要选择。 (4)检测器 检测器是将光信号转变为电信号的装置。常用的检测器有硒光电池、光电管、光电倍增管和光电二极管阵列检测器。硒光电池结构简单,价格便宜,但长时间曝光易“疲劳”,灵敏度也不高。光电管的灵敏度比硒光电池高。光电倍增管不仅灵敏度比普通光电管灵敏,而且响应速度快,是目前高、中档分光光度计中最常用的一种检测器。光电二极管阵列检测器是紫外­可见光度检测器的一个重要进展,它具有极快的扫描速度,可得到三维光谱图。

(5)信号显示器

信号显示器是将检测器输出的信号放大并显示出来的装置。常用的装置有电表指示、图表指示及数字显示等。现在很多紫外­可见分光光度计都装有微处理机,一方面将信号记录和处理,另一方面可对分光光度计进行操作控制。

2.仪器工作原理

物质的紫外­可见光谱直接地反映了物质分子的电子跃迁,与物质的结构直接相关,不同的物质其紫外­可见吸收光谱不同。而吸收强弱又与吸光物质的量有关。因此可以由物质光谱的特异性对物质进行定性分析,并根据吸收强度对物质作定量测试。在一定的条件下,吸光物质对单色光的吸收符合朗伯­比尔定律,即

A=εbc

上式中 A为吸光度;b为光程长度(即吸收池厚度),单位为cm;c为吸光物质的物质的量浓度,单位为 mol/L;ε为摩尔吸光系数,单位为 L/(mol.cm);由上式可知,当 b、ε一定时,吸光物质的吸光度为其浓度c的单值(线性)函数。因此对吸光物质的浓度的测试可直接归结为对吸光度 A的测试。

3. UV-3600紫外分光光度计基本操作步骤: (1)操作步骤

1.首先打开紫外分光光度计的电源,然后再打开计算机的电源。 2.双击桌面上的“UVProbe”快捷键,进入主菜单。

3.单击菜单中下部“Connect”图标,紫外分光光度计开始自检。

4.待所有自检项目结束(各项自检条目均亮绿灯)后,单击“OK”图标。 5.于仪器检测室内放入盛有相同检测媒介(不含样品)的对比池(靠内)和样品池(靠外), 单击“Baseline”图标进行背景扫描。

6.待背景扫描结束后,取出样品池,加入待检测样品,然后放回检测室,单击“Auto Zero”图标进行调零。

7.待调零结束后,单击“Start”图标开始扫描。

8.扫描结束后,屏幕会跳出“New Data Set”对话框,请在“File”栏自己建立路径和文档名,然后单击“OK”图标。接着单击菜单左上角的“Save”图标,最终完成文件的存储。如要转换成ASCII码文件,请单击菜单左上角的“File”图标,然后在其下拉菜单中单击“Save as...”图标,跳出“Save Spectrum File”对话框,单击“保存类型(T)”栏,并在其下拉菜单中选择“Data Print Table(*.txt)”这一栏,自己给此文件建立路径和名字后,单击“保存(s)”键即完成ASCII码文件的转换工作。 9.取出样品池,经处理后进行下一次实验。

10.多次测样时,若检测媒介未变,请重复6-9操作步骤;若检测媒介已变,请重复5-9操作步骤。

11.测样结束后,先关掉此软件,然后关掉计算机电源,最后关掉紫外分光光度计电源。若该计算机另有它用,可同时按住[Alt]+[F4]键,然后按[Enter]键结束程序后再关掉紫外分光光度计电源。

12.实验结束后,用重铬酸钾洗液浸泡样品池两分钟,接着用去离子水洗涤干净,然后用分析纯丙酮洗涤,在室温下吹干后放入池盒中,以方便下一次实验的进行。

(2)日常维护和保养

① 光源

光源的寿命是有限的,为了延长光源使用寿命,在不使用仪器时不要开光源灯,应尽量减少开关次数。在短时间的工作间隔内可以不关灯。刚关闭的光源灯不能立即重新开启。仪器连续使用时间不应超过3h。若需长时间使用,最好间歇30min。如果光源灯亮度明显减弱或不稳定,应及时更换新灯。更换后要调节好灯丝位置,不要用手直接接触窗口或灯泡,避免油污沾附。若不小心接触过,要用无水乙醇擦拭。

② 单色器

单色器是仪器的核心部分,装在密封盒内,不能拆开。选择波长应平衡地转动,不可用力过猛。为防止色散元件受潮生霉,必须定期更换单色器盒干燥剂(硅胶)。若发现干燥剂变色,应立即更换。

