风机变桨系统详解

2022-06-28

第一篇:风机变桨系统详解

风机变桨控制系统简介

风力发电机组 变桨系统介绍

1

一.风力发电机组概述

双馈风机

1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。

风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限

2.发电机与齿轮箱

双馈异步发电机

变频同步发电机

同步发电机---风力发电机中很少采用(造价高﹑并网困难)

(同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发电机并入电网.)

永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组.

异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.

电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速, 电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能. 异步电机发出的有功功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并联电容补偿的方式.

异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行.

3.偏航控制系统

风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能.

大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向. 偏航系统一般包括感 应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等.

3 解缆

大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态. 4. 变桨控制系统 5. 变流器 6. 塔架

风机四种不同的控制方式: 1. 定速定桨距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2. 定速变桨距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时桨距控制用于调节功率 3. 变速定桨距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4. 变速变桨距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 桨距控制用于调节功率.

5

二.基本知识

13

15 三. 风力发电机组的信号

(一) 机组状态参数检测

1.转速

风力发电机组转速的测量点有两个:即发电机转速和风轮转速。转速测量信号用于控制风力发电机组并网和脱网,还可用于起动超速保护系统,当风轮转速超过设定值n1或发电机转速超过设定值n2时,超速保护动作,风力发电机组停机。

风轮转速和发电机转速可以相互校验。如果不符,则提示风力发电机组故障。 2.温度

有8个点的温度被测量,用于反映风力发电机组系统的工作状况。这8个点包括:①齿轮箱油温;②高速轴承温度;③大发电机温度;④小发电机温度;⑤前主轴承温度;⑥后主轴承温度;⑦控制盘温度(主要是晶闸管的温度);⑧控制器环境温度。

由于温度过高引起风力发电机组退出运行,在温度降至允许值时,仍可自动起动风力发电机组运行。

3.机舱振动

为了检测机组的异常振动,在机舱上应安装振动传感器。传感器由一个与微动开关相连的钢球及其支撑组成。异常振动时,钢球从支撑它的圆环上落下,拉动微动开关,引起安全停机。重新起动时,必须重新安装好钢球。

机舱后部还设有桨叶振动探测器(TAC84系统)。过振动时将引起正常停机。 4.电缆扭转

由于发电机电缆及所有电气、通信电缆均从机舱直接引入塔筒,直到地面控制柜。如果机舱经常向一个方向偏航,会引起电缆严重扭转因此偏航系统还应具备扭缆保护的功能。偏航齿轮上安有一个独立的记数传感器,以记录相对初始方位所转过的齿数。当风力机向一个方向持续偏航达到设定值时,表示电缆已被扭转到危险的程度,控制器将发出停机指令并显示故障。风力发电机组停机并执行顺或逆时针解缆操作。为了提高可靠性,在电缆引入塔筒处(即塔筒顶部),还安装了行程开关,行程开关触点与电缆相连,当电缆扭转到一定程度时可直接拉动行程开关,引起安全停机。

为了便于了解偏航系统的当前状态,控制器可根据偏航记数传感器的报告,以记录相对初始方位所转过的齿数显示机舱当前方位与初始方位的偏转角度及正在偏航的方向。

5.机械刹车状况

在机械刹车系统中装有刹车片磨损指示器,如果刹车片磨损到一定程度,控制器将显

16 示故障信号,这时必须更换刹车片后才能起动风力发电机组。

在连续两次动作之间,有一个预置的时间间隔,使刹车装置有足够的冷却时间,以免重复使用使刹车盘过热。根据不同型号的风力发电机组,也可用温度传感器来取代设置延时程序。这时刹车盘的温度必须低于预置的温度才能起动风力发电机组。

6.油位

风力发电机的油位包括润滑油位、液压系统油位。

(二)电力参数的监测

风力发电机组需要持续监测的电力参数包括电网三相电压、发电机输出的三相电流、电网频率、发电机功率因数等。这些参数无论风力发电机组是处于并网状态还是脱网状态都被监测,用于判断风力发电机组的起动条件、工作状态及故障情况,还用于统计风力发电机组的有功功率、无功功率和总发电量。此外,还根据电力参数,主要是发电机有功功率和功率因数来确定补偿电容的投入与切出。

1.电压测量

电压测量主要检测以下故障:

(1)电网冲击

相电压超过450V 0.2s。

(2)过电压

相电压超过433V 50s。

(3)低电压

相电压低于329V 50s。

(4)电网电压跌落

相电压低于260V 0.1s。

(5)相序故障。

对电压故障要求反应较快。在主电路中设有过电压保护,其动作设定值可参考冲击电压整定保护值。发生电压故障时风力发电机组必须退出电网,一般采取正常停机,而后根据情况进行处理。

电压测量值经平均值算法处理后可用于计算机组的功率和发电量的计算。

2.电流测量

关于电流的故障有:

