风机变桨系统工作原理

2022-11-14

第一篇:风机变桨系统工作原理

风机变桨控制系统简介

风力发电机组 变桨系统介绍

1

一.风力发电机组概述

双馈风机

1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。

风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限

2.发电机与齿轮箱

双馈异步发电机

变频同步发电机

同步发电机---风力发电机中很少采用(造价高﹑并网困难)

(同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发电机并入电网.)

永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组.

异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.

电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速, 电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能. 异步电机发出的有功功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并联电容补偿的方式.

异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行.

3.偏航控制系统

风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能.

大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向. 偏航系统一般包括感 应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等.

3 解缆

大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态. 4. 变桨控制系统 5. 变流器 6. 塔架

风机四种不同的控制方式: 1. 定速定桨距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2. 定速变桨距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时桨距控制用于调节功率 3. 变速定桨距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4. 变速变桨距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 桨距控制用于调节功率.

5

二.基本知识

13

15 三. 风力发电机组的信号

(一) 机组状态参数检测

1.转速

风力发电机组转速的测量点有两个:即发电机转速和风轮转速。转速测量信号用于控制风力发电机组并网和脱网,还可用于起动超速保护系统,当风轮转速超过设定值n1或发电机转速超过设定值n2时,超速保护动作,风力发电机组停机。

风轮转速和发电机转速可以相互校验。如果不符,则提示风力发电机组故障。 2.温度

有8个点的温度被测量,用于反映风力发电机组系统的工作状况。这8个点包括:①齿轮箱油温;②高速轴承温度;③大发电机温度;④小发电机温度;⑤前主轴承温度;⑥后主轴承温度;⑦控制盘温度(主要是晶闸管的温度);⑧控制器环境温度。

由于温度过高引起风力发电机组退出运行,在温度降至允许值时,仍可自动起动风力发电机组运行。

3.机舱振动

为了检测机组的异常振动,在机舱上应安装振动传感器。传感器由一个与微动开关相连的钢球及其支撑组成。异常振动时,钢球从支撑它的圆环上落下,拉动微动开关,引起安全停机。重新起动时,必须重新安装好钢球。

机舱后部还设有桨叶振动探测器(TAC84系统)。过振动时将引起正常停机。 4.电缆扭转

由于发电机电缆及所有电气、通信电缆均从机舱直接引入塔筒,直到地面控制柜。如果机舱经常向一个方向偏航,会引起电缆严重扭转因此偏航系统还应具备扭缆保护的功能。偏航齿轮上安有一个独立的记数传感器,以记录相对初始方位所转过的齿数。当风力机向一个方向持续偏航达到设定值时,表示电缆已被扭转到危险的程度,控制器将发出停机指令并显示故障。风力发电机组停机并执行顺或逆时针解缆操作。为了提高可靠性,在电缆引入塔筒处(即塔筒顶部),还安装了行程开关,行程开关触点与电缆相连,当电缆扭转到一定程度时可直接拉动行程开关,引起安全停机。

为了便于了解偏航系统的当前状态,控制器可根据偏航记数传感器的报告,以记录相对初始方位所转过的齿数显示机舱当前方位与初始方位的偏转角度及正在偏航的方向。

5.机械刹车状况

在机械刹车系统中装有刹车片磨损指示器,如果刹车片磨损到一定程度,控制器将显

16 示故障信号,这时必须更换刹车片后才能起动风力发电机组。

在连续两次动作之间,有一个预置的时间间隔,使刹车装置有足够的冷却时间,以免重复使用使刹车盘过热。根据不同型号的风力发电机组,也可用温度传感器来取代设置延时程序。这时刹车盘的温度必须低于预置的温度才能起动风力发电机组。

6.油位

风力发电机的油位包括润滑油位、液压系统油位。

(二)电力参数的监测

风力发电机组需要持续监测的电力参数包括电网三相电压、发电机输出的三相电流、电网频率、发电机功率因数等。这些参数无论风力发电机组是处于并网状态还是脱网状态都被监测,用于判断风力发电机组的起动条件、工作状态及故障情况,还用于统计风力发电机组的有功功率、无功功率和总发电量。此外,还根据电力参数,主要是发电机有功功率和功率因数来确定补偿电容的投入与切出。

