函数极限与连续教案

2024-05-21

函数极限与连续教案(共9篇)

篇1:函数极限与连续教案

第四讲

Ⅰ 授课题目(章节)

1.8:函数的连续性

Ⅱ 教学目的与要求:

1、正确理解函数在一点连续及在某一区间内连续的定义;

2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的、基本初等函数在定义域内是连续的;

5、了解初等函数的和、差、积、商的连续性,反函数与复合函数的连续性; 6 掌握闭区间上连续函数的性质

教学重点与难点:

重点:函数在一点连续的定义,间断点,初等函数的连续性

难点:函数在一点连续的定义,闭区间上连续函数的性质

Ⅳ 讲授内容:

一 连续函数的概念函数的增量

定义1设变量u从它的初值u0变到终值u1,终值与初值之差u1u0,称为变量u的增

量,或称为u的改变量,记为u,即uu1u0

xx1x0

yf(x0x)f(x0)函数的连续性

定义2 设函数yf(x)在点x0的某个邻域内有定义,若当自变量的增量x趋近于零

时,相应函数的增量y也趋近于零,即

limy0或 x0

x0limf(x0x)f(x0)0

则称函数f(x)在x0点连续

2例1 用连续的定义证明y3x1在点x02处是连续的证明 略

若令xx0x则当x0时,xx0又yf(x0x)f(x0)即

f(x)f(x0)y故y0就是f(x)f(x0)

因而limy0可以改写成limf(x)f(x0)x0xx0

定义3 设函数yf(x)在点x0的某个邻域内有定义,若

xx0limf(x)f(x0)

则称函数f(x)在x0点连续

由定义3知函数fx在点x0连续包含了三个条件:

(1)fx在点x0有定义

(2)limf(x)存在xx0

(3)limf(x)f(x0)xx0

sinx,x0例2 考察函数f(x)x在点x0处得连续性

1,x0

解略

3左连续及右连续的概念.定义4 若limf(x)f(x0),则函数f(x)在x0点左连续 xx0

若limf(x)f(x0),则函数f(x)在x0点右连续 xx0+

由此可知函数f(x)在x0点连续的充分必要条件函数f(x)在x0点左连续又右连续

4、函数在区间上连续的定义

(a,b)(a,b)定义5 若函数f(x)在开区间内每一点都连续,则称函数f(x)在开区间内连

(a,b)若函数f(x)在开区间内连续,且在左端点a右连续,在右端点b左连续,则

称称函数f(x)在闭区间a,b上连续

(-,+)例3 讨论函数yx在内的连续性

解 略

二 函数的间断点定义6函数f(x)不连续的点x0称为函数f(x)的间断点

由定义6可知函数f(x)不连续的点x0有下列三种情况

(1)fx在点x0没有定义

(2)limf(x)不存在xx0

(3)limf(x)f(x0)xx0

2间断点的分类

左右极限都相等(可去间断点)第一类间断点:左右极限都存在间断点 左右极限不相等(跳跃间断点)

第二类间断点:左右极限至少有一个不存在

x21,x0例4考察函数f(x)在x0处得连续性

0,x0

解 略

例5考察函数f(x)

解 略

1,x0例6考察函数f(x)x在x0处得连续性

0,x0x,x0x1,x0在x0处得连续性

解 略

三 连续函数的运算与初等函数的连续性

1、连续函数的和、差、积、商的连续性

2、反函数与复合函数的连续性

3、初等函数的连续性:基本初等函数在它们的定义域内都是连续的.一切初等函数在其定义区间内都是连续的.对于初等函数,由于连续性xx0limf(x)f(x0),求其极限即等价于求函数的函数值

四闭区间上连续函数的性质

定理1(最大值最小值定理)

若函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小值

定理2(介值定理)

若函数f(x)在闭区间a,b上连续,m 和M分别为f(x)在a,b上的最小值和最大值,则对于介于m 和M之间的任一实数C,至少存在一点a,b,使得

f()C

定理3(零点定理)

若函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则至少存在一点a,b,使得f()0

例7 证明x52x20在区间(0,1)内至少有一个实根 证明 略

Ⅴ 小结与提问:

Ⅵ 课外作业:

习题1-8 2,5,7,9

篇2:函数极限与连续教案

第十六章 多元函数的极限与连续

教学目的:1.明确认识多元函数与一元函数的相同和不同之处,进而掌握多元函数研究问题的手法与特点;2.明确研究多元函数的目的及多元函数的用途。教学重点难点:本章的重点是平面点集的有关概念与二元函数的连续性;难点是二元函数极限的讨论。教学时数:16学时

§ 1平面点集与多元函数

一.平面点集:平面点集的表示:1.常见平面点集:

⑴ 全平面和半平面 : , , ,满足的条件}.余集

.等.⑵ 矩形域: , }.⑶ 圆域: 开圆 , 闭圆 , 圆环.圆的个部分.极坐标表示, 特别是

和.型域..⑷ 角域: ⑸ 简单域:

型域和

2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集

: 两点的距离

.《数学分析》教案

(或),..三.点列的极限: 设 定义 的定义(用邻域语言).例4

为点集., ,.例

5设 的一个聚点.则存在

中的点列 , 使

四.中的完备性定理:

1.Cauchy收敛准则:

先证{

}为Cauchy列

均为Cauchy列.2.闭集套定理: P116.3.聚点原理: 列紧性 , Weierstrass聚点原理.4.有限复盖定理: 五.二元函数:

1.二元函数的定义、记法、图象:

2.定义域:

例6

求定义域:

ⅰ>

;ⅱ>

.《数学分析》教案

例3

证明.(用极坐标变换)P94例2.2.相对极限及方向极限:

相对极限

和方向极限的定义.3.全面极限与相对极限的关系:

Th 1 ,对D的每一个子集E ,只要点

是E的聚点 , 就有.推论1 设 则极限也不存在.,是 的聚点.若极限

不存在 , 推论2 设 , , 但

是 的聚点.若存在极限, 则极限不存在.对D内任一点列,但

推论3 极限,数列

通常为证明极限

收敛.存在,不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限不相等, 或证明方向极限与方向有关.但应注意 , 沿任何方向的极限存在且相等

