勾股定理教学分析

2024-05-23

勾股定理教学分析(精选6篇)

篇1:勾股定理教学分析

高中数学教学中的“情境.问题.反思.应用”----“余弦定理”教学案例分析

作者:王兵 发布日期:2007-11-

1[摘要]:辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指导下的“情境.问题.反思.应用”教学实验,旨在培养学生的数学问题意识,养成从数学的角度发现和提出问题、形成独立思考的习惯,提高学生解决数学问题的能力,增强学生的创新意识和实践能力。创设数学情境是前提,提出问题是重点,解决问题是核心,应用数学知识是目的,因此所设情境要符合学生的“最近发展区”。“余弦定理”具有一定广泛的应用价值,教学中我们从实际需要出发创设情境。

[关键词]:余弦定理;解三角形;数学情境

一、教学设计

1、教学背景

在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题。这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在 2003级进行了“创设数学情境与提出数学问题”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。

2、教材分析

“余弦定理”是全日制普通高级中学教科书(试验修订本 ?必修)数学第一册(下)的第五章第九节的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

3、设计思路

建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。

为此我们根据“情境--问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点;二是如何将向量关系转化成数量关系。④由学生独立使用已证明的结论去解决中所提出的问题。

二、教学过程

1、设置情境

自动卸货汽车的车箱采用液压机构。设计时需要计算油泵顶杆 BC的长度(如下图),已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20′,AC的长为1.40m,计算BC的长(保留三个有效数字)。

2、提出问题

师:大家想一想,能否把这个实际问题抽象为数学问题?(数学建模)

能,在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的长。

师:能用正弦定理求解吗?为什么?

不能。正弦定理主要解决:已知三角形的两边与一边的对角,求另一边的对角;已知三角形的两角与一边,求角的对边。师:这个问题的实质是什么?

在三角形中,已知两边和它们的夹角,求第三边。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。

3、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 先从特殊图形入手,寻求答案或发现解法。(特殊化)可以先在直角三角形中试探一下。

直角三角形中 c 2 =a 2 +b 2(勾股定理角C为直角)斜三角形ABC中(如图3),过A作BC边上的高AD,将斜三角形转化为直角三角形。(联想构造)师:垂足 D一定在边BC上吗?

不一定,当角 C为钝角时,点D在BC的延长线上。(分类讨论,培养学生从不同的角度研究问题)

在锐角三角形 ABC中,过A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, CD=ACcosC 即AD=bsinC, CD=bcosC 又 BD=BC-CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C =a 2 +b 2-2abcosC 同理 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

在钝角三角形 ABC中,不妨设角C为钝角,过A作AD垂直BC交BC的延长线于D,在直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD=-bcos C,又BD=BC+CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C =a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

同理可证 a 2 =b 2 +c 2-2bccosA b 2 =a 2 +c 2-2accosB

师:大家回想一下,在证明过程易出错的地方是什么?

4、反思应用

师:同学们通过自己的努力,发现并证明了余弦定理。余弦定理揭示了三角形中任意两边与夹角的关系,请大家考虑一下,余弦定理能够解决哪些问题?

知三求一,即已知三角形的两边和它们的夹角,可求另一边;已知三角形的三条边,求角。余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

师:请同学们用余弦定理解决本节课开始时的问题。(请一位同学将他的解题过程写在黑板上)

解:由余弦定理,得

BC 2 =AB 2 +AC 2-2AB.ACcosA

= 1.952+1.402-2×1.95×1.40cos66°20′ = 3.571

∴ BC≈1.89(m)

答:顶杆 BC约长1.89m。

师:大家回想一想,三角形中有六个元素,三条边及三个角,知道其中任意三个元素,是否能求出另外的三个元素?

不能,已知的三个元素中,至少要有一个边。

师:解三角形时,何时用正弦定理?何时用余弦定理?