1.电压测量

电压测量主要检测以下故障:

(1)电网冲击

相电压超过450V 0.2s。

(2)过电压

相电压超过433V 50s。

(3)低电压

相电压低于329V 50s。

(4)电网电压跌落

相电压低于260V 0.1s。

(5)相序故障。

对电压故障要求反应较快。在主电路中设有过电压保护,其动作设定值可参考冲击电压整定保护值。发生电压故障时风力发电机组必须退出电网,一般采取正常停机,而后根据情况进行处理。

电压测量值经平均值算法处理后可用于计算机组的功率和发电量的计算。

2.电流测量

关于电流的故障有:

(1)电流跌落

0.1s内一相电流跌落80%。

(2)三相不对称 三相中有一相电流与其他两相相差过大,相电流相差25%,或在平均电流低于50A时,相电流相差50%。

(3)晶闸管故障

软起动期间,某相电流大于额定电流或者触发脉冲发出后电流连续0.1s为0。

对电流故障同样要求反应迅速。通常控制系统带有两个电流保护即电流短路保护和过电流保护。电流短路保护采用断路器,动作电流按照发电机内部相间短路电流整定,动作时间。0~0.5s。过电流保护由软件控制,动作电流按照额定电流的2倍整定,动作时间1~3s。电流测量值经平均值算法处理后与电压、功率因数合成为有功功率、无功功率及其他电力参数。

电流是风力发电机组并网时需要持续监视的参量,如果切人电流小于允许极限,则晶闸管导通角不再增大,当电流开始下降后,导通角逐渐打开直至完全开启。并网期间,通过电流测量可检测发电机或晶闸管的短路及三相电流不平衡信号。如果三相电流不平衡超出允许范围,控制系统将发出故障停机指令,风力发电机组退出电网。

3.频率

电网频率被持续测量。测量值经平均值算法处理与电网上、下限频率进行比较,超出时风力发电机组退出电网。

电网频率直接影响发电机的同步转速,进而影响发电机的瞬时出力。

4.功率因数

功率因数通过分别测量电压相角和电流相角获得,经过移相补偿算法和平均值算法处理后,用于统计发电机有功功率和无功功率。

由于无功功率导致电网的电流增加,线损增大,且占用系统容量。因而送人电网的功率,感性无功分量越少越好,一般要求功率因数保持在0.95以上。为此,风力发电机组使用了电容器补偿无功功率。考虑到风力发电机组的输出功率常在大范围内变化,补偿电容器一般按不同容量分成若干组,根据发电机输出功率的大小来投入与切出。

这种方式投入补偿电容时,可能造成过补偿。此时会向电网输入容性无功。

电容补偿并未改变发电机运行状况。补偿后,发电机接触器上电流应大于主接触器电流。

(三)风力参数监测

1.风速

风速通过机舱外的数字式风速仪测得。计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速(风速v>3m/s时,起动小发电机,v>8m/s起动大发电机)和停机风速(v>25m/s)。安装在机舱顶上的风速仪处于风轮的下风向,本身并不精确,一般不用来产生功率曲线。

2.风向

风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。一般采用两个风向标,以便互相校验,排除可能产生的误信号。控制器根据风向信号,起动偏航系统。当两个风向标不一致时,偏航会自动中断。当风速低于3m/s时,偏航系统不会起动。

(四)各种反馈信号的检测

控制器在以下指令发出后的设定时间内应收到动作已执行的反馈信号:①回收叶尖扰流器;②松开机械刹车;③松开偏航制动器;④发电机脱网及脱网后的转速降落信号。否则将出现相应的故障信号,执行安全停机。