全面极限存在(以下例5).的两个累次极限.《数学分析》教案

2.全面极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)

⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数

在点 的情况.⑶ 全面极限存在时, 两个累次极限可以不存在.例如例8中的函数,全面极限存在 , 但两个累次极限均不存在.⑷ 两个累次极限存在(甚至相等)

全面极限存在.(参阅例7).综上 , 全面极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.Th 2 若全面极限

和累次极限

(或另一次序)都存在 , 则必相等.(证)P98.推论1 全面极限和两个累次极限三者都存在时 , 三者相等.系1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 全面极限不存在.但两个累次极限中一个存在 , 另一个不存在

全面极限不存在.§ 3 二元函数的连续性

一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:

《数学分析》教案

篇3:函数极限与连续教案

目前, 大多数技校学生的数学基础较差, 学习数学的兴趣与积极性不高, 甚至出现厌学现象.如果技校的数学教学不改变方法, 仍然采用“千人一面、千篇一律”的教学方式, 就会使得学生更加害怕数学学习, 导致技校教师难以完成数学教学任务.因此, 数学教学中亟需新的合理的教学方法.采用分层教学法能够根据学生的特点与基础水平, 做到因材施教.本文分析了极限与连续中的“3x+1问题”, 对分层教学在极限与连续教学中的运用方法进行探究.

1.极限与连续概述

极限概念是高等数学的理论基础, 函数在某一点处的极限概念、函数在某一点处的可导概念、导数的几何意义、函数的连续性概念以及右连续、左连续等均是数学中极限与连续所涉及的基本概念.极限的推导与求法有很多, 通常使用的五种求极限的方法是: (1) 采用极限四则运算法求极限; (2) 采用等价无穷小量求极限; (3) 采用无穷小量的性质求极限; (4) 采用罗比达法则求极限; (5) 采用两个重要极限求极限.

2.“3x+1问题”和量的极限性

数学中的“3x+1问题”又称之为西拉古斯猜想, 是在上世纪中期被提出来的, 角谷静夫将其引入日本后被称之为角谷猜想, 在学术上还有其他的名称, 例如哈斯算法问题、乌拉姆问题、克拉玆问题等.任取一个正整数后, 如果是奇数, 就乘以三再加一;如果是偶数, 就把它除以二, 这种变换就是“3x+1问题”.经过这种法则变换可以取得一个新的正整数, 反复进行法则变换可以取得一个新的正整数列, 或迟或早该正整数列将会归为4→2→1的循环中, 最终得到1.同余逻辑路径法证明了此猜想能够成立.“3x+1问题”的运算法则蕴含着事物量关系的可分性与衍生性, 揭示出无限可展的世界是按照逻辑路径展开的.“3x+1问题”蕴含着中国古代哲学中的“九九归一”“万变不离其宗”等思想.事物不是无限可分的, 而是有限可分的, 回归与衍生是对立统一的路径, 模糊性发生在一定的边界极限, 事物从粒性转变为波动性, 有着存在却不确定的性质, 例如, 无穷连分数可以认识却无法操作.在实用领域往往将不确定性看成确定性, 即将极限当有限, 例如微积分就是常将无穷小作为0来进行处理.

3.技校数学极限与连续概念分层教学

在实际的技校教学中, 讲授极限与连续概念时可采用分层次教学法, 做到因材施教, 以不同层次学生的认知水平差异为依据来确定不同的教学目标, 进行分层施教与测试评价.并且在教学中注重建立一套促使各层次学生不断递进的机制, 从而充分地开发学生潜能.极限与连续概念分层教学应当把握好以下几个环节.第一, 客观地划分学生的学习认知水平层次, 可以采用开座谈会或个别谈话等方式对学生的学习水平进行全面摸底, 并结合学习成绩将学生分为A, B, C三个层次.A层和B层的学生基础知识相对比较扎实, 通常能够从学过的知识中找到与新概念相关的联系, 并能够比较出两者之间的不同, 进而建立新的概念体系.C层的学生对新概念的有关知识的理解不够全面、透彻, 常常受错误经验的干扰而产生错误的概念理解.第二, 分层教学的实施, 为了更好地把握极限与连续的概念, 可以将概念教学分为概念领会、概念运用、概念构建步骤进行.

(1) 极限与连续概念的领会

在概念领会阶段, 可以设置以下几个问题:函数在某一点处的极限概念, 函数在某一点处的可导概念, 导数的几何意义, 函数的连续性概念以及右连续、左连续, 可导与连续的关系等.这一阶段的内容一般比较直观, 设计的问题和提供的资料均不会太复杂, 除了处于C层的个别同学在理解上出现些问题外, 其余同学全部能够掌握这部分内容, 通过对问题的思考进而掌握极限与连续概念的本质.

(2) 极限与连续概念的运用

在概念运用阶段, 教学应当以不同层次学生的概念领会程度为基础, 培养学生的类化能力.在实际的教学中可以设置如下不同层次的问题:

这道题目是分段函数在分段点求极限的问题, 因为函数在分段点两侧有不同的表达式, 所以需要考虑左、右极限.

这道题目是指数函数求极限的问题, 指数函数在x=0时等于1, 所以考虑x≠0时的极限问题.在实际教学中应当以极限与连续的概念领会为基础, 增强学生的类化能力.因为不同认知水平的同学的类化能力有着较大的差异, 所以应当设计不同的题目与问题对不同层次的学生进行不同的教学指导与要求.

(3) 极限与连续的概念体系构建

在概念体系的构建阶段, 可以设置以下问题:怎样理解极限的概念, 及其在微分学研究中的作用;怎样理解函数极限与单侧极限的概念;怎样利用函数的连续性判别与分类函数的间断点;怎样理解函数的三类间断点等.极限与连续的概念体系构建是此部分教学中的最高层次, 要求同学具有将自身已有的认知结构中的有关概念与新概念建立联结的能力.