③ 吸收池

必须正确使用吸收池,应特别注意保护吸收池的两个光学面。为此必须做到:

1) 测量时,池内盛的液体量不要太满,以防止溶液溢出而侵入仪器内部。若发现吸收池架内有溶液遗留,应立即取出清洗,并用纸吸干。 2) 拿取吸收池时,只能用手指接触两侧的毛玻璃,不可接触光学面。 3) 不能将光学面与硬物或脏物接触,只能用擦镜纸或丝绸擦试光学面。 4) 凡含有腐蚀玻璃的物质(如F­、SnCl

2、H3PO4等)的溶液,不得长时间盛放在吸收池中。

5) 吸收池使用后应立即用水冲洗干净。有色物污染可以用3mol/L HCl和等体积乙醇的混合液浸泡洗涤。生物样品、胶体或其它在吸收池光学面上形成薄膜的物质要用适当的溶剂洗涤。

6) 不得在火焰或电炉上进行加热或烘烤吸收池。

④ 检测器 光电转换元件不能长时间曝光,且应避免强光照射或受潮积尘。 ⑤ 当仪器停止工作时,必须切断电源。

⑥ 为了避免仪器积灰和玷污,在停止工作时,应盖上防尘罩。

⑦ 仪器若暂时不用要定期通电,每次不少于20~30min,以保持整机呈干燥状态,并且维持电子元器件的性能。

4.应用

紫外吸收光谱在生产、科研的众多领域有着十分广泛的应用。主要应用于定性分析、定量分析、纯度检测、化合物结构的推测[6]、氢键强度的测定。 (1) 定性分析

利用紫外吸收光谱鉴定有机化合物,其主要依据是化合物的特征吸收特征。如吸收曲线的形状、吸收峰数目以及各吸收峰波长及摩尔吸收系数。用紫外光谱进行定性鉴定的化合物必须是纯净的,并按正确的操作方法用紫外分光光度计绘出吸收曲线,然后根据该化合物的吸收特征作出初步判断。 如果化合物的紫外光谱在220-400nm范围内没有吸收带,则可以判断该化合物可能是饱和的直链烃、脂环烃、或其它饱和的脂肪族化合物或只含一个双键的烯烃等。如果化合物只在270-350nm有弱的吸收带,则该化合物必含有n电子的简单非共轭发色基团,如羰基、硝基等。如果化合物在210-250nm范围有强的吸收带,且ε>104,这是K吸收带的特征,则表明该化合物可能是含有共轭双键的化合物。如果吸收带出现在260-300nm范围内,则表明该化合物存在3个或3个以上共轭双键,如吸收带进入可见光区,则表明该化合物是长共轭发色基团的化合物或是稠环化合物。如果化合物在250-300nm范围内有中等强度吸收带,ε在103-104范围内,这是B吸收带的特征,因此表明该化合物可能含有苯环。 (2)定量分析

紫外可见光谱擅长与定量分析[7]。紫外分光光度法就是基于紫外可见吸收光谱的应用。紫外光谱在化合物含量测量方面的应用比其在化合物定性分析测定方面具有更大的优越性,方法的灵敏度高,准确性和重现性都很好,应用非常广泛。只要对金紫外光有吸收或可能吸收的化合物,均可用紫外可见分光光度法测定。

仅药物分析来说,利用紫外吸收光谱进行定量分析的例子很多,例如一些国家已将数百种药物的紫外系吸收光谱的最大吸收波长和吸收系数载入药典。 紫外分光光度法可方便的用量来直接测定混合物某些组分的含量,如环己烷中的苯,四氯化碳中的二硫化碳,鱼肝油中的维生素A等。 (3)纯度检查 紫外吸收光谱能测定化合物中含有微量的具有紫外吸收的杂质。如果一个化合物在紫外可见光区没有明显的吸收峰,而其的杂质在紫外区有较强的吸收峰,就可检出化合物中所含有的杂质(乙醇/苯,苯 λmax=256nm)。如果一个化合物在紫外可见光区有明显的吸收峰,可利用摩尔吸光系数(吸光度)来检查其纯度。 (4)化合物结构的推测