已知三角形的两边与一边的对角或两角与一角的对边,解三角形时,利用正弦定理;已知三角形的两边和它们的夹角或三条边,解三角形时,利用余弦定理。巩固练习:课本第 131页练习1⑵、2⑵、3⑵、4⑵

三、教学反思

本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。

创设数学情境是“情境.问题.反思.应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材第五章 5.10解三角形应用举例的例1。实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。

“情境.问题.反思.应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

篇2:勾股定理教学分析

作者: 王兵 发布日期:2007-11-1

摘要]: 辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指导下的“情境.问题.反思.应用”教学实验,旨在培养学的数学问题意识,养成从数学的角度发现和提出问题、形成独立思考的习惯,提高学生解决数学问题的能力,增强学生的创新意和实践能力。创设数学情境是前提,提出问题是重点,解决问题是核心,应用数学知识是目的,因此所设情境要符合学生的“最发展区”。“余弦定理”具有一定广泛的应用价值,教学中我们从实际需要出发创设情境。

关键词]: 余弦定理;解三角形;数学情境、教学设计、教学背景

近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题。说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在 2003级进行了“创设数学情境与提出数问题”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。、教材分析

余弦定理”是全日制普通高级中学教科书(试验修订本 ?必修)数学第一册(下)的第五章第九节的主要内容之一,是解决有关三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。、设计思路

构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的识经验。

此我们根据“情境--问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、验数学的过程。根据上述精神,做出了如下设计:①创设一个现实问题情境作为提出问题的背景;②启发、引导学生提出自己关的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知角形的两条边和他们的夹角,求第三边。③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。

;二是如何将向量关系转化成数量关系。④由明时,关键在于启发、引导学生明确以下两点:一是证明的起点

生独立使用已证明的结论去解决中所提出的问题。、教学过程、设置情境

动卸货汽车的车箱采用液压机构。设计时需要计算油泵顶杆 BC的长度(如下图),已知车箱的最大仰角为60°,油泵顶点B与箱支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20′,AC的长为1.40m,计算BC的长(保留三个有效数字)。、提出问题

:大家想一想,能否把这个实际问题抽象为数学问题?(数学建模),在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的长。

:能用正弦定理求解吗?为什么?

能。正弦定理主要解决:已知三角形的两边与一边的对角,求另一边的对角;已知三角形的两角与一边,求角的对边。

:这个问题的实质是什么?

三角形中,已知两边和它们的夹角,求第三边。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。、解决问题

:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的?

从特殊图形入手,寻求答案或发现解法。(特殊化)

以先在直角三角形中试探一下。

角三角形中 c 2 =a 2 +b 2(勾股定理角C为直角)斜三角形ABC中(如图3),过A作BC边上的高AD,将斜三角形转化为直三角形。(联想构造)

:垂足 D一定在边BC上吗?

一定,当角 C为钝角时,点D在BC的延长线上。

分类讨论,培养学生从不同的角度研究问题)

锐角三角形 ABC中,过A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, =ACcosC 即AD=bsinC, CD=bcosC BD=BC-CD,即BD=a-bcosC

c 2 =(bsinC)2 +(a-bcosC)2 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C 2 +b 2-2abcosC 理 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB 钝角三角形 ABC中,不妨设角C为钝角,过A作AD垂直BC交BC的延长线于D,直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD-bcos C,又BD=BC+CD,即BD=a-bcosC

c 2 =(bsinC)2 +(a-bcosC)2 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C 2 +b 2-2abcosC 理 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB 理可证 a 2 =b 2 +c 2-2bccosA 2 =a 2 +c 2-2accosB :大家回想一下,在证明过程易出错的地方是什么?、反思应用

:同学们通过自己的努力,发现并证明了余弦定理。余弦定理揭示了三角形中任意两边与夹角的关系,请大家考虑一下,余弦定能够解决哪些问题?

三求一,即已知三角形的两边和它们的夹角,可求另一边;已知三角形的三条边,求角。

弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

:请同学们用余弦定理解决本节课开始时的问题。(请一位同学将他的解题过程写在黑板上)

:由余弦定理,得

=AB 2 +AC 2-2AB.ACcosA 1.952+1.402-2×1.95×1.40cos66°20′

3.571 BC≈1.89(m):顶杆 BC约长1.89m。

:大家回想一想,三角形中有六个元素,三条边及三个角,知道其中任意三个元素,是否能求出另外的三个元素?

能,已知的三个元素中,至少要有一个边。

:解三角形时,何时用正弦定理?何时用余弦定理?