4.结束语

篇4:函数极限与连续教案

关键词: 函数    极限    连续    可导

一、学生在学习高等数学的相关内容中遇到的问题

在判断一函数在某点处的极限是否存在及在该点处是否连续或可导的问题时,学生往往很纠结,经常混为一谈,甚至会出现指鹿为马的现象.

二、如何处理好学生所遇到的相关问题

要想避免把三个不同的问题混为一谈,就必须弄清以下两个充要条件和一个必要条件及导数的定义.

1.函数f(x)当x→x 时极限存在的充要条件是左极限、右极限存在且相等,即

f(x)=A?圳 f(x)= f(x)=A

注:当左、右极限都存在,但不相等,或者二者至少有一个条件不存在时,就可以断言函数f(x)在x 处的极限不存在.

2.函数f(x)在点x 处连续的充要条件是函数在该点处的左、右极限存在、相等且等于该点处的函数值,即函数f(x)在点x 处连续?圳 f(x)= f(x)=f(x ).

注:当函数在点x 存在下列三种情形之一:

(1)在x=x 处无定义;

(2)在x=x 处有定义,但 f(x)不存在;

(3)在x=x 处有定义,且 存在,但 f(x)≠f(x ),则函数f(x)在点x 处不连续.

3.函数y=f(x)在点x 处可导的必要条件是:f(x)在点x 处的左、右导数存在且相等,即f′ (x )=f′ (x ).

4.导数的定义

设函数y=f(x)在点x 的某一领域内有定义,如果极限

=  存在,则称此极限为函数y=f(x)在点x 处的导数,记作

f′(x )或y′| ,即:

f′(x )=  =

此时也称函数f(x)在点x 处可导;若极限不存在,则称函数f(x)在点x 处不可导或导数不存在.

例1:设函数

f(x)=x·sin     x>01    x=0x     x<0

判断函数f(x)在x=0处的极限是否存在及函数在x=0处是否连续?

解:因为 f(x)= x =0, f(x)= x·sin =0

即 f(x)= f(x)=0,故函数f(x)在x=0处的极限存在.

又因为f(0)=1,即: f(x)= f(x)≠f(0),故函数f(x)在x=0处不连续.

例2:选择适当的a、b值,使函数

f(x)=2x        x≤1ax+b    x>1在点x=1处既连续又可导.

解: f(x)= 2x =2, f(x)= (ax+b)=a+b

因f(x)在点x=1处连续,即: f(x)= f(x)=f(1)

故a+b=2

f′ (1)=  =  = 2(x+1)=4

f′ (1)=  =  = a=a

因f(x)在x=1处可导,即f′ (1)=f′ (1)

故a=4,于是b=-2.

所以,当a=4,b=-2时,函数f(x)在x=1处既连续又可导.

例3:判断函数

f(x)=x +1    x≤22x+3    x>2在x=2处的极限是否存在,且在x=2处是否连续、可导?

解:因 f(x)= (x +1)=5, f(x)= (2x+3)=7

即 f(x)≠ f(x)

故函数在x=2处的极限不存在,从而函数在x=2处也不连续.

因f′ (2)=  =  =  =4

f′ (2)=  =  =2

即f′ (2)≠f′ (2)

故函数f(x)在x=2处不可导.

三、结论

一般地,判断函数在某点处的极限是否存在或在该点处是否连续,所讨论的函数都是分段函数,因为一切基本初等函数、初等函数在其定义域内都是连续的,而分段函数一般不是初等函数.

综上所述,要做到能熟练解决以上所提到的问题,不至于将三者混淆起来,只需明确三者之间的共同点都是求极限的问题,而连续的条件比极限存在的条件要多加强一个,不能把只要满足了左、右极限存在且相等就看成是函数在该点处连续.判断函数在某点处是否可导,只需看是否满足左、右导数是否存在且相等即可.

参考文献:

[1]姚孟臣.大学文科高等数学.高教出版社,2010.5.

[2]薛桂兰.高等数学学习指导.高教出版社,2005.6.

[3]沈聪.高等数学.首都经济贸易大学出版社,2010.5.

篇5:多元函数的极限与连续

第16章

多元函数的极限与连续

计划课时:

0 时

第16章

多元函数的极限与连续(1 0 时)

§ 1

平面点集与多元函数

一.平面点集:平面点集的表示: E{(x,y)|(x,y)满足的条件}.余集Ec.1.常见平面点集:

全平面和半平面 : {(x,y)|x0}, {(x,y)|x0}, {(x,y)|xa},{(x,y)|yaxb}等.⑵ 矩形域: [a,b][c,d], {(x,y)|x||y|1}.⑶ 圆域: 开圆 , 闭圆 , 圆环,圆的一部分.极坐标表示, 特别是 {(r,)|r2acos}和{(r,)|r2asin}.⑷ 角域: {(r,)|}.⑸ 简单域: X型域和Y型域.2.邻域: 圆邻域和方邻域,圆邻域内有方邻域,方邻域内有圆邻域.空心邻域和实心邻域 , 空心方邻域与集

{(x,y)|0|xx0| , 0|yy0|}的区别.3. 点与点集的关系(集拓扑的基本概念):

(1)内点、外点和界点:

内点:存在U(A)使U(A)E

集合E的全体内点集表示为intE,.外点:存在U(A)使U(A)E

界点:A的任何邻域内既有E的点也有不属于E的点。E的边界表示为E

集合的内点E, 外点E , 界点不定.例1 确定集E{(x,y)|0(x1)(y2)1 }的内点、外点集和边界.例2 E{(x,y)|0yD(x), x[ 0 , 1 ] } , D(x)为Dirichlet函数.确定集E的内点、外点和界点集.(2)(以凝聚程度分为)聚点和孤立点:

聚点:A的任何邻域内必有属于E的点。

孤立点:AE但不是聚点。孤立点必为界点.例3 E{(x,y)|ysin }.确定集E的聚点集.解

E的聚点集E[ 1 , 1 ].221x 2 4.区域:

(1)(以包含不包含边界分为)开集和闭集: intE E时称E为开集 , E的聚点集E时称E为闭集.intE 存在非开非闭集.(3)有界集与无界集:

(4)

点集的直径d(E): 两点的距离(P1 , P2).(5)

三角不等式:

|x1x2|(或|y1y2|)或(P1,P2)R2和空集为既开又闭集.(2)(以连通性分为)开区域、闭区域、区域:以上常见平面点集均为区域.(x1x2)2(y1y2)2 |x1x2||y1y2|.(P1,P3)(P2,P3)

二.R2中的完备性定理:

1. 点列的极限:

设Pn(xn , yn)R2, P0(x0 , y0)R2.PnP0的定义(用邻域语言)

定义1。

limn0,N,nNPnU(P0,)或(P0,Pn)

例4(xn , yn)(x0 , y0)xnx0, yny0,(n).例5 设P0为点集E的一个聚点.则存在E中的点列{ Pn }, 使limPnP0.n

2.R2中的完备性定理:

(1)Cauchy收敛准则:

.(2).闭域套定理:(3).聚点原理: 列紧性 ,Weierstrass聚点原理.(4)有限复盖定理:

三.二元函数:

1.二元函数的定义、记法、图象:

2.定义域: 例6 求定义域:

ⅰ> f(x,y)3.二元函数求值: 例7 例8 9x2y2x2y21;ⅱ> f(x,y)lny.2ln(yx1)yf(x,y)2x3y2, 求 f(1 , 1), f(1 ,).xf(x,y)ln(1x2y2), 求f(cos , sin).4.三种特殊函数: ⑴ 变量对称函数: f(x,y)f(y,x),例8中的函数变量对称.⑵ 变量分离型函数: f(x,y)(x)(y).例如

zxye2x3y, zxy2xy2, f(x,y)(xyy)(xyx)等.(xy)2 4 但函数zxy不是变量分离型函数.⑶ 具有奇、偶性的函数

四.n元函数

二元函数 推广维空间 记作R n

作业 P9—8.§ 2 二元函数的极限

一.二重极限

二重极限亦称为全面极限

1.二重极限

定义1 设f为定义在DR上的二元函数,P0为D的一个聚点,A是确定数 若 0,0,或

2PU0(P0,)D,f(P)A则limf(P)A

PP0(x,y)(x0,y0)limf(x,y)A

例1 用“”定义验证极限

(x,y)(2,1)lim(x2xyy2)7.xy20.例2 用“”定义验证极限 lim2x0xy2y0例3 x2y2,(x,y)(0,0),xyf(x,y)x2y2

0 ,(x,y)(0,0).f(x,y)0.(用极坐标变换)

P94 E2.证明

(x,y)(0,0)lim2.归结原则:

定理 1

limf(P)A, 

对D的每一个子集E , 只要点P0是E的聚点 , PP0PD就有limf(P)A.PP0PE

推论1

设E1D, P0是E1的聚点.若极限limf(P)不存在 , 则极限limf(P)也不存在.PP0PE1PP0PD

推论2

设E1,E2D, P0是E1和E2的聚点.若存在极限limf(P)A1,PP0PE1PP0PE2limf(P)A2, 但A1A2, 则极限limf(P)不存在.PP0PDPP0PD

推论3

极限limf(P)存在,  对D内任一点列{ Pn }, PnP0但PnP0, 数列{f(Pn)}收敛.通常为证明极限limf(P)不存在, 可证明沿某个方向的极限不存在 , 或证明沿某两个方向的极限PP0不相等, 或证明极限与方向有关.但应注意 , 沿任何方向的极限存在且相等  全面极限存在

例4 xy ,(x,y)(0,0), 证明极限limf(x,y)不存在.f(x,y)x2y2(x,y)(0,0)0 ,(x,y)(0,0).6 例二重极限具有与一元函数极限类似的运算性质.例6 求下列极限: ⅰ>

(x,y)(0,0)limsinxyx2ylim;ⅱ>;(x,y)(3,0)yx2y2 ⅲ>

3.极限(x,y)(0,0)limxy11ln(1x2y2);ⅳ> lim.22(x,y)(0,0)xyxy(x,y)(x0,y0)limf(x,y)的定义:

2定义2.设f为定义在DR上的二元函数,P0为D的一个聚点,若 M0,0,或

PU0(P0,)D,f(P)M则limf(P)

PP0(x,y)(x0,y0)limf(x,y)

其他类型的非正常极限,(x,y)无穷远点的情况.例7 验证(x,y)(0,0)lim1.222x3y二.累次极限

二次极限

1.累次极限的定义:

定义3.设Ex,EyR,x0,y0分别是Ex,Ey的聚点,二元函数f在集合ExEy上有定义。若对每一个yEyyy0存在极限limf(x,y)

记作(y)limf(x,y)

xx0xExx0xE若Llim(y)存在,则称此极限为二元函数f先对x后对y的累次极限

yy0yEy记作Llimlim(y)

简记Llimlim(y)

yy0xx0yEyxExyy0xx0例8 f(x,y)xy, 求在点(0 , 0)的两个累次极限.x2y2 7 例9 x2y2, 求在点(0 , 0)的两个累次极限.f(x,y)22xy11ysin, 求在点(0 , 0)的两个累次极限.yx例10 f(x,y)xsin2.二重极限与累次极限的关系:

⑴ 两个累次极限存在时, 可以不相等.(例9)⑵ 两个累次极限中的一个存在时, 另一个可以不存在.例如函数f(x,y)xsin1在点(0 , 0)的情况.y

⑶ 二重极限存在时, 两个累次极限可以不存在.例如例10中的函数, 由 , y)(0,0).可见全面极限存在 , 但两个累次极限均不存在.|f(x,y)|  |x||y|0 ,(x

⑷ 两个累次极限存在(甚至相等)

二重极限存在.(参阅例4和例8).综上 , 二重极限、两个累次极限三者的存在性彼此没有关系.但有以下确定关系.定理2 若二重极限

推论1 二重极限和两个累次极限三者都存在时 , 三者相等.推论1给出了累次极限次序可换的一个充分条件.推论2 两个累次极限存在但不相等时 , 二重极限不存在.但两个累次极限中一个存在 , 另一个不存在 