19 四.控制系统系统工程实例

20 .控制箱

21 1

2.轴箱

22

.蓄电池箱

23

24

轮毂中变桨控制柜实际照片,周边三个兰色的是变桨伺服电机

25

变桨系统连线示意图

26 将电池柜、配电柜用支架固定在图中所示的位置

27

28

编码器

29

变桨角度限位开关

30

带加热装置的超声波矢量风速风向仪,侧面为航空警示灯。

31 风电设备项目

浇铸式滑环系统具有高转速、结构精巧,尤其是可行的执行件和外直径的比例优化以及耐振性强等特性。浇铸式滑环系统有碳弹簧丝和金弹簧丝两种型号可供选用。结构精巧基础上的高度集成是带有金弹簧丝刷的滑环系统的显著特点。通常应用于机床设备、绞线机和风电系统中。

浇铸式滑环系统,30 路金弹簧丝型号

2 路 400 V 直流电,50 A 3 路 230 V,10 A 2 路 24 V 直流电,7.5 A 24 路 24 V 直流电,1 A 碳和金弹簧丝型号的滑环系统组件

5 路 400 V 交流电,80 A 4 路 230 V 交流电,16 A 6 路 24 V 交流电,16 A 15 路 24 V 交流电,1 A 32

五. “1.5MW变桨伺服控制系统”的开发设计

近年来,由于油价一路攀升,发展风能等清洁再生能源越来越受到国家的重视和大力扶持.按照国家规划,未来15年我国风电设备市场份额将高达1400亿元至2100亿元.另一方面,由于我国风电设备制造尚处于起步阶段, 国内风电设备的产能偏小,无奈只能化高价购买进口风机和部件,严重影响了我国风电行业的快速发展.就电变桨伺服控制系统而言,目前尚未有国产电变桨控制系统的报道,国内大型风机几乎均采用国外进口产品.由于进口产品价格高(每套变桨系统约需35~40万人民币),订货周期长,同时国家发改委《关于风电建设管理有关要求的通知》中明确规定:风电设备国产化率要达到70%以上,不满足设备国产化率要求的风电场不允许建设.因此风电设备的国产化已是大势所趋﹑当务之急,也是风电设备制造厂商责无旁贷的责任.

技术分析

变桨距风力发电机组的风轮桨叶可以有以下几种工作状态: 1. 静止状态: 变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩. 2. 起动状态:当风速达到起动风速时,控制系统控制桨叶向0°方向转动,直到气流对桨叶产生一定的攻角, 风轮开始起动(一般先调节桨距角到45°,当转速达到一定时,再调节到0°,直到风力机达到额定转速并网发电). 3. 并网发电:为确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内,保持发电机转速在同步转速附近,以便寻找最佳时机并网

33 (例如在同步转速±10 r/min内持续1S, 发电机切入电网). 4. 额定功率以下运行:传统的控制方法是在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;另一种方法是采用以

Vestas为代表的所谓OptitiP技术,即根据风速的大小,按照最佳叶尖速比曲线确定叶片的节距角,优化输出功率。

5. 额定功率运行时:当风速达到或超过额定风速后,发电机机组进入额定功率状态,变桨控制系统根据发电机输出功率的变化调整桨距角的大小,桨叶节距朝迎风面积减小或增大的方向转动一个角度,使发电机的输出功率保持在额定功率。

6. 脱网:当风力发电机需要脱离电网时, 变桨系统可以先转动叶片,使发电机减小输出功率,当功率减小到0时, 发电机从电网脱开,以避免发电机突甩负载的过程.

7. 紧急停机:如遇到电网突然断电或其它紧急情况停机, 变桨伺服系统可以通过自备的UPS短暂供电,以便变桨系统完成收桨及采取予定的其它安全措施.

34 开发内容: 根据以上分析,变桨伺服系统应包括如下内容: 伺服电机(带码盘)---------------(外购) 伺服驱动系统--------------------(采用通用伺服系统改造) 伺服控制系统--------------------(采用PLC控制,自行设计和制作)

现场总线接口和通讯协议---- (与主控制器通讯,接收主控制器给出的目标位

置﹑定位速度和转动方向等给定值,同时将变

桨伺服系统的运行参数和运行状态发送给主控制器)

UPS电源--------------------------(UPS电源及电池充电控制﹑电池状态监视,紧

急情况下电池供电运行相关的管理.------------- 选购或自行设计制作)

几种的变桨系统比较

变桨系统是现代大型风机的重要组成部分. 变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.

