排列与组合的解题策略

2024-04-25

排列与组合的解题策略(共8篇)

篇1:排列与组合的解题策略

“排列组合常见的解题策略”课例

张玉华

一、教材分析

排列和组合是数学基础知识的重要组成部分之一,它在解决实际问题以及科学技术的研究中都有广泛的应用;在排列组合问题中充分体现了分类、化归的数学思想。它应用性强,具有题型多变,条件隐晦,思维抽象,分类复杂,问题交错,易出现重复和遗漏以及不易发现错误等特征。因而在这部分教学中,应充分调动学生的积极性,强调学生的主体作用,明确基本原理,注重思维过程的分析,让学生在问题解决的过程中不断反思探索规律,体验成功,从而提升学生的思维能力。而且是概率的基础。

二、学情分析

高三(1)班的同学基础差,但勤奋好学,有一定的潜力。

三、教学目的

1、认知目标:

使学生进一步理解并掌握处理排列组合问题的基本策略,进一步体会分类与化归的数学思想方法以及分析与解决问题的能力,培养学生的探索创新意识。

2、技能目标:

充分发挥教师的主导和学生的主体作用,使学生的自主意识、自学能力、探索创新意识得到发展。

3、情感目标:

培养学生的自信心和学习兴趣,树立实事求是的科学态度和不怕困难的进取精神,积极探索,进而培养学生的创新能力。

四、教法分析

根据排列组合的知识特点“条件隐晦,思维抽象”,在教学中采用发现法,坚持“思路教学”,深钻教材,注意从实验入手,模拟发现,从特殊到一般,归纳出一般的规律,优化学生的思路,激活学生的思维。

五、教学过程分析

1、复习思考

(1)处理排列组合问题的常见解题策略(提问学生作答)问题

一、街道旁有编号1、2、3、4、5、6、7、8、9、10共十只路灯,为节约用电又不影响照明,可以把其中的三只灯相灭,但不能同时熄灭相邻两只,在两端的两只路灯不熄灭的情况下,问不同的熄灯方法有多少种? ①通过复习提问总结解决排列组合问题的基本思路和方法。

②设置问题情景,激发学生的学习欲望。通过引导,学生得出多种解法,从而优化思维,发现规律为构造数学模型一做好铺垫。

2、创设情景 练习(1):四个相同苹果分给三个人,没人至少一个,有多少种分配方案?(提问,多解),电脑演示。

(2):把六个名额分给三个班级,没班至少一个名额,有多少种分法?(提问多解),电脑演示,介绍插板法。巩固创设情景。

体现化归思想,并将问题发散,从不同角度展示出问题的共性,给学生自主发现、探索的空间,引入“插板”这一解决问题的策略。

3、提出猜想

你能编一道与本题意思相近的习题或将本题推广吗? 学生是学习的主体,是课堂教学的探索者、发现者和创造者,让他们的智慧火花充分闪亮。

4、探得索出分结析论 模型一:把n个相同的小球放入m个不同的盒子中,要求每盒至少有一个球,问有多少种不同的方法? 归纳出共性,推广到一般,抽象出数学模型,使学生的思维得到提升。

5、问题解决进一步推广 练习:(分组讨论)(1)求方程x+y+z=16的正整数解的组数。

(2)15个苹果分给三个人,每人至少两个,有多少种分法?(3)把二十个相同的小球放入编号为1、2、3、4、的四个盒子中,要求每个盒子中的小球数目不少于编号数,求不同的放法种数。

弄清问题本质,将问题转化为模型,并能应用模型解决问题。

6、新情境设计

(1)第二小题条件改为每人至少三个,有多少种分法?(2)学生总结规律。

(3)如果条件改为每人分得苹果个数不限,有多少种分法种数?(4)你能将本题推广吗?(5)改变条件提出新问题,让学生有一个再发现,再创造的过程。(6)培养学生自主探索创新意识。