知三角形的两边与一边的对角或两角与一角的对边,解三角形时,利用正弦定理;已知三角形的两边和它们的夹角或三条边,解角形时,利用余弦定理。

固练习:课本第 131页练习1⑵、2⑵、3⑵、4⑵、教学反思

课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的定理教学”提供了一些有用的借鉴。

设数学情境是“情境.问题.反思.应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。

应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需出发创设了教学中所使用的数学情境。该情境源于教材第五章 5.10解三角形应用举例的例1。实践说明,这种将教材中的例题、题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中不少可用的素材。

情境.问题.反思.应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程.把“质疑提问”,培养学

篇3:《勾股定理》教学反思

我有幸获得开课任务, 上课内容是《勾股定理》第一课时。经历了一次试上, 一次正式上课和两次反思, 这次案例教学活动使我的教学观念受到了极大的冲击。以前我自认为有本科学历, 又有一定的教学能力, 担任初中数学教学应当没有任何问题。《勾股定理》这堂课至少上过五遍, 基本上都是按照书上的方法引导学生去想, 并且证明给学生看。这是第一次尝试寻找一种能让学生自己“发现”并自己证明勾股定理的方法。经过反思, 我深切地体会到教学理念的重要性, 必须以教学理念的提升指导和改进教学方法, 规范课堂教学。

二、“勾股定理”教学设计说明

在数学教学过程中, 学生的知识不应只是通过教师单纯地讲解与学生的简单模仿获得, 而是通过数学活动, 让学生渴望新知识, 经历知识的形成过程, 体验应用知识的快乐, 从而使学生变被动接受为主动探究, 增强学好数学的愿望和信心。为此, 本节课主要设计了三个活动。

活动一:唤起学生对新知识的渴望。

学生为了解决现实生活中的一个朴实、可亲、有趣的问题, 不断碰到困难, 并不断在发现中解决, 思维探究活跃, 好奇心和探索欲望被激起。

活动二:学生在探索中体验快乐。

探索“勾股定理”是本节课的重点和难点。在整个探索过程中教师只是一个引导者、启发者, 引导学生动手、观察、思考、实验、探索与交流;学生在整个活动中切身体验到发现“勾股定理”的快乐。从而培养了学生的探索精神和合作交流能力。

活动三:学生在问题设计中巩固勾股定理。

本节课是勾股定理的第一课, 知识的应用比较简单, 学生设计问题有一定的可行性。引导学生在掌握勾股定理的基础上自己设计问题, 完善问题, 并从老师的高度进行变题, 学生的主体性得到了充分的体现。

整个教学设计遵循“重视预设、期待生成”的原则。

三、教学过程与反思

1. 第一次试上, 由我独立备课, 从开始备课到上课结束, 始终有两个疑问没有得到很好解决。

一是如何引出勾股定理。教学过程是让学生在正方形网格上画一个两条直角边a、b分别是3厘米和4厘米的直角三角形, 量一下斜边长c是多少?紧接着让学生观察直角三角形的三条边在大小上有什么关系。事实上, 由于缺乏足够的材料, 而且量得的结果可能不一定是整数, 因此很难得出正确的结论。另外, 也有学生在探究时, 根据两边和大于第三边得出a+b>c这个结论, 认为这也是直角三角形三条边之间的关系, 这便偏离了教师预先设定的学习目标。

二是勾股定理的证明。解决的方案:采用教材提供的方法, 即教参上所说的数形结合的方法。通过恒等变形, 在教师的引导下作出联想, 将四个全等的直角三角形拼在边长为 (a+b) 的正方形当中, 中间又是一个正方形, 而它的面积正好是c2, 从而得出a2+b2=c2。其中的难点在于, 让学生自己很自然地想到用拼图证明, 对于大多数学生来讲, 做到这一点几乎是不可能的。教师只能带领学生进行变形、联想、拼图等一系列的教学活动。教师的讲授时间明显多于学生的探究时间, 尽管教师一直在讲, 但是其中的来龙去脉还是很难交代清楚。

第一次反思:

(1) 教师的讲授时间多于学生的探究时间原因在于:凭学生已有的知识尚无能力探究这个问题, 学生“一路走来”只能回答“是”“对”, 思维屡屡受阻, 心智活动暴露在无所依托的危机之中。

(2) 备课时, 教师就发现了难点所在, 但直到具体实施时仍束手无策, 心有余而力不足, 无法引导学生进行有意义的自主探究, 这与教师自身的经验不足有很大关系。

(3) 教师不仅要抓住教学中的难点, 更要找到化解难点的办法。为学生向既定的探究目标迈进铺设适当的知识阶梯, 当凭自己的能力无法做到时, 应向专家请教, 及时有效地解决教学中存在的问题, 使自己在教法上能有所改进。

2. 第二次上课通过集体备课, 大家集思广益, 针对前面两个难点重点设计, 基本上解决了原有的问题。

设计方案是:将整个教学过程分成八节, 每一节都清晰地展现在学生面前。

(1) 创设问题情境, 设疑铺垫。情景展示:小强家正在装修新房, 周日, 小强家买了一批边长为2.1米的正方形木板, 想搬进宽1.5米, 高2米的大门, 小强横着放, 竖着放都没能将木板搬进屋内, 你能帮他解决这个问题吗?