35 电变桨伺服控制系统是一个闭环控制的专用伺服系统,根据所用电机可以分为直流伺服和交流伺服两种类型.

直流型电变桨伺服控制系统(以SSB生产的直流型变桨伺服控制系统为例) 变桨系统主要由PLC﹑可逆直流调速装置﹑直流电机﹑绝对式位置编码器等组成,并由蓄电池作为后备电源. PLC组成变桨的控制系统,它通过现场总线(例如CAN总线)和主控制系统通信,接受主控制系统的指令(主要是桨叶转动的速度和角度指令),并控制可逆直流调速装置驱动直流电机,带动桨叶朝要求的方向和角度转动,同时PLC还负责蓄电池的充电控制﹑蓄电池电压的监控等辅助控制. SSB的直流型变桨系统主要由以下特点:

⑴ 采用串激直流电机,起动力矩大.对于转动重达数吨﹑直径数十米的叶片有好处;

⑵ 由于采用直流无级调速,低速性能好;

⑶ 不允许空载运行,否则会引起“飞车”;

⑷ 电机有碳刷,维修困难;

⑸ 加后备电池比较方便. 交流型电变桨伺服控制系统(以LUST生产的交流型变桨伺服控制系统为例) 变桨系统主要由PLC﹑交流伺服系统﹑交流伺服电机﹑绝对式位置编码器等组成,并由UPS作为后备电源.控制原理与直流型大同小异.LUST的交流型变桨系统主要由以下特点:

⑴ 采用交流永磁同步电机或交流异步电机,结构简单﹑维修工作量小;

⑵ 代表了伺服控制系统的发展方向; ⑶ 必须加UPS;以便在电网突然断电或其它紧急情况停机时, 变桨伺服系

36 统可以通过自备的UPS短暂供电,使变桨系统完成收桨及采取予定的其它安全措施.

设计方案

通过以上分析,我们可以知道,变桨系统主要由用PLC作控制器的变桨控制系统﹑利用编码器构成位置闭环的伺服驱动系统和通过减速齿轮转动桨叶的伺服电机等组成.结构上分成一个控制箱﹑三个轴箱﹑三个蓄电池箱共七个电气箱.在方案设计时我们遵循以下几点: 1. 尽量利用市场上现有的成熟产品,进行应用性开发(例如变桨伺服系统,我们准备采用通用伺服系统改造的办法,而不是自己来开发一套伺服驱动系统); 2. 一方面我们要在消化﹑吸收的基础上,参考﹑借鉴国外同类产品的设计,另一方面也不能完全照搬﹑仿造,必须根据我们的实际情况进行电路设计和元器件选型; 3. 具备与国外同类产品相同的功能,性能满足风力发电机的要求; 4. 采用与国外同类产品相同的总线接口和通讯协议; 5. 外形尺寸和安装方式与国外同类产品具有互换性. 根据以上几点,我们分别设计了直流和交流两种变桨控制系统的技术方案,现分述如下: ㈠ 直流型电变桨伺服控制系统

直流型电变桨伺服控制系统的电气原理图见附图1~图3所示.变桨控制器采用西门子S7—300型PLC,其软件和硬件配置见附图7.其他主要部件及开发

37 方式如下: 1.直流伺服电机-------------------(选购.带一个测速发电机和二个绝对值位置编

器,分别用作速度反馈和位置反馈) 2. 直流伺服驱动系统------------- (采用通用直流伺服系统改造及设置伺服驱动

器参数)

3. 伺服控制系统--------------------(采用PLC作控制器,自行进行端口配置和控制

程序设计,包括选定现场总线接口类型﹑确定通讯内容和通讯协议)

4. 蓄电池-----------------------------(确定电池电压及Ah数并选购) 5. 充电机及电池状态监控--------(选购或自行开发) ㈡交流型电变桨伺服控制系统