(1)电流跌落

0.1s内一相电流跌落80%。

(2)三相不对称 三相中有一相电流与其他两相相差过大,相电流相差25%,或在平均电流低于50A时,相电流相差50%。

(3)晶闸管故障

软起动期间,某相电流大于额定电流或者触发脉冲发出后电流连续0.1s为0。

对电流故障同样要求反应迅速。通常控制系统带有两个电流保护即电流短路保护和过电流保护。电流短路保护采用断路器,动作电流按照发电机内部相间短路电流整定,动作时间。0~0.5s。过电流保护由软件控制,动作电流按照额定电流的2倍整定,动作时间1~3s。电流测量值经平均值算法处理后与电压、功率因数合成为有功功率、无功功率及其他电力参数。

电流是风力发电机组并网时需要持续监视的参量,如果切人电流小于允许极限,则晶闸管导通角不再增大,当电流开始下降后,导通角逐渐打开直至完全开启。并网期间,通过电流测量可检测发电机或晶闸管的短路及三相电流不平衡信号。如果三相电流不平衡超出允许范围,控制系统将发出故障停机指令,风力发电机组退出电网。

3.频率

电网频率被持续测量。测量值经平均值算法处理与电网上、下限频率进行比较,超出时风力发电机组退出电网。

电网频率直接影响发电机的同步转速,进而影响发电机的瞬时出力。

4.功率因数

功率因数通过分别测量电压相角和电流相角获得,经过移相补偿算法和平均值算法处理后,用于统计发电机有功功率和无功功率。

由于无功功率导致电网的电流增加,线损增大,且占用系统容量。因而送人电网的功率,感性无功分量越少越好,一般要求功率因数保持在0.95以上。为此,风力发电机组使用了电容器补偿无功功率。考虑到风力发电机组的输出功率常在大范围内变化,补偿电容器一般按不同容量分成若干组,根据发电机输出功率的大小来投入与切出。

这种方式投入补偿电容时,可能造成过补偿。此时会向电网输入容性无功。

电容补偿并未改变发电机运行状况。补偿后,发电机接触器上电流应大于主接触器电流。

(三)风力参数监测

1.风速

风速通过机舱外的数字式风速仪测得。计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速(风速v>3m/s时,起动小发电机,v>8m/s起动大发电机)和停机风速(v>25m/s)。安装在机舱顶上的风速仪处于风轮的下风向,本身并不精确,一般不用来产生功率曲线。

2.风向

风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。一般采用两个风向标,以便互相校验,排除可能产生的误信号。控制器根据风向信号,起动偏航系统。当两个风向标不一致时,偏航会自动中断。当风速低于3m/s时,偏航系统不会起动。

(四)各种反馈信号的检测

控制器在以下指令发出后的设定时间内应收到动作已执行的反馈信号:①回收叶尖扰流器;②松开机械刹车;③松开偏航制动器;④发电机脱网及脱网后的转速降落信号。否则将出现相应的故障信号,执行安全停机。

19 四.控制系统系统工程实例

20 .控制箱

21 1

2.轴箱

22

.蓄电池箱

23

24

轮毂中变桨控制柜实际照片,周边三个兰色的是变桨伺服电机

25

变桨系统连线示意图

26 将电池柜、配电柜用支架固定在图中所示的位置

27

28

编码器

29

变桨角度限位开关

30

带加热装置的超声波矢量风速风向仪,侧面为航空警示灯。

31 风电设备项目

浇铸式滑环系统具有高转速、结构精巧,尤其是可行的执行件和外直径的比例优化以及耐振性强等特性。浇铸式滑环系统有碳弹簧丝和金弹簧丝两种型号可供选用。结构精巧基础上的高度集成是带有金弹簧丝刷的滑环系统的显著特点。通常应用于机床设备、绞线机和风电系统中。

浇铸式滑环系统,30 路金弹簧丝型号

2 路 400 V 直流电,50 A 3 路 230 V,10 A 2 路 24 V 直流电,7.5 A 24 路 24 V 直流电,1 A 碳和金弹簧丝型号的滑环系统组件

5 路 400 V 交流电,80 A 4 路 230 V 交流电,16 A 6 路 24 V 交流电,16 A 15 路 24 V 交流电,1 A 32

五. “1.5MW变桨伺服控制系统”的开发设计

近年来,由于油价一路攀升,发展风能等清洁再生能源越来越受到国家的重视和大力扶持.按照国家规划,未来15年我国风电设备市场份额将高达1400亿元至2100亿元.另一方面,由于我国风电设备制造尚处于起步阶段, 国内风电设备的产能偏小,无奈只能化高价购买进口风机和部件,严重影响了我国风电行业的快速发展.就电变桨伺服控制系统而言,目前尚未有国产电变桨控制系统的报道,国内大型风机几乎均采用国外进口产品.由于进口产品价格高(每套变桨系统约需35~40万人民币),订货周期长,同时国家发改委《关于风电建设管理有关要求的通知》中明确规定:风电设备国产化率要达到70%以上,不满足设备国产化率要求的风电场不允许建设.因此风电设备的国产化已是大势所趋﹑当务之急,也是风电设备制造厂商责无旁贷的责任.