二重极限不存在.参阅⑵的例.(x,y)(x0,y0)limf(x,y)和累次极限limlimf(x,y)(或另一次序)都存在 , 则必相等.xx0yy0

作业提示: P99 1、2、4

§ 3 二元函数的连续性(4 时)

一. 二元函数的连续(相对连续)概念:由一元函数连续概念引入.1.连续的定义:

定义

用邻域语言定义相对连续.全面连续.函数f(x,y)有定义的孤立点必为连续点.例1 xy22 , xy0 ,22xy

f(x,y)m , x2y20.1m2证明函数f(x,y)在点(0 , 0)沿方向ymx连续.1 , 0yx2, x ,例2

f(x,y)

([1]P124 E4)0 , 其他.证明函数f(x,y)在点(0 , 0)沿任何方向都连续 , 但并不全面连续.函数的增量: 全增量、偏增量.用增量定义连续性.函数在区域上的连续性.2.二元连续(即全面连续)和单元连续 :

定义

(单元连续)

二元连续与单元连续的关系: 参阅[1]P132 图16—9.3.连续函数的性质: 运算性质、局部有界性、局部保号性、复合函数连续性.仅证复合函数连续性.二.二元初等函数及其连续性:

二元初等函数 , 二元初等函数的连续性.三.一致连续性: 定义.四.有界闭区域上连续函数的性质:

1.有界性与最值性.(证)

2.一致连续性.(证)

3.介值性与零点定理.(证)

Ex

[1]P136—137 1 ⑴—⑸,2,4,5;

P137—138

篇6:函数极限与连续习题(含答案)

(2)若

(3)若

(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2)

2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义)

3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0))

xx04、已知f(x)1

x,则limf(xx)f(x)的值是(C、1)

x0xx2

x125、下列式子中,正确的是(B、limx11)2(x1)

26、limxaxb5,则a、x11xb的值分别为(A、7和6)

7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8)

x3x38、limxa

xxaa(D、3a2)

29、当定义f(1)f(x)1x

2在x1处是连续的。1x10、lim16x12。

x27x31111、lim12、x21xxx12x31

limx2x112 3x1113、lim(x2xx21)1

x

214、lim(x2xx21)1

x2

x,0x1115、设(1)求xf(x),x1

2

1,1x2

1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。

篇7:函数极限与连续教案

函数的连续性及极限的应用

1.函数在一点连续的定义: 如果函数f(x)在点x=x0处有定义,limf(x)存在,且limf(x)=f(x0),xx0

xx0那么函数f(x)在点x=x0处连续.2..函数f(x)在点x=x0处连续必须满足下面三个条件.(1)函数f(x)在点x=x0处有定义;

(2)limf(x)存在;

xx0(3)limf(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值.xx0如果上述三个条件中有一个条件不满足,就说函数f(x)在点x0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x0处连续,则f(x)±g(x),f(x)•g(x),f(x)(g(x)≠0)也在点

g(x)x0处连续。

②若u(x)都在点x0处连续,且f(u)在u0=u(x0)处连续,则复合函数f[u(x)]在点x0处连续。

4.函数f(x)在(a,b)内连续的定义:

如果函数f(x)在某一开区间(a,b)内每一点处连续,就说函数f(x)在开区间(a,b)内连续,或f(x)是开区间(a,b)内的连续函数.f(x)在开区间(a,b)内的每一点以及在a、b两点都连续,现在函数f(x)的定义域是[a,b],若在a点连续,则f(x)在a点的极限存在并且等于f(a),即在a点的左、右极限都存在,且都等于f(a),f(x)在(a,b)内的每一点处连续,在a点处右极限存在等于f(a),在b点处左极限存在等于f(b).5.函数f(x)在[a,b]上连续的定义:

如果f(x)在开区间(a,b)内连续,在左端点x=a处有

xalimf(x)=f(a),在右端点x=b处有xblimf(x)=f(b),就说函数f(x)在闭区间[a,b]上连续,或f(x)是闭区间[a,b]上的连续函数.6.最大值最小值定理

如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值 7.特别注意:函数f(x)在x=x0处连续与函数f(x)在x=x0处有极限的联系与区别。“连续必有极限,有极限未必连续。”

二、问题讨论 ●点击双基

1.f(x)在x=x0处连续是f(x)在x=x0处有定义的_________条件.A.充分不必要

B.必要不充分

C.充要

D.既不充分又不必要 解析:f(x)在x=x0处有定义不一定连续.答案:A πx的不连续点为 2.f(x)=πcosxcosA.x=0 B.x=2(k=0,±1,±2,„)2k1C.x=0和x=2kπ(k=0,±1,±2,„)

2(k=0,±1,±2,„)2k12πππ解析:由cos=0,得=kπ+(k∈Z),∴x=(kZ).2k1xx2D.x=0和x=又x=0也不是连续点,故选D 答案:D 3.下列图象表示的函数在x=x0处连续的是

yyOx0xOx0x①yy②Ox0xOx0x

A.①

B.②③

C.①④

D.③④ 答案:A

④③4.四个函数:①f(x)=

1;②g(x)=sinx;③f(x)=|x|;④f(x)=ax3+bx2+cx+d.其中在x=0x处连续的函数是____________.(把你认为正确的代号都填上)

答案:②③④

例1:讨论下列函数在给定点或区间上的连续性

1ex1(x0),点x=0;(1)f(x)1ex11(x0)x22(2)f(x)x4(x1),点x=-1。

(x1)解:(1)当x→0时,-1e1lim,lime0,因此=-1,1x0x0xex11x1x而limx0e1e11x1x=lim(1x02e11xf(x)limf(x),)=1,∵limx0x0∴f(x)在x=0处极限不存在,因此f(x)在x=0处不连续。