交流型电变桨伺服控制系统的电气原理图见附图4~图6所示. 变桨控制器采用西门子S7—300型PLC,其软件和硬件配置见附图7.其他主要部件及开发方如下: 1.交流伺服电机--------------------(选购.带二个绝对值位置编码,分别用作速度

反馈和位置反馈,同时便于消除例如由机械间隙引起的定位误差.) 2. 交流伺服驱动系统------------- (采用通用交流伺服系统改造及设置伺服驱动

器参数)

3. 伺服控制系统--------------------(采用PLC作控制器,自行进行端口配置和控制

程序设计, 包括选定现场总线接口类型﹑确定

38

通讯内容和通讯协议)

4.UPS电源--------------------------(选购)

5.充电机及电池状态监控--------(选购或自行开发) 主要技术性能指标: ㈠ 伺服电机

8. 额定转速 2000 rpm 9. 额定输出电流 17A 10. 额定转矩 16.0 Nm 11. 电源电压 12. 绝缘等级 F13. 冷却方式 14. 防护等级 IP64 15. 环境温度 9.制动装置 10.编码器

㈡伺服驱动系统

1.额定输出功率 7.5KW 2.额定输出电流 24A 3.额定输出电压 34.输入电压 35.过载能力 43A/306.冷却方式

三相AC380V 级 自然冷却 -25℃~+40℃ 选件

绝对值位置编码器 ×0---400V(AC)

×AC380V(-25%~+10%) 秒

散热器外置自然冷却

39 7.防护等级 IP24或更高 8.环境温度 -25℃~+40℃ 9.制动电阻 外加 10.配置现场总线 CAN总线

11.保护功能 电机三相短路保护﹑过载保护﹑电源过压保护

﹑电源欠压保护﹑电机超速保护等. ㈢UPS电源 电网停电后保持供电1分钟,瞬时切换. 注:其中电机转速和输出转矩需总体设计确认或提供准确的数据. 开发步骤

1.工程化设计(包括分别设计控制箱及轴箱主回路和控制回路的电气原理图﹑元器件排列布置图﹑接线表); 2.元器件选型并提出材料清单; 3.控制箱结构设计;(该项设计需领导另行安排人员进行) 4.编制PLC控制程序和通讯程序; 5.伺服系统参数整定及模拟调试; 6.现场调试 7.改进设计并定型

40 六.风机防雷

41

风向标

42

风速仪

单翼风向传感器

风向感应器为单翼风标(见图9.5)。 当风标转动时,带动格雷码盘(常用七位,分辨率为2.8°),按照码盘切槽的设计,码盘每转动2.8°,光电管组就会产生新的七位并行格雷码输出。 风杯风速传感器

风速传感器采用三杯式感应器,风杯由碳纤维增强塑料制成(见图9.5)。 当风杯转动时,带动同轴的多齿截光盘转动,使下面的光敏三极管有时接收到上面发光二极管发射的光线而导通,有时接收不到上面发光二极管照射来的光线而截止。这样就能得到与风杯转速成正比的脉冲信号,该脉冲信号由计数器计数,经换算后就能得出实际风速值。

43 振动监测

44

45

扭缆开关

46

47

七. 风机安全系统

根据IEC61400-1(风机设计条件),风机安全系统有三个特点: ⑴安全系统独立于主控系统之外; ⑵控制级别高于主控系统; ⑶安全系统一旦被触发, 安全系统能够单独(而不是通过主控系统)发出紧急停机(紧急顺桨)和/或从电网断开的指令.