技术分析

变桨距风力发电机组的风轮桨叶可以有以下几种工作状态: 1. 静止状态: 变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩. 2. 起动状态:当风速达到起动风速时,控制系统控制桨叶向0°方向转动,直到气流对桨叶产生一定的攻角, 风轮开始起动(一般先调节桨距角到45°,当转速达到一定时,再调节到0°,直到风力机达到额定转速并网发电). 3. 并网发电:为确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内,保持发电机转速在同步转速附近,以便寻找最佳时机并网

33 (例如在同步转速±10 r/min内持续1S, 发电机切入电网). 4. 额定功率以下运行:传统的控制方法是在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;另一种方法是采用以

Vestas为代表的所谓OptitiP技术,即根据风速的大小,按照最佳叶尖速比曲线确定叶片的节距角,优化输出功率。

5. 额定功率运行时:当风速达到或超过额定风速后,发电机机组进入额定功率状态,变桨控制系统根据发电机输出功率的变化调整桨距角的大小,桨叶节距朝迎风面积减小或增大的方向转动一个角度,使发电机的输出功率保持在额定功率。

6. 脱网:当风力发电机需要脱离电网时, 变桨系统可以先转动叶片,使发电机减小输出功率,当功率减小到0时, 发电机从电网脱开,以避免发电机突甩负载的过程.

7. 紧急停机:如遇到电网突然断电或其它紧急情况停机, 变桨伺服系统可以通过自备的UPS短暂供电,以便变桨系统完成收桨及采取予定的其它安全措施.

34 开发内容: 根据以上分析,变桨伺服系统应包括如下内容: 伺服电机(带码盘)---------------(外购) 伺服驱动系统--------------------(采用通用伺服系统改造) 伺服控制系统--------------------(采用PLC控制,自行设计和制作)

现场总线接口和通讯协议---- (与主控制器通讯,接收主控制器给出的目标位

置﹑定位速度和转动方向等给定值,同时将变

桨伺服系统的运行参数和运行状态发送给主控制器)

UPS电源--------------------------(UPS电源及电池充电控制﹑电池状态监视,紧

急情况下电池供电运行相关的管理.------------- 选购或自行设计制作)

几种的变桨系统比较

变桨系统是现代大型风机的重要组成部分. 变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.

35 电变桨伺服控制系统是一个闭环控制的专用伺服系统,根据所用电机可以分为直流伺服和交流伺服两种类型.

直流型电变桨伺服控制系统(以SSB生产的直流型变桨伺服控制系统为例) 变桨系统主要由PLC﹑可逆直流调速装置﹑直流电机﹑绝对式位置编码器等组成,并由蓄电池作为后备电源. PLC组成变桨的控制系统,它通过现场总线(例如CAN总线)和主控制系统通信,接受主控制系统的指令(主要是桨叶转动的速度和角度指令),并控制可逆直流调速装置驱动直流电机,带动桨叶朝要求的方向和角度转动,同时PLC还负责蓄电池的充电控制﹑蓄电池电压的监控等辅助控制. SSB的直流型变桨系统主要由以下特点:

⑴ 采用串激直流电机,起动力矩大.对于转动重达数吨﹑直径数十米的叶片有好处;

⑵ 由于采用直流无级调速,低速性能好;

⑶ 不允许空载运行,否则会引起“飞车”;

⑷ 电机有碳刷,维修困难;

⑸ 加后备电池比较方便. 交流型电变桨伺服控制系统(以LUST生产的交流型变桨伺服控制系统为例) 变桨系统主要由PLC﹑交流伺服系统﹑交流伺服电机﹑绝对式位置编码器等组成,并由UPS作为后备电源.控制原理与直流型大同小异.LUST的交流型变桨系统主要由以下特点:

⑴ 采用交流永磁同步电机或交流异步电机,结构简单﹑维修工作量小;

⑵ 代表了伺服控制系统的发展方向; ⑶ 必须加UPS;以便在电网突然断电或其它紧急情况停机时, 变桨伺服系

36 统可以通过自备的UPS短暂供电,使变桨系统完成收桨及采取予定的其它安全措施.