2(2)∵limf(x)lim(x2)3,limf(x)lim(x4)3,f(1)3,x1x1x1x1∴limf(x)3f(1),因此函数f(x)在x=-1处连续。

x1【思维点拨】函数在某点连续当且仅当函数在该点左、右连续(闭区间的端点例外)。

例2.(优化P208例1)1(x>0)(1)讨论函数f(x)=0(x=0),在点x0处的连续性-1(x<0)x(2)讨论函数f(x)=在区间0,3上的连续性x-3剖析:(1)需判断limf(x)=limf(x)=f(0).x0x0(2)需判断f(x)在(0,3)上的连续性及在x=0处右连续,在x=3处左连续.解:(1)∵limf(x)=-1, limf(x)=1, x0x0x0f(x), limf(x)≠limx0∴limf(x)不存在.∴f(x)在x=0处不连续.x0(2)∵f(x)在x=3处无定义, ∴f(x)在x=3处不连续.∴f(x)在区间[0,3]上不连续.x24练习:讨论函数f(x)的连续性;适当定义某点的函数值,使f(x)在区间(-3,3)

x2内连续。

解:显然函数的定义域为(,2)(2,),当x2时,f(x)x2,∴f(x)在(,2)上连续,在(2,)上连续。而f(x)在x2处不连续。

x24又∵limlim(x2)4,不妨设f(2)4,x2x2x2x24(x2)此时,f(x)在区间(-3,3)内连续。于是f(x)x2(x2)4例3.(优化P208例2)ex(x0)设函数f(x)= ax(x0)

当a为何值时,函数f(x)是连续的x解:limf(x)=(a+x)=a, f(x)=e=1,而f(0)=a,故当a=1时,limlimlimx0x0x0x0x0limf(x)=f(0), 即说明函数f(x)在x=0处连续,而在x≠0时,f(x)显然连续,于是我们可判断当a=1时, f(x)在(-∞,+∞)内是连续的.评述:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而断定连续性.例4.如图,在大沙漠上进行勘测工作时,先选定一点作为坐标原点,然后采用如下方法:从原点出发,在x轴上向正方向前进a(a>0)个单位后,向左转900,前进ar(0

(1)若有一小分队出发后与设在原点处的大本营失去联系,且可以断定此小分队的行动与原

y定方案相同,则大本营在何处寻找小分队?(2)若其中的r 为变量,且0

备用:

Ox例题:利用连续函数的图象特征,判断方程:2x5x10是否存在实数根。

3解:设f(x)2x5x1,则f(x)在R上连续,又f(0)1,f(3)380,因此在3[-3,0]内必存在点x0使得f(x0)0,所以x0是方程2x5x10的一个实数根,因此方程2x5x10有实根。

【思维点拨】要判断方程是否有实根,即判断对应的连续函数yf(x)的图象是否与x轴有交点。

五、小结

1.函数f(x)在x=x0处连续必须具备三个条件:Ⅰ)函数f(x)在x=x0处及其附近有定义;Ⅱ)函数f(x)在x=x0处有极限;Ⅲ)函数f(x)在x=x0处的极限值等于这一点处的函数值f(x0)。2.如果函数f(x)在闭区间[a,b]上是连续函数,那么函数f(x)在闭区间[a,b]上有最大值和最小值。

篇8:函数极限与连续教案

1.1 数列

初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N+,则称f:N+→R或f(n),n∈N+为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a1,a2,…an…,或简单地记作{an},其中an是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.

1.2 数列的极限的定义

定义1(1)设{an}为数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时,有|an-a|<ε,则称数列{an}收敛于a,定数a为数列{an}的极限,并记作.

2. 关于函数极限

2.1 x→∞时函数极限

定义2(1)设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数ε,存在正数M(≥a),使得当x>M时有|f(x)-A|<ε,则称函数当x→+∞时以A为极限,记作.

现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,.

2.2 x→x0时函数极限

定义3(函数极限的ε-δ定义)(1)设函数f在点x0的某个空心邻域U0(x0;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x0|<δ时有|f(x)-A|<0ε,则称函数f当x→x0时以A为极限,记作.

类似可定义及.

3. 数列极限与函数极限的异同及根本原因

从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x0;x→x0+;x→x0+的极限,分类的标准是根据的趋向的不同来分类.

二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.

正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x0,根据自变量x趋近于x0的方向不同又可以分为x0点处的左极限和右极限,于是某定点处有三种类型x→x0;x→x0+;x→x0+函数极限.

综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

摘要:极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.

关键词:极限,数列极限,函数极限

参考文献

篇9:函数极限与连续教案

关键词 导数算子; Malliavin随机变分;中心极限定理;高斯过程

中图分类号 O211 文献标识码 A

Central Limit Theorem for Function of Gaussian Process and Its Applications

SUNLin

(Applied Mathematics, Guangdong University of Technology, Guangdong, Guangzhou 510090, China)

AbstractUsing two operators and the relative identity of Wiener space, this paper presented a new method to provethe central limit theorem for function of Gaussian process. Furthermore, the applications of this central limit theoremwere presented.

Keywords derivative operator; Malliavin calculus; central limit theorem; Gaussian processes

1引 言

前苏联著名概率论学者Gnedenko和Kolmogrov曾说过“概率论的认识论的价值只有通过极限定理才能被揭示,没有极限定理就不可能去理解概率论的基本概念的真正含义” [1].因此研究统计量或者随机变量的统计特性,最重要的就是研究其极限理论.而实际问题中所获得的很多数据都可以认为来自高斯过程函数总体,比如来自正态随机变量就可以看成来自关于高斯过程恒等映射的总体.从而自上世纪30年代起,概率极限理论已获得完善的发展.近年来关于高斯过程函数的统计特性成为研究中的热门方向之一,大量学者研究了关于高斯过程函数的极限定理,如Nualart和Peccati (2005)[2],Nualart和Ortiz-Latorre (2008)[3], Peccati (2007)[4] ,Hu和Nualart(2005)[5] ,Peccati和Taqqu (2008)[6]以及Peccati和Taqqu (2007)[7].大量的文献如Deheuvels、Peccati与Yor (2006) [8],Hu和Nualart(2009) [9] 应用了该定理.

本文首先利用Malliavin随机变分法,通过导数算子和散度型算子,并利用恒等式构造了证明高斯过程函数的中心极限定理的新方法,该证明避免了采用Dambis-Dubins-Schwarz以及Clark-Ocone公式.进一步结合具体实例,给出了该中心极限定理的应用.