(2) 以1955年发行的毕达哥拉斯纪念邮票为背景, 观察图形, 你发现了什么?并说说你的理由。

(3) 以小方格背景, 任意画一个顶点在格点上的直角三角形, 并分别以这个直角三角形的各边为一边向外作正方形, 刚才你发现的结论还成立吗?其中斜放的正方形面积如何求, 由学生探讨。 (介绍割与补的方法) (图一)

(4) 如图二, 任意直角三角形ABC为边向外作正方形, 上面的猜想仍成立吗?用四个全等的直角三角形拼图验证。

(5) 介绍一些有关勾股定理的史料 (赵爽的弦图、世界数学家大会会标、华罗庚建议用“勾股定理”的图作为与外星人联系的信号等) , 让学生感受到勾股定理的历史之悠久, 激起学生的民族自豪感。

(6) 应用新知, 解决问题。

(1) 解决刚才“门”的问题, 前后呼应;

(2) 直角三角形两边为3和4, 则第三边长是__________。

例:一块长约120步, 宽约50步的长方形草地, 被不自觉的学生沿对角线踏出了一条斜路, 类似的现象时有发生, 请问同学们回答: (1) 走“斜路”的客观原因是什么?为什么? (2) “斜路”比正路近多少?这么几步近路, 值得用我们的声誉作为代价换取吗?

(7) 设计问题, 揭示本质。请学生概括用上述勾股定理解决问题的实质:已知两边求第三边长, 并请学生设计能用勾股定理解决的简单问题。

(8) 感情收获, 巩固拓展。

(1) 本节课你有哪些收获?

(2) 本节课你最感兴趣的是什么地方?

(3) 你还想进一步研究什么问题?

说明: (1) 通过具体的生活情景, 激起了学生对本节课的学习兴趣, 使他们急于想知道直角三角形的三边到底存在着怎样的数量关系, 激发了他们的好奇心和求知欲。

(2) 学会了在小方格的背景下, 用割补法求出邮票中斜放的正方形R的面积, 同时为勾股定理的引出做好了充分的准备, 为学生进行有意义的探究做好了铺垫。

(3) 证明方法可以说已经摆在这里, 但由于前面的教学中计算强调过多, 而忽略了计算原理, 致使撤去小方格背景时, 学生在证明时出现障碍, 想不到补4个直角三角形, 或割成四个直角三角形和一个正方形计算斜放的正方形面积。为了解决这个问题, 本节课在定理证明时有意用拼图的方法再次验证勾股定理。

(4) 由于是勾股定理的第一课, 应用较简单, 学生设计具有一定的可行。引导学生在掌握定理的基础上自己设计问题, 完善问题, 并从老师的高度变题, 学生的主体性得到了最好的发挥。

第二次反思:

(1) 当猜想出直角三角形三边数量关系时, 是不足以让学生信服的, 因为猜想时直角三角形的三边均为整数, 学生可能还存在疑虑:当直角边的长不是整数时, 情况又如何呢?所以让学生从理性上确信这个猜想是必不可少的环节。为此, 设计了任意三边的直角三角形是否存在这个问题。

(2) 去掉背景和具体数值, 在证明字母为边的直角三角形的勾股定理时, 主要是没有了正方形网格作背景, 学生不能快速产生正确的思维迁移, 不易想到用割补法证勾股定理。但是前面有了邮票问题做铺垫, 学生很自然地会联想到用割或补的方法计算以斜边为边长的正方形的面积, 从而得出了一般的直角三角形的情况, 获得了勾股定理。

如此设计, 对于执教者来讲, 最大的好处在于可以使学生的思维过程显性化, 有利于教师对学生进行过程性评价, 有利于及时指导学生在思维过程中存在的细节问题, 还有利于教师进行教学过程的改进。

(3) 在做勾股定理练习时, 采用开放式教学法, 由学生自己出题自己解决, 既巩固新知识, 又提高他们的学习兴趣。但由于学生在已知直角三角形的任意两边, 求第三边时, 不知道一个数开平方这一知识, 会出现第三边不会算的情况。关于这点, 我课前早有预料:如果有这种情况出现, 就为下堂课做好铺垫;如果没出现这种情况, 老师上课时也不提。