设计方案

通过以上分析,我们可以知道,变桨系统主要由用PLC作控制器的变桨控制系统﹑利用编码器构成位置闭环的伺服驱动系统和通过减速齿轮转动桨叶的伺服电机等组成.结构上分成一个控制箱﹑三个轴箱﹑三个蓄电池箱共七个电气箱.在方案设计时我们遵循以下几点: 1. 尽量利用市场上现有的成熟产品,进行应用性开发(例如变桨伺服系统,我们准备采用通用伺服系统改造的办法,而不是自己来开发一套伺服驱动系统); 2. 一方面我们要在消化﹑吸收的基础上,参考﹑借鉴国外同类产品的设计,另一方面也不能完全照搬﹑仿造,必须根据我们的实际情况进行电路设计和元器件选型; 3. 具备与国外同类产品相同的功能,性能满足风力发电机的要求; 4. 采用与国外同类产品相同的总线接口和通讯协议; 5. 外形尺寸和安装方式与国外同类产品具有互换性. 根据以上几点,我们分别设计了直流和交流两种变桨控制系统的技术方案,现分述如下: ㈠ 直流型电变桨伺服控制系统

直流型电变桨伺服控制系统的电气原理图见附图1~图3所示.变桨控制器采用西门子S7—300型PLC,其软件和硬件配置见附图7.其他主要部件及开发

37 方式如下: 1.直流伺服电机-------------------(选购.带一个测速发电机和二个绝对值位置编

器,分别用作速度反馈和位置反馈) 2. 直流伺服驱动系统------------- (采用通用直流伺服系统改造及设置伺服驱动

器参数)

3. 伺服控制系统--------------------(采用PLC作控制器,自行进行端口配置和控制

程序设计,包括选定现场总线接口类型﹑确定通讯内容和通讯协议)

4. 蓄电池-----------------------------(确定电池电压及Ah数并选购) 5. 充电机及电池状态监控--------(选购或自行开发) ㈡交流型电变桨伺服控制系统

交流型电变桨伺服控制系统的电气原理图见附图4~图6所示. 变桨控制器采用西门子S7—300型PLC,其软件和硬件配置见附图7.其他主要部件及开发方如下: 1.交流伺服电机--------------------(选购.带二个绝对值位置编码,分别用作速度

反馈和位置反馈,同时便于消除例如由机械间隙引起的定位误差.) 2. 交流伺服驱动系统------------- (采用通用交流伺服系统改造及设置伺服驱动

器参数)

3. 伺服控制系统--------------------(采用PLC作控制器,自行进行端口配置和控制

程序设计, 包括选定现场总线接口类型﹑确定

38

通讯内容和通讯协议)

4.UPS电源--------------------------(选购)

5.充电机及电池状态监控--------(选购或自行开发) 主要技术性能指标: ㈠ 伺服电机

8. 额定转速 2000 rpm 9. 额定输出电流 17A 10. 额定转矩 16.0 Nm 11. 电源电压 12. 绝缘等级 F13. 冷却方式 14. 防护等级 IP64 15. 环境温度 9.制动装置 10.编码器

㈡伺服驱动系统

1.额定输出功率 7.5KW 2.额定输出电流 24A 3.额定输出电压 34.输入电压 35.过载能力 43A/306.冷却方式

三相AC380V 级 自然冷却 -25℃~+40℃ 选件

绝对值位置编码器 ×0---400V(AC)

×AC380V(-25%~+10%) 秒

散热器外置自然冷却

39 7.防护等级 IP24或更高 8.环境温度 -25℃~+40℃ 9.制动电阻 外加 10.配置现场总线 CAN总线

11.保护功能 电机三相短路保护﹑过载保护﹑电源过压保护

﹑电源欠压保护﹑电机超速保护等. ㈢UPS电源 电网停电后保持供电1分钟,瞬时切换. 注:其中电机转速和输出转矩需总体设计确认或提供准确的数据. 开发步骤

1.工程化设计(包括分别设计控制箱及轴箱主回路和控制回路的电气原理图﹑元器件排列布置图﹑接线表); 2.元器件选型并提出材料清单; 3.控制箱结构设计;(该项设计需领导另行安排人员进行) 4.编制PLC控制程序和通讯程序; 5.伺服系统参数整定及模拟调试; 6.现场调试 7.改进设计并定型

40 六.风机防雷

41

风向标

42

风速仪

单翼风向传感器

风向感应器为单翼风标(见图9.5)。 当风标转动时,带动格雷码盘(常用七位,分辨率为2.8°),按照码盘切槽的设计,码盘每转动2.8°,光电管组就会产生新的七位并行格雷码输出。 风杯风速传感器

风速传感器采用三杯式感应器,风杯由碳纤维增强塑料制成(见图9.5)。 当风杯转动时,带动同轴的多齿截光盘转动,使下面的光敏三极管有时接收到上面发光二极管发射的光线而导通,有时接收不到上面发光二极管照射来的光线而截止。这样就能得到与风杯转速成正比的脉冲信号,该脉冲信号由计数器计数,经换算后就能得出实际风速值。

43 振动监测

44

45

扭缆开关

46

47

七. 风机安全系统

根据IEC61400-1(风机设计条件),风机安全系统有三个特点: ⑴安全系统独立于主控系统之外; ⑵控制级别高于主控系统; ⑶安全系统一旦被触发, 安全系统能够单独(而不是通过主控系统)发出紧急停机(紧急顺桨)和/或从电网断开的指令.