2 主要结论及其证明

定理 1[3]:设定k≥2,且Fnn≥1为k阶维纳混沌中平方可积随机变量序列.若lim n→+

EF2n=‖fn‖2H⊙k→σ2,则当n→

时,下面命题是等价的:

ⅰ)Fn→N(0,σ2);

ⅱ)lim n→

EF4n→3σ2;

ⅲ)对于所有的1≤l≤k-1,有

lim n→+

‖fnlfn‖2H2(n-1)=0;

ⅳ)‖DFn‖2HL2(Ω)n→+

kσ2,

其中,fn是关于随机变量Fn的平方可积核函数,

fnlfn表示两核函数的l次指数压缩.

证明 将采用下面的证明路线:ⅳ)ⅰ)ⅱ)ⅲ)ⅳ).

1)ⅳ)ⅰ)

不失一般性,令σ2=1,则由已知条件‖DFn‖2HL2(Ω)n→+

σ2,待证当n→+

时,有依分布收敛Fn→ε~N(0,1)成立.也就是说对于任意二次连续可微有界函数φ•有下面式子成立:

lim n→+

Eφ(Fn)=Eφ(ε). (1)

对于0≤t≤1,定义

ψt=EφtFn+1-tε.(2)

注意到ψ0=Eφε且ψ1=EφFn,由微积分基本定理知

EφFn-Eφε

=ψ1-ψ0=∫10ψ′tdt. (3)

另一方面,利用Malliavin随机变分恒等式

δDF=kF与E[〈DF(ξ),u((ξ))〉]=E[DF(ξ)δu(ξ)],易知∫10ψ′(t)dt可以表示为:

∫10ψ′tdt=∫10ddtEφtFn+1-tεdt

=∫10EddtφtFn+1-tεdt

=12k∫10Eφ″tFn+1-tε‖DFn‖2dt

-12∫10Eφ″tFn+1-tεdt

=12∫10Eφ″tFn+1-tε•

1k‖DFn‖2-1dt. (4)

由式(3)和式(4)知

EφFn-Eφε

=12∫10Eφ″tFn+1-tε•

1k‖DFn‖2-1dt.(5)

两边取绝对值,并利用φ•的二阶导的有界性以及假设条件‖DFn‖2HL2(Ω)n→+

k,则有

EφFn-Eφε

=12∫10Eφ″tFn+1-tε•

1k‖DFn‖2-1dt→0.

故lim n→+

Eφ(Fn)=Eφ(ε)成立,即有当n→

时,Fn→N(0,σ2).

2)ⅰ)  ⅱ)

首先由参考文献Nualart(2006)知对于任意p≥2,有

EFnp≤ckEFn2, (6)

其中,ck∈R且与n独立.

式(4)结合假设条件lim n→+

EF2n=σ2可得当n→

时,

EFnp≤ckEFn2→ckσ2.(7)

则对于任意p≥2,有

sup nEFnp<+

.(8)

进一步根据假设当n→

时,Fn→η~N(0,σ2),根据期望的连续性有EF4n→Eε4,从而要证明lim n→

EF4n→3σ2,只需证Eη4→3σ2即可.

令X~N(0,σ2)且Y=Xσ~N(0,1),则对于任意n≥0,有

Eηn=EXn=σnEXσn=σnEYn.

另一方面,随机变量Y的特征函数可以表示为

φt=EeitY=e-t22=∑+

n=0-1nt2n2nn!

=∑+

n=01n!φn0tn=1-t22•1!+

t422•2!-t623•3!+…,

其中,φn00,n=2k+1,

-1k2k!2kk!,n=2k.

从而

EYn=φn0in=0,n=2k+1,

2k!2kk!=n!!,n=2k.(9)

令n=4,则有EYn=4!222!=3.

3)ⅱ)ⅲ) 见参考文献Nualart和Peccati(2005).[2]

4)ⅲ)ⅳ) 见参考文献Nualart和Ortiz-Latorre(2008).[3]

3应用实例

由定理1可知:若Fnn≥1为k≥2阶维纳混沌中平方可积随机变量序列.且lim n→+

EF2n→σ2,则如果要证明当n→

时,Fn→N(0,σ2).只需证明‖DFn‖2HL2(Ω)n→+

kσ2即可.该定理在证明统计量以及随机变量的函数满足中心极限定理时非常有用.下面给出该定理的应用例子.

首先由于林德伯格—勒维中心极限定理在概率中有着重要地位,是数理统计中大样本统计推断的理论基础.该定理说明如果现实生活中的某个量是由许多独立的因素影响叠加而成的,而其中偶然因素的影响又是一致得微小,则可以断定这个量近似服从正态分布.可采用定理1来证明该定理.

实例1(林德伯格—勒维定理) 设X1,X2,…,Xn,…是独立同分布的随机变量序列, 且

E(Xi)=μ,Var(Xi)=σ2,i=1,2,…,n,…

则∑ni=1Xi-nμσn→N(0,1).

证明 该定理表明:当n充分大时, n个具有相同期望和方差的独立同分布的随机变量之和近似服从正态分布.虽然在一般情况下, 很难求出X1+X2+…+Xn分布的具体形式, 但当n很大时, 可求出其近似分布.由定理结论有

∑ni=1Xi-μn→N(0,σ2).(10)

采用定理1来证明式(10).证明的关键在于找到合适的函数序列Fn∈Hk使得当n→

时:有EF2n→σ2且‖DFn‖22L2(Ω)kσ2.

对于任意k≥1,令ξi=Xi-μ,i=1,2,…,n,则ξi为独立且服从标准正态分布的随机变量.进一步令Fn=1nhkξ1+hkξ2+…+hkξn,这里k≥1且hk•为厄米多项式(详见参考文献Nualart (2006)).另一方面,

EF2n=E1nhkξ1+hkξ2+…+hkξn2

=1nnEh2kξ1=1k!=σ2. (11)

同时根据导数算子的定义知,对于1≤i≤n,有DiFn=0,…,1nh′kξi,0…0,故

‖DFn‖22=D1Fn2+D2Fn2+…+

DnFn2→Eh2k-1ξ1

=1k-1!=kσ2.(12)

由式(11)和式(12)知EF2n→σ2且‖DFn‖22L2(Ω)kσ2成立,从而林德伯格—勒维定理证毕.