(4) 在课堂小结时一改先前一贯做法, 三个问题结束本节课。特别是后两个问题, 当时学生是这么回答的:我最感兴趣的地方是割补法证明勾股定理;毕达哥拉斯怎么会从地砖上发现勾股定理的, 我们平时也要多观察生活;我想知道勾股定理还有哪些证明方法;我想知道我的这副三角板中, 如果已知一条边, 能不能求出另外两条边。听课的老师们深深地被学生的这些问题感染了, 情不自禁地给予了赞扬。这样的总结设计, 把所学的知识形成了一个知识链, 为每位学生都创造了获得成功体验的机会, 并为不同程度的学生提供了充分展示自己的机会, 尊重了学生的个体差异, 满足了学生多样化的学习需要。特别是最后一个问题, 把本课知识从课内延伸到了课外, 真正使不同的人得到了不同的发展。

(5) 学生在学习过程中旧问题解决, 而新问题产生, 使我真正认识到上好勾股定理这一堂课是不容易的。课改几年来虽然理念上有所转变, 但要真正在课堂上能运用自如, 还需要不断实践。

几个问题间的过渡语言, 也是不断地修改, 甚至一个问题要怎么问, 问了后学生可能会出现哪些想法都做好了预设准备, 更制定了应急方案。

四、教学理念的升华

开设一堂公开课, 对我来说是提升教学水平的极好机会, 也可以说是完成了一次认识的飞跃。

1. 问题情境的创设, 是引起学生兴趣的关键。

数学源于问题, 源于实际问题解决的需要, 学习也是如此。正如张奠宙先生所言:“没有问题的数学教学, 不会有火热的思考。”问题是思维的起点, 任何有效的数学教学必须以问题为起点, 以问题为驱动, 激发学生学习的欲望。

2. 探究式学习是教学的最高境界。

传统的教学方法是灌输, 是牵着学生的鼻子走。民族创新精神的形成, 就要从青少年抓起。从这点上说, 让学生自己学会探究知识的方法, 养成探究的习惯, 关系重大, 教育者责任重大。

3. 学会铺垫是教学艺术的精华所在。

对学生而言, 学习是不断地从已知到未知的过程。从已知到未知之间存在一个“潜在距离”, 如何把握这个“潜在距离”, 并且为学生走过这个距离设置合适的阶梯, 让学生“跳一跳”就能摘到“果子”, 这是教学艺术的精华所在。本堂课“邮票中正方形的面积的计算”这一情境设计, 就是十分成功的铺垫。

4. 教学工作是一项创造性劳动。

篇4:勾股定理教学分析

[关键词] 勾股定理;直角三角形;关系;问题

勾股定理是初中数学教学的一个重点、难点问题,笔者在教学设计中首先从其内容出发,阐述勾股定理的教育价值和学科作用,接着就该节内容的课堂组织策略进行分析.

勾股定理的内容

搞清楚勾股定理的内容是有效实施教学的前提,具体的可以从代数和几何两个角度进行叙述.

1. 代数角度的叙述

文字表征:直角三角形两直角边的平方和等于斜边的平方.

符号表征:a2+b2=c2(a,b和c分别表示两直角边和斜边).

2. 几何角度的叙述

文字表征:一个直角三角形,以两直角边为边的两个正方形的面积之和等于以斜边为边的正方形的面积.

图像表征:如图1所示.

勾股定理的教育价值

一个知识的教育价值是多方面的,对于勾股定理这个内容,其教育价值和学科价值有如下几个方面:

1. 文化价值

从数学史上看,人们发现勾股定理、验证勾股定理及应用勾股定理的过程蕴涵着丰富的文化价值,我们在教学过程中注重这些数学史、研究过程,有助于激发学生的数学学习兴趣,在学习过程中体悟其存在的意义和实际价值.

2. 学科价值

从勾股定理的内容来看,其同时具有代数和几何的双重特征,是初中数学阶段几何与代数之间问题研究的一个重要桥梁,从勾股定理的证明方法来看,“演绎法”“变换法”和“代数法”三种方法教给学生,尤其是学生通过学习变换法(拼图法),能够帮助他们感受和理解运动与变换.

知识的教育价值不仅仅表现在概念和规律本身,在教学中还应该渗透知识探究和被发现的过程. 勾股定理的发现、验证整个过程均蕴含着丰富的、可渗透的思维素材,和学生一起探索和证明勾股定理,能够丰富学生的学习经验,感悟数学学习和不断探索未知的价值:

(1)学生在探索过程中,探究图形基本元素之间的关系、几何结构,而这一过程必然涉及空间推理和演算,从中学生能够感悟到数形结合的思想方法,同时体会推理和证明的力量.