八. 风场SCADA

48

第二篇:风力发电机液压变桨系统简介

全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。

附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风机变桨调节的两种工况

风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统

液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。

液压变桨系统的结构

变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。

图1 控制原理图

液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

图2 液压原理图

结束语

液压变桨系统与电动变桨系统相比,液压传动的单位体积小、重量轻、动态响应好、扭矩大并且无需变速机构,在失电时将蓄压器作为备用动力源对桨叶进行全顺桨作业而无需设计备用电源。由于桨叶是在不断旋转的,必须通过一个旋转接头将机舱内液压站的液压油管路引入旋转中的轮毂,液压油的压力在20MPa左右,因此制造工艺要求较高,难度较大,管路也容易产生泄漏现象。液压系统由于受液压油黏温特性的影响,对环境温度的要求比较高,对于在不同纬度使用的风机,液压油需增加加热或冷却装置。

第三篇:风机无人值守系统

(1)供电系统监测

系统具有供电系统各开关分合状态实时指示,供电数据实时监测显示,供电系统可以远程控制各开关分闸、合闸等功能。 (2)通讯网络监测

对监控系统通信网中各种子网络、系统、设备、光缆、动力环境等进行综合监测、控制和管理的应用系统,可为电力通信网络规划、建设、运行、维护提供有效的信息支撑平台。系统以其组网性能好、运行效率高、功能强大、稳定可靠等优点得到用户的广泛认可。 (3)控制设备监测

系统实时监测现场各控制设备的运行状态,后台电子台账,各设备的生命周期管理,系统实时通过视频监控系统记录监测,重点监测设备的跑闹地漏等问题。同时控制系统具有远程单机、联机控制设备的启停等功能。 (4)驱动装置监测

系统可以在多种方式下运行(手动、自动、就地)。设显示仪表、操作按钮、计算机监测。系统可以通过上位机操作实现程序自动运行,也可以通过操作台的按钮实现手动运行,还可以通过开关柜实现就地控制。采用变频器控制电机的转速,降低了设备的故障率,节电效果显著。实现了电机的软启动,延长了设备的使用寿命,避免了对电网的冲击。电机将在低于额定转速的状态下运行,减少了噪音对环境的影响。具有过载、过压、过流、欠压、电源缺相等自动保护功能。运转状态灵活多样,可手动控制也可完全实现自动控制,且可与其它自控装置进行电气连锁,实现系统的自动保护及计算机控制,不会因设备故障影响生产。优化了电机起停性能,减少了风机切换过程的停车时间。操作简单、直观、运行可靠、维护方便。

(5)风机设备及辅助设备运行工况监测:运行状态、振动监测、喘振监;

系统具有在线监测通风机的喘振状态,能动态显示通风机的运行工况点、喘振裕度,并具有喘振预报功能,当风机在接近喘振区时能够及时报警。 (6)通风运行工况监测:瓦斯、温度、负压、风量 ;

系统通过I/O接口采集与实时监测风机的各项参数。风量、负压、风速、瓦斯、一氧化碳、风机振动等风机运行实时数据,根据运行情况可实时输出各种特性曲线,能够将监测系统的各项参数、数据传输通过我矿环网,实现矿方对风机运行状况的实时远程监视,并通过互联网将风机运行状态及故障实时传送到供货方物联数据平台,及时发现并对风机控制系统故障进行远程分析判断及维护。 (7)人员行为操作监测与记忆。

上位机系统具有操作人员登录记忆功能,做到有据可查,操作时只能是系统规定的相关人员进行操作并且准确记录每一次的操作和时间等功能。 (8)在线监测传感器故障检测与分析,设备检测环节与执行机构要准确可靠. 系统应具有在线振动故障分析和判断功能,能自动分析判断振动类型、振动部件、发展趋势、处理建议等内容。具有监测数据自动存储、记录报表生成、故障记录查询、在线打印等功能。控制系统应具备完善的“故障自检、诊断”功能,当风机在运行或启动过程中系统出现故障时,能及时发出声、光报警信号,并通过主控台上触摸屏的人、机对话功能显示出报警指示内容。通过“故障自检、诊断”功能,提供相应的解决方案并报警。

(9)要研究关键参数在线检测、声音分析、振动分析、图像分析等,软件要有诊断分析,分析出来要有措施,要有执行策略;