八. 风场SCADA

48

第二篇:风电机组变桨距系统

作者:中国科学院电工研究所 李建林 张雷 鄂春良来源:赛尔电力自动化 总第78期摘要:在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。本文针对国外某知名风电公司液压变桨距风力机,采用可编程控制器(PLC)作为风力发电机的变桨距控制器。这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了液压变桨距系统的工作原理,设计了变桨控制器的软件系统。最后在国外某知名风电公司风力发电机组上做了实验,验证了

关键词:变桨距;风力发电机;可编程控制器

1引言

随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持最佳转换效率,使输出功率最大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。

兆瓦级变速恒频变桨距风电机组是目前国际上技术比较先进的风力机型,从今后的发展趋势看,必然取代定桨距风力机而成为风力发电机组的主力机型。其中变桨距技术在变速恒频风力机研究中占有重要地位,是变速恒频技术实现的前提条件。研究这种技术,提高风电机组的柔性,延长机组的寿命,是目前国外研究的热点,但是国内对此研究甚少,对这一前瞻性课题进行立项资助,掌握具备自主知识产权的独立变桨控制技术,对于打破发达国家对先进的风力发电技术的垄断,促进我国风力发电事业的进一步发展具有重要意义。

为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了OMRON公司的CJ1M系列可编程控制器作为变桨距系统的控制器,并设计了PLC软件程序,在国外某知名风电公司风力发电机组上作了实验。

2变桨距风力机及其控制方式

变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位精确、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距[4][5]。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。

图1变桨距风力发电机简图

如图2所示为变桨距控制器的原理框图。在发动机并入电网之前由速度控制器根据发动机的转速反馈信号进行变桨距控制,根据转速及风速信号来确定桨叶处于待机或顺桨位置;发动机并入电网之后,功率控制器起作用,功率调节器通常采用PI(或PID)控制,功率误差信号经过PI运算后得到桨距角位置。

图2变桨距风力机控制框图

当风力机在停机状态时,桨距角处于90°的位置,这时气流对桨叶不产生转矩;当风力机由停机状态变为运行状态时,桨距角由90°以一定速度(约1°/s)减小到待机角度(本系统中为15°);若风速达到并网风速,桨距角继续减小到3°(桨距角在3°左右时具有最佳风能吸收系数);发电机并上电网后,当风速小于额定风速时,使桨距角保持在3°不变;当风速高于额定风速时,根据功率反馈信号,控制器向比例阀输出-10V-+10V电压,控制比例阀输出流量的方向和大小。变桨距液压缸按比例阀输出的流量和方向来操纵叶片的桨距角,使输出功率维持在额定功率附近。若出现故障或有停机命令时,控制器将输出迅速顺桨命令,使得风力机能快速停机,顺桨速度可达20°/s。

3变桨控制器的设计

3.1系统的硬件构成

本文实验中采用国外某知名风电公司风力发电机组作为实验对象,其额定功率550KW,采用液压变桨系统,液压变桨系统原理图如图3所示。从图3中可以看出,通过改变液压比例阀的电压可以改变进桨或退桨速度,在风力机出现故障或紧急停机时,可控制电磁阀J-B闭合、J-A和J-C打开,使储压罐1中的液压油迅速进入变桨缸,推动桨叶达到顺桨位置(90°)。

图3.液压变桨距控制系统原理图

本系统中采用OMRON公司的CJ1M系列PLC。发电机的功率信号由高速功率变送器以模拟量的形式(0~10V对应功率0~800KW)输入到PLC,桨距角反馈信号(0~10V对应桨距角0~90°)以模拟量的形式输入到PLC的模拟输入单元;液压传感器

1、2也要以模拟量的形式输入。在这里选用了4路模拟量的输入单元CJ1W-AD041;模拟量输出单元选用CJ1W-DA021,输出信号为-10V~+10V,将信号输出到比例阀来控制进桨或退桨速度;为了测量发电机的转速,选用高速计数单元CJW-CT021,发电机的转速是通过检测与发电机相连的光电码盘,每转输出10个脉冲,输入给计数单元CJW-CT021。

3.2系统的软件设计

本系统的主要功能都是由PLC来实现的,当满足风力机起动条件时,PLC发出指令使叶片桨距角从90°匀速减小;当发电机并网后PLC根据反馈的功率进行功率调节,在额定风速之下保持较高的风能吸收系数,在额定风速之上,通过调整桨距角使输出功率保持在额定功率上。在有故障停机或急停信号时,PLC控制电磁阀J-A和J-C打开,J-B关闭,使得叶片迅速变到桨距角为90°的位置。