(2)学生通过勾股定理的探索和证明,会自然而然地形成一种意识,那就是要了解我们生存的空间,必须要学习更多的数学工具,并合理地应用.

勾股定理知识系统内结构分析

数学知识具有较强的系统性和完整性,置于知识系统中,勾股定理与其他知识有着怎样的联系,学生在学习进程中又有怎样的连贯性呢?

1. 知识间的横向联系

《勾股定理》在初中阶段与其他数学知识内容密切联系,如无理数、三角函数、方程、四边形、圆等知识.

2. 知识间的纵向联系

从学生的学习进程来看,初中之前,学生在小学阶段对三角形的三边关系有了一个初步的了解:两边之和大于第三边;步入初中,学习勾股定理内容前,学生通过探索也对直角三角形的性质有了一定的了解:“斜边上的中线等于斜边的一半,30°角所对直角边是斜边的一半. ”

那么,勾股定理在这里又有怎样的作用呢?学习了这一内容后,学生可以进一步从边的角度来定量地刻画直角三角形的特征,由此进一步深化学生对直角三角形的认知.

学生从初中步入高中阶段后呢?勾股定理有没有其价值呢?学生在高中将要继续学习任意三角形中边长与角度之间的数量关系,在学习和理解正弦定理和余弦定理时,需要用到勾股定理,可以将勾股定理视作为余弦定理的一种特殊情况.

整个学习过程对直角三角形边角的关系,是从定性到定量,从一般到特殊再到一般的思维进程.

帮助学生学会勾股定理的教学策略

如何帮助学生学会勾股定理呢?

1. “探索→猜想→证明”法

笔者发现当前有部分教师在和学生探究勾股定理时采用的方法是:首先让学生测量直角三角形三条边的长,接着要求学生猜想三条边长之间存在怎样的数量关系,在学生猜想出三边之间的平方关系后,再证明勾股定理.

这样的方式有怎样的缺点呢?

笔者曾经也尝试过这种方式,看似逻辑性很好,但是关键在于学生不容易猜想出三边之间的平方关系,猜想卡壳了,后面的证明就出不来了. 为什么会出现这样的困难呢?原因有二:一是学生在测量时本身就有误差;二是从思维角度来看,学生的确很难想到平方关系.

2. 利用方格纸进行探究

提供如图2、图3所示的方格纸.

首先,让学生计算直角三角形三边的平方分别是多少,只要能计算出三边的平方,直角三角形三边之间的平方关系就很容易猜想出来.

这个时候学生会遇到怎样的困难呢?

因为直角三角形边长的平方实际上就是每边上的正方形的面积. 其中正方形1和正方形2的面积可以通过数方格的方法直接数出来,而斜边上正方形(正方形3)的面积的计算则有一定的困难.

新的问题又出现了,怎么办呢?方法又有两个.

(1)“割”,如图4、图5所示.

(2)“补”,如图6、图7所示.

篇5:《正弦定理》教学案例设计分析

课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,突然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?

[设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来!]

(二)启发引导学生数学地观察问题,构建数学模型。

用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:

1、考察角A的范围,回忆“大边对大角”的性质

2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A

从而抽象出一个雏形:

3、测量角A的实际角度,与猜测有误差,从而产生矛盾:

定性研究如何转化为定量研究?

4、进一步修正雏形中的公式,启发学生大胆想象:以及等

[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]

(三)引导学生用“特例到一般”的研究方法,猜想数学规律。

提出问题:

1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式。

2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。

3、让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

[“特例→类比→猜想”是一种常用的科学的研究思路!]

(四)让学生进行各种尝试,探寻理论证明的方法。

提出问题:

1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。

2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。

3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。

4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。

[学生成为发现者,成为创造者!让学生享受成功的喜悦!]

(五)反思总结,布置作业

1、正弦定理具有对称和谐美

2、“类比→实验→猜想→证明”是一种常用的研究问题的思路和方法

课下思考:三角形中还有其它的边角定量关系吗?

六、板书设计:

正弦定理

问题:大边对大角→边角准确的量化关系?