第四篇:基于Internet的风机网上选型系统的设计论文

摘要:

本文具体探讨Internet风机网上选型系统设计要领,集合数据库维护、风机设备选型以及用户数据管理功能进行模块梳理,借助网络平台以及浏览器令客户能够及时、方便地查询选型工作进展状况,全面解决传统手工操作行为带来的选型困境,实现相关系统会员之间的无空间、无时间限制沟通。

关键词:

Internet;数据库;风机设备;系统选型

目前大多数研究单位以及高校都深度吸纳具备经验数据且工作性能稳定的风机设备,其间布置合理选型鉴定软件,使得程序工作人员能够及时摆脱传统手工操作带来的疲惫感官效应。网络技术高速发展可说是为风机选型系统提供全新认知分解经验。

1风机网上选型系统模式论述

针对单位软件程序进行创新设计开发,需要借助软件工学层次明确各类用户实际需求,经过风机网上选型提供技术人员相关疏导经验,确保用户提供的参数能够尽快输入相关风机设备之中,用户可以借助特定程序查询风机性能状态,对于最终判定结果予以科学处置并绘制性能曲线认证图,使得各类选型结果都能如数保存到系统之中,方便日后维护工作的进行。依照上述功能分析,选型系统须围绕以下模块结构进行有效调试,包括模块性能、模型架构、用户数据、风机选型模块资源等。

1.1系统总体架构形态

通风机系统选型设计思路具体是应用网络浏览器鉴定数据库系统存储管理信息功能,借助对应调试访问技术为用户提供方便适应条件,杜绝任何模糊认知迹象滋生。例如:对新风机压力系数的要求,应是越大越好,因为压力系数越大风机直径越小,相应的风机的体积就小、重量就轻。在具体设计中,压力系数到底应选多大合适,这要由设计者全面衡量考虑后决定,不同的设计者,可能有不同的选择,这都是正常的。叶轮主要尺寸及机壳出口和进风口的进口尺寸均为优先数系中的值,其中除叶轮总宽度尺寸为R40数系外,其它均为R20数系中的值。这样一来,当按这两个风机的空气动力学略图设计系列风机时,其机号(叶轮外径D)按优先数系(一般按R20)排列时,各机号风机的主要尺寸也将符合优先数系中的值。这会给设计工作带来极大方便。

1.2系统功能模式

单位软件程序都可以借助若干个子系统实施搭接,这部分选型系统集合设备数据维护、用户资料管理、风机工作状况查询以及选型参数检验等工序进行适当衔接。前期设备维护就是针对通风机性能以及模型数据库进行适当添加、删除,确保在网页浏览时能够清晰提炼关键维护要领;用户数据管理则针对系统注册用户进行网上浏览资格验证;风机参数查询计算结果会合理输入存储界面之内,并在后续选型工作中依照用户个体需求进行合理计算,实时列入查询范围并供用户现场选择,必要时应用Web显示或者直接打印收编。

2此类系统的支持技术研究

2.1数据库技术

该类系统具体应用MYSQL网络数据库进行整编,保留一定程度的结构化特征,能够在通风机性能维护与信息检索中提供方便适应条件。MYSQL样式数据库结构具体结合库、表二级结构形态舒展,其直接与关系数据查询语言标准SQL对应。经过系统建立fandatabase数据库过后,包含basicdata、member等多个表格都会存储到通风机基础性能数据框架之中。

2.2Web技术

这是网上信息发布的主要端口,其中运用Apache服务器建立核心站点以及静态页面,包括各类交互式应用程序在内,可以及时抽取数据库中特定信息结果并予以合理交接计算。此类站点信息的具体引导媒介就是HTML文档。由于系统主要应用Dreamweaver与动态HTML进行设计,使得处于动态HTML的用户个体能够随时与系统进行信息交互,保持双向通信工作的顺利进行。处于远程通信界面的用户数据可以利用超链接形式直接发送至HTML表单并启动WWW服务器上的应用程序,这部分应用程序可以快速完成数据库查询与结果分析工作。

2.3Web服务器与数据库衔接端口支持技术

数据库与Web服务器之间存在交接端口,能够合理促使信息技术的对外宣传与应用速率。在此类系统架构之中,包含大量网页服务器对MYSQL数据库的访问活动,这里强调的技术是目前十分流行的PHP模式,具体就是借助服务器端HTML页面进行脚步描述语言嵌入,实施手段基本与微软ASP语言大同小异。PHP可说是全面吸纳了数据库与脚步应用程序语言功效,能够尽快完成数据库与页面同步更新工作,因为PHP源代码保持全面公开状态,一直以来能够全面供应函数库更新动力,确保其不管在UNIX或者是Windows平台之上都赋予着独特运转功能,保证其在程序设计方面拥有极高的支持能效。需要特别强调的是,PHP能够提供优质化的数据访问媒介,同时开创动态交互式服务器应用渠道。处于服务器端口的脚本语句应用标识进行合理嵌入,只要客户浏览器向服务器终端提出页面访问请求时,页面就会自动激活处理程序;如果页面文件检查为.php格式,就瞬时处理特殊标识语句,在第一时间内向客户端提供检验结果,最后交由浏览器进行HTML标记以及客户端脚本语句形态阐述。