风力机起动时变桨控制程序流程如图4所示。当风速高于起动风速时PLC通过模拟输出单元向比例阀输出1.8V电压,使叶片以0.9°/s的速度变化到15°。此时,若发电机的转速大于800r/min或者转速持续一分钟大于700r/min,则桨叶继续进桨到3°位置。PLC检测到高速计数单元的转速信号大于1000r/min时发出并网指令。若桨距角在到达3°后2分钟未并网则由模拟输出单元给比例阀输出-4.1V电压,使桨距角退到15°位置。

第三篇:风力发电机液压变桨系统简介

全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。

附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风机变桨调节的两种工况

风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统

液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。

液压变桨系统的结构

变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。

图1 控制原理图

液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

图2 液压原理图

结束语

液压变桨系统与电动变桨系统相比,液压传动的单位体积小、重量轻、动态响应好、扭矩大并且无需变速机构,在失电时将蓄压器作为备用动力源对桨叶进行全顺桨作业而无需设计备用电源。由于桨叶是在不断旋转的,必须通过一个旋转接头将机舱内液压站的液压油管路引入旋转中的轮毂,液压油的压力在20MPa左右,因此制造工艺要求较高,难度较大,管路也容易产生泄漏现象。液压系统由于受液压油黏温特性的影响,对环境温度的要求比较高,对于在不同纬度使用的风机,液压油需增加加热或冷却装置。

第四篇:汽车空调鼓风机原理

摘要:汽车空调系统是实现对车厢内空气进行制冷、加热、换 气和空气净化的装置。它可以为乘车人员提供舒适的乘车环境,降 低驾驶员的疲劳强度,提高行车的安全。空调装置已成为衡量汽车 功能是否齐全的标志之一。汽车空调系统由压缩机、空调鼓风机、 冷凝器、贮液干燥器、膨胀阀、蒸发器和鼓风机等组成,本文主要 介绍汽车空调鼓风机原理。 关键词:鼓风机 控制原理 随着全球气候变暖及人们对于乘车环境要求的提高,越来越多的 汽车装配有空调系统。据统计, 2000 年美国和加拿大市场上销售 的 78%的汽车就已经装有空调,现在保守估计至少达到了 90%以上, 汽车空调除了给人们带来舒适的乘车环境外。作为汽车使用者的读 者,应该了解其原理,使得突发情况更有效快捷的解决。 1 汽车制冷系统的工作原理 汽车空调制冷系统的工作原理

1、汽车空调制冷系统的工作原理 汽车空调制冷系统循环由压缩,放热,节流和吸热四个过程组成。 (1)压缩过程:压缩机吸入蒸发器出口处的低温低压的制冷剂气 体,把它压缩成高温高压的气体,然后送人冷凝器。此过程的主要 作用是压缩增压,以使气体易于液化。压缩过程中,制冷剂状态不 发生变化,而温度,压力不断升高,形成过热气体。

(2)放热过程:高温高压的过热制冷剂气体进入冷凝器(散热器) 与大气进行热交换。由于压力及温度的降低,制冷剂气体冷凝成液 体,并放出大量的热。此过程作用是排热,冷凝。冷凝过程的特点 是制冷剂的状态发生变化,即在压力,温度不变的情况下,由气态 逐渐向液态转变。冷凝后的制冷剂液体是高压高温液体。制冷剂液 体过冷,过冷度越大,在蒸发过程中其蒸发吸热的能力也就越大, 制冷效果越好,即产冷量相应增加。 (3)节流过程:高压高温制冷剂液体经膨胀阀节流降温降压,以 雾状(细小液滴)排除膨胀装置。该过程的作用是使制冷剂降温降 压,由高温高压液体,迅速地变成低温抵压液体,以利于吸热,控 制制冷能力以及维持制冷系统的正常运行。 (4)吸热过程:经膨胀阀降温降压后的雾状制冷剂液体进入蒸发 器,因此制冷剂沸点远低于蒸发器内温度,故制冷剂液体在蒸发器 内蒸发,沸腾成气体。在蒸发过程中大量吸收周围的热量,降低车 内温度。而后低温低压的制冷剂气体流出蒸发器等待压缩机再次吸 入。吸热过程的特点是制冷剂状态由液态变化到气态,此时压力不 变,即在定压过程中进行这一状态的变化。