研究思路:特例→类比→实验→猜想→证明

结论:在△ABC中,边与所对角满足关系:

七、课后反思

本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。

(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:

1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”……促使学生去思考问题,去发现问题。

(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。

(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。

一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。

篇6:案例分析《勾股定理》

设计教师:洛万乡民族中学 郑传刚

一、设计意图:

在教学中,设法使学生在接受数学知识的过程中,融入主动的探究、发现等活动,让学生有机会通过自己的归纳概括获取知识,让学生感受到数学来自生活,数学就在身边,数学就在自已的手中。

二、学情分析:

我校八年级共两个班,都来自洛万乡各个村寨。通过观察发现只有一半左右的学生学习目标明确、学习积极性高、能主动的学习。有50%的同学有上进心,但主动性不够,需要老师的引导;但也有极少部分的学生的目标不明确,一天贪玩好耍,不能积极主动的完成学习,甚至不能完成老师布置的作业:对几何知识学生都存在着恐惧,不够自信,树立信心是让他们学好数学的最好方法。

三、教材分析:

这节课是九年制义务教育初级中学教材浙教版八年级第十八章第一节《勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起到重要的作用,在现实世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。四、三维目标: 知识与技能

1、了解勾股定理的文化背景,体验欧冠地理的探索过程。

2、了解理由拼图验证勾股定理的方法。

3、利用勾股定理,已知直角三角形的两条边求第三条变的长。过程与方法

1、在勾股定理的探索过程中,发展合情推理能力,体会数形结婚的思想。

2、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。情感态度与价值观

1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2、在探索活动中,体会解决问题方法的多样性,培养学生的合作交流意识和探索精神。

五、教学重点: 勾股定理的证明和应用。

六、教学难点: 拼图、用计算面积的方法证明勾股定理。

七、教学手段:情景创设法、案例教学法

八、教学准备:

1、教师准备:教学课件、三角尺一副、10套自制的不同边长的正方形模型等

2、学生准备:三角尺

九、教学方法:

1、教师教法: 引导发现、尝试指导、实验探究相结合。

2、学生学法: 积极参与、动手动脑与主动发现相结合。师生互动活动设计:

十、教学过程:

1、创设情景,引入新课

师:(结合动画讲故事)西周开国时期,周公非常爱才,他和喜欢钻研数学的商高是好朋友。有一天,商高对周公说,最近我又有一个新的发现,把一根长为7的直尺折成直角,使一边长(勾)为3,另一边长(股)为4,连接两端(弦)得一个直角三角形,周公您猜一猜第三边的长等于多少?周公摇头不知道。同学们,你们猜猜是多少?

生:5!生:不知道!

师:不知道也没关系,我们来量一量斜边的长就知道了。(动画演示)师:后来又发现,直角边为6、8的直角三角形的斜边的长是10。这两组数据是否具有某种共同点呢?带着这个问题人们对直角三角形做了进一步的研究,通过计算三条边长的平方发现,直角三角形中的三条边长之间还真有一种特殊的关系。同学们也来算一算、猜一猜看,它们之间到底有什么样的关系呢?

生:32+42=52、62+82=102

师:这是两组特殊数字,但由此引发一个有待我们深入思考的问题,看哪位同学有新问题要提?

生:一个任意的直角三角形的三边是否也有这种相等关系呢? 师:这个问题提得好!我们用几何画板再做一个直角三角形来多实验几次,请注意观察。(任意改变三边的长,度量、计算显示相等关系依然不变。)

师:通过实验,可以得到什么结论?(或问同学们发现直角三角形的三边有什么样的关系?)请同桌商量讨论后把你们的结论用文字语言或数学式子表达出来。

生:直角三角形的三边满足:两直角边的平方和等于斜边的平方。即 a2+b2=c2

师:同学们概括得非常好!这个结论尽管是通过多次实验得到的,但要说明它对任意的直角三角形都成立,还有待进行证明。首先我们要明确,在什么图形中要证明什么结论?

生:在直角三角形中证明a2+b2=c2

师:怎样证明呢?(学生茫然)这个问题是有点难度,让我们先来观察这个要证明的等式,看等式中的a、b、c表示什么?

生:表示直角三角形的三条边长。

师:a2、b2、c2是边长的平方,由边长的平方可联想到什么图形? 生:正方形。正方形的面积。师:对整个等式你们怎样理解?