实例 2(高斯移动平均)考虑独立高斯时间序列Znn≥0,满足EZn=0且

VarZn=σ21-λ,n=0;

σ2,n≥1,

这里λ2<1.再定义迭代过程

X0=Z01-λ2,Xn=λXn-1+1-λ2Zn,n≥1.

则Xn可以表示为

Xn=∑nj=0cn-jZj .

其中cn-j=λn-j.易证Xn是平稳遍历时间序列且满足

EX0=0,

VarXn=1.

下面证明∑ni=1Xin→N(0,1).利用定理1,需要构造合理的Fn,令

Fn=1nhkX0+hkX1+…+hkXn,

其中,k≥1且hk•为厄米多项式(详见参考文献Nualart (2006)),则显然Fn∈Hk,且有

EF2n=E1nhkX0+hkX1+…+hkXn2

=1nnEh2kX1=1k!=σ2,

以及

‖DFn‖22=D1Fn2+D2Fn2+…+DnFn2

→Eh2k-1X1=1k-1!=kσ2.

根据定理1知Fn→N(0,1).取k=1以及利用厄米多项式h1x=x知∑ni=1Xin→N(0,1).

实例 3 (带漂移项的布朗运动)20世纪初,Bachelier采用带漂移的布朗运动来刻画股票的价格行为模式,即:

St=s0+σBt,t∈0,T.

显然St为均值为S0,方差为σ2的高斯过程.固定观察间隔h,得到观察量Sh,…,Sjh,…,Snh,令 t=h,…,jh,…,nh′,Bt=Bh,…,Bjh,…,Bnh′,S0=s0,…,s0,…,sn′与S=Sh,…Sjh…Snh′.从而该随机向量的联合分布密度函数可以表示为

LS;σ2=2π-n2Γ-12•

exp-12S-S0′Γ-1S-S0,(13)

其中,

Γ=[Cov[Si,Sj]]i,j=1,2,…,n=σ2[Cov [Bi, Bj]]i,j=1,2,…,n =σ2[i∧j]i,j=1,2,…,n.

对式(13)两边取对数,并对σ2求导可得其极大似然估计量

2=1nS′Γ-1St′Γ-1t-t′Γ-1Y2t′Γ-1t.(14)

于是利用定理1得出由式(14)给出的估计量的中心极限定理.令

Fn=1σ2n22-σ2

=1σ2n21nS′Γ-1St′Γ-1t-t′Γ-1Y2t′Γ-1t-σ2,

显然有

lim n→

EFn=E1σ2n2σ^2-σ22

=1σ4n2σ4nnn+2-2n+2+3+σ4-2σ2n-1nσ2

=1.(15)

另一方面将St=s0+σBt代入式(15)并对其求Malliavin导数可得

DFn=12n2DB′tΓ-1Bt-2t′Γ-1Btt′Γ-1DBtt′Γ-1t,(16)

其中

DBt=(1[0,h](s),1[0,2h](s),…,1[0,nh](s))′.由式(16)知

‖DFn‖2H=2n‖DB′tΓ-1Bt‖2H+t′Γ-1Bt2‖t′Γ-1DBt‖2Ht′Γ-1t2-2t′Γ-1DBt〈DB′tΓ-1Bt,t′Γ-1DBt〉Ht′Γ-1t

=2nB′tΓ-1Bt-t′Γ-1Bt2t′Γ-1t=22σ2. (17)

根据式(15)和式(17),结合定理1知

Fn=1σ2n2σ^2-σ2~N0,1

4结 论

本文主要采用了新的方法证明了关于高斯过程函数的中心极限定理,并将给出了该定理的具体应用.虽然本文只给出了一维情况下的中心极限定理,但对于多维情况,可以得到类似的结论.当然,除了研究高斯过程函数的几乎处处中心极限定理之外,对高斯过程函数的几乎处处大偏差性质、几乎处处局部中心极限定理及几乎处处中心极限定理收敛度等问题需进一步研究.

参考文献

[1] B V GNEDENKO, A M KOLMOGORV. Limit distributions for sums of independent random variables [M]. Addison-Wesley, 1954.

[2] D NUALART, G PECCATI. Central iimit theorems for sequences of multiple stochastic integrals [J]. Annals of Probability. 2005, 33(1): 177-193.

[3] D NUALART, S Ortiz-Latorre. Central iimit theorems for multiple stochastic integrals and malliavin calculus [J]. Stochastic Processes and their Applications. 2008, 118(4):614-628.

[4] G PECCATI. Gaussian approximations of multiple integrals [J]. Electronic Communications in Probability. 2007, 34(12): 350-364.

[5] YHU, D NUALART. Renormalized self-intersection local time for fractional Brownian motion [J]. Annals of Probability. 2005, 33(3): 948-983.

[6] G PECCATI,MTAQQU. Stable convergence of multiple Wiener-It integrals [J]. Journal of theoretical probability. 2008, 21(3): 527-570.

[7] GPECCATI, M S TAQQU. Stable convergence of generalized  L2 stochastic integrals and the principle of conditioning [J]. Electronic Journal of Probability. 2007, 12(15): 447-480.

[8] P DEHEUVELS, G PECCATI, M YOR. On quadratic functionals of the Brownian sheet and related processes [J]. Stochastic Processes and their Applications. 2006, 116 (3): 493-538.

[9] Y HU, D NUALART. Parameter estimation for fractional Ornstein-Uhlenbeck processes [J]. Statistics and Probability Letters. 2010, 80(11-12), 1030-1038.

[10]D NUALART. The malliavin calculus and related topics [M]. 2nd Edition. Berlin: Springer-verlag, 2006.

上一篇:怎样提高教学质量下一篇:小学生校园演讲稿《让文明之花开满校园》