3网上选型系统的应用要点解析

此类系统保留以下技术优势特征:首先,通风机数据高度共享,风机设备本就蕴藏着繁多技术类别,数据库在网上运行同时实现共享能够合理杜绝数据库人力开发消耗的人力、物力资源;其次,使用过程十分便利快速,因为网络保留一定程度的开放性,系统在任何地区基本都可以使用,单位选型分析结果也可直接拷贝于优盘之中,方便随身携带;在此,选型结果与经验可以在第一时间内进行共享优化,因为操作主体同时使用单个数据库,面对着时间跨越性度过,各类数据库资料提取经验逐渐丰富,加上系统界面展示形式精巧,能够确保首次接触的人员尽快熟练操作要点;最后,系统在用户使用环境上没有过多严格要求,用户甚至不需重复安装软件程序,直接就可依靠网页进行操作。

4离心通风机集成化设计平台的实现策略补充

4.1通风机相似设计流程

所谓相似设计就是依照两个相似风机设备进行比转数相等原理解析,之后结合实验室考验性能较好的相同型号风机进行验证,从中选取数据结果较为接近的设备个体作为模型,并将模型机几何尺寸进行合理放大甚至缩小,进而获取创新风机形态标准方案。实际工序流程为:依照用户个体提供的流量、压力状态进行科学转换,并确定比转数,当比转数过小甚至不能借由回转式风机操作时,就应该考虑配合单进气双极离心通风机进行比转数计算,直到确定结果后依据模型无因次性能曲线进行最高效率点中各类流量、系数。在新通风机设备之中采取相似设计方式,基本上规避重复性能检测流程,机械在迎合总体设计要求前提下还可稳固结构高效率运作水准,因此此类手段在通风机架构设计项目中得到广泛采纳。

4.2参数化设计模型指导

参数化设计模型具体用来约束表达产品模型的形状特征,配合参数组校正设计结果,进而搭配相关零件材料。此类设计活动依靠程序与尺寸驱动,在图形几何模型与尺寸数学关系梳理清楚之后,将此类特殊关联输入系统程序之中,并联合特定参数值生成所需模型。其基本理论就是借助应用程序生成的基图进行特定标识审核,为用户提供各类安全保障。参数化实现手段实际上就是配合草图技术生产二维轮廓,轮廓基础位置与尺寸都不必借助草图绽放,只要在日后参数设计过程中就可清晰提炼;之后配合系统拉伸与旋转功能获取三维特征。配合这类手段进行CSG树调试,就可以顺利完成模型的参数设计工序。需要关注的是,这部分参数并不代表最末端模型的参数结构,而是完成造型模拟的参数形态。

4.3网上选型软件匹配

此类软件在系统选定基础上得到验证开发,大部分交由企业研究中心依据实际情况布置,其核心动机在于提升设计运作效率,尽量遏制工期拖延现象,使得产品质量获得前所未有的改观效果,为各类生产项目提供优质化服务。这类软件经常借助交互式形态呈现,以合理发挥人机各类所长,程序衔接上较为迎合设计主体行为习惯,用户秩序熟练掌握操作命令与参数内容就可以了,不需要费尽心思记忆各类程序调用细节。目前用VB6.0编写的风机选型软件涵盖了离心通风机行业较常用的风机模型,具有应用范围广,软件操作简便等特点。其中考虑了风机在不同运行环境下的大气压、介质密度计算;同时分析额定转速下的叶轮外缘线速度计算等。其间软件既可做选型用,也可根据密度、转速、直径,通过选择不同的风机系列做风机电子样本使用。理想化的选型软件笔者认为应该是框架式的,不同的厂家将自己常用风机的无因次性能取点输入软件的数据库,运用行业通用的计算理论计算工况环境下的风机性能,选取适合的风机型号、机号,采用差值法取得风机运行工况点或范围。PB+SQL可作为这种软件编制的首选,其前台的编程软件和后台数据库管理核心都是sysbase公司的,具有完美结合力。

5结束语

风机网上选型过程以及结果多样,但总体上仍旧方便、快捷,能够实时与企业现有模型进行充分对比、融合,稳定基础设备长期工作动力与资源开发实效,为后期各类生产项目拓展肃清不必要的限制因素。

参考文献:

[1]吴淑芳.基于三维设计的工程图自动调整技术[J].机械设计与制造,2009(18):59-63.