生:等式可以理解为两个正方形的面积和等于一个正方形的面积。

师:那好,下面我们就来做一个拼正方形的游戏,看能不能对我们证明结论有些帮助。(这一环节利用故事情节引入,是为了引起学生的注意,激发学生的学习兴趣,调动学生满腔热情地投入学习过程。在问题情景中引导学生提问,是为了培养学生问问题的意识,让学生主动地带着问题在实验的过程中去感受数学的再发现。)

2、动手拼图,合作探索定理证明方法

师:现在,前后4人为一个小组,老师给每小组提供了拼图模型两套,要求每一套模型拼成一个没有空隙且不重叠的正方形。拼好后请上台展示你们的成果,比一比,看哪一组完成任务最快。

(这里充分利用了初中学生的好奇心和好胜心,给静态知识注入了活力,同时在课堂上增添了观察、探究等可形成能力的新因素。这样不仅可以调动学生的已有经验,沟通相关知识,而且还能培养学生观察、动手实践的能力。另外,在整个拼图过程中,学生自始至终处于主体位置上,老师只是他们的学习合作伙伴,在巡视的同时,给个别小组以适当指导。这样的设计体现了数学活动的教育思想,有利于学生在建构的环境中,真正主动的建构自己的理解。)

待各组同学基本完成后,挑选出一组拼图和同学们共同分析:

师:同学们对比自己拼成的两个图形,看看它们有什么共同点和不同点?

生:都是边长相等的正方形,但拼图的模型不同。生:这两个正方形的面积相等。

师:这两个正方形的面积怎样计算呢?通过你的计算能否证明a2+b2=c2?请试一试。

师:看哪两位同学愿意上来写出证明过程。生甲:证明 : ∵两个正方形的面积相等,∴4×(ab÷2)+a2+b2=4×(ab÷2)+c2 ∴a2+b2=c2

生乙:证明 : ∵(a+b)2=4×(ab÷2)+c2

∴a2+2ab+ b2=2ab+ c2 ∴a2+ b2= c2

(证明逐步深入,是为了启发学生把形的问题转化为数的问题,联想到用计算面积的方法证明a2+ b2= c2,从而突破教学难点。)

师:两位同学刚才用两种不同的方法证明了实验得出的结论,这就是我们今天要学习的勾股定理。请两位同学再谈谈你们的证明思路好吗?

生甲:图(A)的面积用四个全等的直角三角形的面积加两个正方形的面积,图(B)的面积用四个全等的直角三角形的面积加一个正方形的面积,利用面积相等就证得结论。

生乙:我把图(B)用两种不同方法计算它的面积也能证得结论。师:说得非常好!甲同学的证明思路正好符合我们前面对等式的理解;乙同学的证明思路启发我们还可以通过拼各种不同的图形来证明勾股定理。美国第十二任总统伽菲尔德有一天外出散步,遇到两个伏在石板上冥思苦想的男孩,总统上前问他们遇到了什么麻烦?一男孩说:“先生,您知道怎样证明勾股定理吗?”总统一时语塞,无法解释,于是匆忙回家研究,得出了拼直角梯形证明勾股定理的方法。(多媒体展示拼图)按这个拼图也能证明勾股定理吗?请试试看。

生:根据拼图,用两种方法计算梯形的面积就能证明勾股定理。师:对!这种思路很好。证明勾股定理的方法很多,有兴趣的同学课后可以上网查询相关资料,也可以尝试拼出不同的图形对勾股定理给予证明。

(多媒体展示拼图。启发学生一题多证,多题归一是为了培养学生思维的灵活性和创新性。)下面我们来看看勾股定理能帮助我们解决什么问题?

3、课堂练习

(1)在Rt△中,∠C=90°,BC=a ,AC=b,AB=c(a)已知a=1,b =2,则c=(b)已知a=15,c=17,则b=(c)已知c=25,b=15,则a =(2)一个底边长为6,腰长为5的等腰三角形,求底边上的高和面积。

(3)李明上学经过的路旁有一小湖,隔湖相对有两棵树A、B,但无法直接测量出A、B之间的距离。请你帮他设计一个解决问题的方案好吗?(这是一道与生活实际贴近的开放题,鼓励学生用所学知识解决实际问题,培养学生应用数学的意识。)

4、小结

师:通过以上练习,同学们可以感受到勾股定理有什么作用? 生:用勾股定理可以解决在直角三角形中已知两条边求第三边的问题。

师:说得非常好!在这一节课中,你们还学会了什么? 生:通过拼图学会了用计算面积的方法证明勾股定理。师:同学们总结得非常好!勾股定理的应用非常广泛,它是联系数学中数与形的第一个定理,是数形结合思想的最初体现,自从我国古代数学家发现勾股定理后,它对数学产生了巨大的作用和影响,我们不仅要为之自豪,更要切实学好它。

十一、板书设计:

1、创设情景,引入新课

3、课堂练习

2、探究新知

上一篇:招商局开展纪律作风整顿下一篇:建筑施工实习总结