化合物的紫外可见吸收光谱基本上是分子中发色基团和助色基团的特性,而不是整个分子的特性,所以单独从紫外吸收光谱不能完全确定化合物的分子结构,必须与红外光谱、核磁共振、质谱及其它方法配合,才能得出可靠的结论。紫外可见光谱在研究化合物的结构中的主要作用是推测官能团、结构中的共轭体系以及共轭体系中的取代基的位置、种类和数目等。 (5)氢键强度的测定

在实际应用中,不同的极性溶剂产生氢键的强度不同,可以利用紫外可见光谱来测定化合物在不同溶剂中的氢键强度,以确定选择哪一种溶剂。异丙叉丙酮的n π*吸收带在环己烷、乙醇、甲醇及水溶液中的λmax分别为335nm、320nm、312nm和300nm,假定这种λmax的移动完全由溶剂的氢键所引起,可利用一定公式计算每种溶剂中的氢键强度(极性溶剂分子与羰基氧形成了氢键,使n轨道能级降低而趋向稳定化,当n电子实现n π*跃迁时,需要增加一定的能量来克服氢键的能量)。

三、PL荧光分光光度计实验报告 1. 仪器结构

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。基本结构和原理如图所示。

①光源

光源应具有强度大、适用波长范围宽两大特点,常用光源有高压汞灯、氙灯、氙一汞弧灯等。此外,紫外激光器、固体激光器、高功率连续可调染料激光器和二极管激光器等荧光光源把荧光法的应用范围拓宽。 ②滤光片和单色器

在荧光光度计中,通常采用干涉滤光片和吸收滤光片作为激发光束和荧光辐射的波长选择器。在荧光分光光度计中至少选用一个,而常常是用两个光栅单色器,且均带有可调狭缝,以供选择合适的通带。理想的单色器应在整个波长区内有相同的光子通过效率,不幸的是这种理想的单色器不存在。 ③ 检测器

一般普通的荧光分光光度计均采用光电倍增管作为检测器。它是很好的电流源,在一定条件下其电流量与人射光强度成正比。此外,还有光导摄像管、电子微分器、电荷耦合器阵列检测器。 ④ 显示装置

以前,显示装置有数字电压表,记录仪和阴极示波器等,现在,人们可以通过计算机软硬件技术根据不同要求,来选择不同的直观的视频读出方式。

2. 荧光分光光度计的工作原理

物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光。不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。

测量原理:稀溶液

IF=2.303φFI0εcb

其中,I0为激发光强度;If为荧光强度;υf为荧光效率; b为液池厚度; ε和c分别为发光物质的摩尔吸光系数和摩尔浓度。

3. 操作步骤

设备名称:荧光分光光度计 型 号:RF-5301PC型 国别厂家:日本岛津公司 技术指标:

波长扫描范围:220-900nm 波长精度:±1.5nm; 狭缝范围:0.15-20nm 信噪比:S/N比150以上(水拉曼峰测定,狭缝5nm) 最高扫描速度:5500nm/min (1)开机

a. 确认所测试样液体或固体,选择相应的附件。

先开启仪器主机电源,预热半小时后启动电脑程序RF-530XPC,仪器自检通过后,即可正常使用。 (2)测样 (1) spectrum模式

在“Acquire Mode”中选择“Spectrum”模式。

对于做荧光光谱的样品,“Configure”中“Parameters”的参数设置如下: “Spectrum Type”中选择Emission;给定EX波长;给定EM的扫描范围(最大范围220-900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”完成参数的设定。

对于做激发光谱的样品,“Configure”中“Parameters”的参数设置如下: “Spectrum Type”中选择Excitation;给定EM波长;给定EX的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”,完成参数的设定。

在样品池中放入待测的溶液,点击“Start”,即可开始扫描。

扫描结束后,系统提示保存文件。可在“Presentation”中选择“Graf” 、“Radar”、“Both Axes Ctrl+R”来调整显示结果范围;在“Manipulate” 中选择“Peak

Pick”来标出峰位,最后在“Channel”中进行通道设定。

述操作步骤对固体样品同样适用。 (2) Quantitative模式

a. 在“Acquire Mode”中选择“Quantitative”模式。 b. “Configure”中“Parameters”的参数设置如下:

Method 选择“Multi Point Working Curve” ;“Order of Curve” 中选择 “1st和“No” ;给定EX、EM波长;设定狭缝宽度,点击“OK”,完成参数的设定。 在样品池中放入装有空白溶液的比色皿后执行“Auto Zero” 命令校零点。 点击“Standard”模式,制作工作曲线。