2、汽车空调制冷系统一般由压缩机、冷凝器、贮液干燥器、膨胀 阀、 蒸发器和鼓风

第五篇:风机无人值守系统

(1)供电系统监测

系统具有供电系统各开关分合状态实时指示,供电数据实时监测显示,供电系统可以远程控制各开关分闸、合闸等功能。 (2)通讯网络监测

对监控系统通信网中各种子网络、系统、设备、光缆、动力环境等进行综合监测、控制和管理的应用系统,可为电力通信网络规划、建设、运行、维护提供有效的信息支撑平台。系统以其组网性能好、运行效率高、功能强大、稳定可靠等优点得到用户的广泛认可。 (3)控制设备监测

系统实时监测现场各控制设备的运行状态,后台电子台账,各设备的生命周期管理,系统实时通过视频监控系统记录监测,重点监测设备的跑闹地漏等问题。同时控制系统具有远程单机、联机控制设备的启停等功能。 (4)驱动装置监测

系统可以在多种方式下运行(手动、自动、就地)。设显示仪表、操作按钮、计算机监测。系统可以通过上位机操作实现程序自动运行,也可以通过操作台的按钮实现手动运行,还可以通过开关柜实现就地控制。采用变频器控制电机的转速,降低了设备的故障率,节电效果显著。实现了电机的软启动,延长了设备的使用寿命,避免了对电网的冲击。电机将在低于额定转速的状态下运行,减少了噪音对环境的影响。具有过载、过压、过流、欠压、电源缺相等自动保护功能。运转状态灵活多样,可手动控制也可完全实现自动控制,且可与其它自控装置进行电气连锁,实现系统的自动保护及计算机控制,不会因设备故障影响生产。优化了电机起停性能,减少了风机切换过程的停车时间。操作简单、直观、运行可靠、维护方便。

(5)风机设备及辅助设备运行工况监测:运行状态、振动监测、喘振监;

系统具有在线监测通风机的喘振状态,能动态显示通风机的运行工况点、喘振裕度,并具有喘振预报功能,当风机在接近喘振区时能够及时报警。 (6)通风运行工况监测:瓦斯、温度、负压、风量 ;

系统通过I/O接口采集与实时监测风机的各项参数。风量、负压、风速、瓦斯、一氧化碳、风机振动等风机运行实时数据,根据运行情况可实时输出各种特性曲线,能够将监测系统的各项参数、数据传输通过我矿环网,实现矿方对风机运行状况的实时远程监视,并通过互联网将风机运行状态及故障实时传送到供货方物联数据平台,及时发现并对风机控制系统故障进行远程分析判断及维护。 (7)人员行为操作监测与记忆。

上位机系统具有操作人员登录记忆功能,做到有据可查,操作时只能是系统规定的相关人员进行操作并且准确记录每一次的操作和时间等功能。 (8)在线监测传感器故障检测与分析,设备检测环节与执行机构要准确可靠. 系统应具有在线振动故障分析和判断功能,能自动分析判断振动类型、振动部件、发展趋势、处理建议等内容。具有监测数据自动存储、记录报表生成、故障记录查询、在线打印等功能。控制系统应具备完善的“故障自检、诊断”功能,当风机在运行或启动过程中系统出现故障时,能及时发出声、光报警信号,并通过主控台上触摸屏的人、机对话功能显示出报警指示内容。通过“故障自检、诊断”功能,提供相应的解决方案并报警。

(9)要研究关键参数在线检测、声音分析、振动分析、图像分析等,软件要有诊断分析,分析出来要有措施,要有执行策略;

上一篇:房管局上半年工作总结下一篇:福建华南女子职业学院