[2]苑雪.《数据库技术》基于工作过程的教学模式设计与分析[J].科技信息,2010(22):68-75.

[3]杨兆建.基于JavaScript的网络三维实体造型研究[J].机械工程与自动化,2010(13):69-70.

第五篇:酒店消防系统验收详解

一、系统的验收

1、火灾自动报警系统竣工验收,应在公安消防监督机构监督下,由建设主管单位主持,设计、施工、调试等单位参加,共同进行。

2、火灾自动报警系统验收前,建设单位应向公安消防监督机构提交验收申请报告,并附下列技术文件;

1)建筑工程消防验收登记表;

2)系统竣工图

3)施工记录(包括隐蔽工程验收记录)

4)调试报告

5)管理、维护人员登记表;

3、系统竣工验收

1)消防用电设备电源的自动切换装置,应进行3次切换试验,每次试验均应正常。

2)火灾报警控制器应按下列要求进行功能抽验;

①实际安装数量在5台以下者,全部抽验;

②实际安装数量在6台~10台者,抽验5台;

③实际安装数量超过10台者,按实际安装数量30%~50%的比例、但不小于5台抽验。抽验时每个功能应重复1~2次,被抽验控制器的基本功能应符合现行国家标准《火灾报警控制器通用技术条件》中的功能要求。

3)火灾探测器(包括手动报警按钮),应按下列要求进行模拟火灾响应试验和故障报警抽验;

①实际安装数量在100只以下者,抽验10只;

②实际安装数量超过100只,按实际安装数量5%~10%的比例、但不少于10只抽验。被抽验探测器的试验均应正常。

4)室内消火栓的功能验收应在出水压力符合现行国家有关建筑设计防火规范的条件下进行,并应符合下列要求:

①工作泵、备用泵转换运行1~3次;

②消防控制室内操作启、停泵1~3次;

③消火栓处操作启泵按钮按5%~10%的比例抽验。以上控制功能应正常,信号应正确。

5)自动喷水灭火系统的抽验,应在符合现行国家标准《自动喷水灭火系统设计规范》的条件下,抽验下列控制功能:

①工作泵、备用泵转换运行1~3次;

②消防控制室内操作启、停泵1~3次;

③水流指示器、闸阀关闭器及电动阀等按实际安装数量的10%~30%的比例进行末端放水试验。上述控制功能、信号均应正常。

6)卤代烷、泡沫、二氧化碳、干粉等灭火系统的抽验,应在符合现行各有关系统设计规范的条件下按实际安装数量的20%~30%抽验下列控制功能;

①人工启动和紧急切断试验1~3次;

②与固定灭火设备联动控制的其它设备(包括关闭防火门窗、停止空调风机、关闭防火阀、落下防火幕等)试验1~3次;

③抽一个防护区进行喷放试验(卤代烷系统应采用氮气等介质代替)。

7)电动防火门、防火卷帘的抽验,应按实际安装数量的10%~20%抽验联动控制功能,其控制功能、信号均应正常。

8)通风空调和防排烟设备(包括风机和阀门)的抽验,应按实际安装数量的10%~20%抽验联动控制功能,其控制功能、信号均应正常。

9)消防电梯的检验应进行1~2次人工控制和自动控制功能检验,其控制功能、信号均应正常。

10)火灾事故广播设备的检验,应按实际安装数量的10%~20%进行下列功能检验。

①在消防控制室选层广播;

②共享的扬声器强行切换试验;

③备用扩音机控制功能试验。

上述控制功能应正常,语音应清楚。

11)消防通讯设备的检验,应符合下列要求:

①消防控制室与设备间所设的对讲电话进行1~3通话试验;

②电话插孔按实际安装数量的5%~10%进行通话试验;③消防控制室的外线电话与“119台”进行1~3次通话试验。上述功能应正常,语音应清楚。本节各项检验项目中,当有不合格者时,应限期修复或更换,并进行修复或更换,并进行复验。复验时,对有抽验比例要求的,应进行加倍试验。复验不合格者,不能通过验收。

二、事后控制要点

1、产品保护

1)安装探测器时,应先安装底座,调试时再安装探头。

2)端子箱安装完毕后,应注意上锁,保护箱体不受污染。

3)区域报警控制器和集中报警控制器、柜、盘安装时,应注意保持墙面清洁。安装后应采取防尘和防潮等措施,最好及时将门上锁。

2、技术数据的移交

1)火灾自动报警系统工程验收登记表;

2)施工记录(包括隐蔽工程验收记录,中间验收记录等);

3)调试报告;

4)系统竣工图;

5)重大工伤事故报告;

6)质量事故报告;

7)各种设备、材料的出产合格证、说明书;

8)施工中补充的技术交底和新工艺交底。

上一篇:防风抑尘网的缺点下一篇:防拐防骗活动方案