将样品池中的空白溶液换成一系列的已知浓度的样品标准溶液进行测量,执行“Read”命令,得到相应的荧光强度,系统根据测量值自动生成一条“荧光强度-浓度”曲线。

在“Presentation” 中选择“Display Equation”,得到标准方程。将此工作曲线 “Save”为扩展名为“.std”的文件。

工作曲线制备完毕,即可进入未知样的测量,选择进入“Unknown”模式,将样品池中的已知浓度标准溶液换成待测样品溶液,执行“Read”命令,即可得到相应的荧光强度和相应的浓度。将此 “Save”为扩展名为“.qnt”的文件。 (3) Time Course模式

a. 在“Acquire Mode”中选择“Time Course”模式。 b. “Configure”中“Parameters”的参数设置如下:

给定EX、EM波长;设定狭缝宽度;设定反应时间;读取速度;读取点数; 点击“OK”,完成参数的设定。 c. 在样品池中放入装有空白溶液的比色皿后执行“Auto Zero” 命令校零点。 d. 将样品池中的空白溶液换成待测溶液,点击“Start”,即可开始扫描。扫描结束后,即可得到荧光强度对时间的工作曲线。 e. 将此工作曲线“Save”为扩展名为“.TMC”的文件。 (3)关机

退出软件后关闭主机。 注意事项

请注意爱护液体比色皿,特别是测试有机样品的同学请在测量完毕后用有机溶剂清洗,干燥后再放入盒子中,否则会造成比色皿表面严重污染,影响透光度。

4.应用

(1)无机化合物的分析

与有机试剂配合物后测量;可测量约60多种元素。

铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法;

氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测定;

铬、铌、铀、碲采用低温荧光法测定;

铈、铕、锑、钒、铀采用固体荧光法测定 (2)生物与有机化合物的分析 见表

(3)荧光探针

与蛋白质或其他大分子结构非共价相互作用而使一种或几种荧光性质发生改变的小分子物质。可用于研究大分子物质的性质和行为。目前常用的荧光探针有荧光素类探针、无机离子荧光探针、荧光量子点、分子信标等。 荧光探针除应用于核酸和蛋白质的定量分析外,在核酸染色、DNA电泳、核酸分子杂交、定量PCR技术以及DNA测序上都有着广泛的应用。

第五篇:《仪器分析》问题学习法总结

《仪器分析》问题学习法心得体会

虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

张玲老师教导我们学习时,针对我们的学习内容,给我们布置了六个问题,让我们自己查找资料,设计出解决方案。这种问题学习法让我们带着问题去学习,使我们对所学的内容了解的更深、更透彻,对所学的知识掌握的更牢固,同时也开阔了我们的视野,增长了我们的见识。通过问题学习法,我有以下心得体会:

一、增强了对所学知识的掌握

以前,我们做实验,写实验报告都是照着实验书上抄的,很少考虑实验的条件、实验的影响因素等。但问题学习法,所有的问题我们都要自己解决。因此,实验的方法原理、实验所需要的仪器和试剂、实验条件、样品的处理、为什么选用这种方法等等问题都需要我们考虑。这些都需要我们对所学的知识有全面的、彻底的了解。所以,在不知不觉中我们对知识的掌握愈来愈牢固。

二、 增强了动手能力

虽然我们好几个人一个小组,但我们设计的实验方案不得抄袭,不能雷同。所有的事都要我们自己去做,所有的问题都要我们自己解决。同时,你还可以做一个相关的PPT上去讲,锻炼自己,这些都增强了我们的动手能力、实践能力。我还有一个遗憾,就是由于时间比较紧,我做的PPT比较简陋、粗糙,讲的也不怎么好。可是机不可失失不再来,已经没有机会了。

三、 开阔了视野

由于做每一个问题的解决方案时,我们都要上网去查找大量的资料,阅读大量的文献。这就使我们对每一种方法有了更深的了解,对它的适用范围,在日常生活中如何去应用有了进一步的认识。同时还使我们知道了新的科学技术,知道了一些新的试验方法。我觉得这些对我们都非常重要,特别是我们快要进入大四了,对于毕业论文的设计,资料的查询,我们都可以从此获得宝贵的经验。

通过《仪器分析》问题学习法的学习,我学到了很多,使我认识、了解到了许多课本上学习不到的知识。这种学习方法非常适合在大学里推广,可以提高学生的诸多能力,真希望学校多开设几门这样的课程。

上一篇:舆情处置工作方案下一篇:药品招商团队管理