7、探索分析

用电脑演示每人至少分得一个苹果、二个苹果和三个苹果的情形,并由学生总结规律。体现从特殊到一般的思维方法,模拟发现,激励探索,激活思路。

8、得出结论

模型

二、把n个相同的小球放入m个不同盒子(n≥m≥1),每个盒子容量不限,有多少种不同方法? 比较差异,将模型一进一步推广,使学生在“好奇”中产生“内驱力”,进而产生不断探索的愿望。

9、问题

(1)中日围棋擂台赛规定各国各出7名队员,按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛„,直到有一方队员全被淘汰为止,另一方获得胜利,形成一个比赛过程,试求中方获胜的所有可能出现的比赛过程的种数?(2)从7个学校选出12人组成足球联队,要求每校至少有一个人参加,问各校名额分配共有多少种不同情况? 将问题综合,让学生分享探索带来的成果,感受问题解决的成功喜悦,同时也使他们进一步掌握分类的数学思想和化归的方法,激发探索的欲望。

10、小结

小结:回顾上述几个例题的解答过程,我们可以看到一个共同的特点,就是利用一一对应关系将一种不易直接求得其数目的计数模式转化为另一种易于计算的模式,从而收到了简化问题的效果,可以说,这种通过建立一一对应关系而化难为易的方法是数学中一种常用的方法,并且在代数问题发挥着极大的作用。另外,我们还推出了两个模型,大家回去后希继续对这个模型进行研究,掌握这个模型的各种变化,并要善于把各种具体问题归结成这个模型的某一种方式,那么解排列组合问题就有了一定的规律可循了。

六、课题后记

1、本着坚持以学生是探索发现的主体这一教学原则,教师的角色从知识的传播者转化为学生主动学习,主动探索的引导者和促进者:学生以被动接受知识转到主动参与,在讨论探索中获取知识。学生在教师的适时点拨下,通过自己动脑,探索出两个模型。由于学生亲自品尝了自己发现的乐趣,更激起了他们强烈的求知欲和创造欲。

2、体现循序渐进原则。本课例的例题,练习题的安排体现了思维的阶梯性,一步一个台阶,逐步引向深入。由于问题处在学生思维水平的“最近发展区”,因而为学生提供了自由想象的空间,最后指引学生进行变式练习,提出了新的探索目标,从而满足了不同层次学生的需要,充分体现了数学素质教育的思想。同时充分肯定学生的每一点进步,使学生增强学好数学的信心。

3、通过现代化教育技术,以电脑动画方式模拟思维的动态过程,将抽象内容形象化,激发学生兴趣,培养学生观察、分析和抽象概括能力。学生的“再发现”不是放任自流,而是在教师精心设计教学过程,创设问题情境,让学生自己从知识的发生,发展过程中去发现新知识,认识新知识,从而积极主动地参与学习,充分体现教师的主导作用。

4、层层建构,分层递进,引导学生逐步深入,符合学生的认知特点使学生易于理解,培养学生的创新精神,优化学生的思维品质。解决重点,突破难点,通过分层递进,既可照顾后进生,又可促进优等生,达到面向全体学生的目的,使不同的学生都能得到发展。

七、点评

学习数学的过程是知识建构的过程,是思维训练的过程。本节课充分发挥学生的主体作用,通过精心设计问题,让学生去探索,发现从特殊到一般,归纳规律,构造数学模型,掌握分类的数学思想和化归的方法,分层递进不断深化。课堂思维密度大,高潮迭起,是培养学生创新能力和课堂开展研究性学习的典型范例。

篇2:排列与组合的解题策略

河北围场一中 王嘉伟

一、整体设计思路、指导依据:

《数学新课程标准》中指出好的数学教育要从学习者的已有知识和实际生活经验出发,提供给学生数学实践和交流的机会。”数学是解决生活中一些实际问题的工具,同时还开发智力,培养学生的逻辑思维能力。面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,是数学应用意识的重要体现。为学生后面学习排列组合问题打下基础。

二、教学背景分析: “排列组合问题的解题策略”是人教版普通高中课程标准(实验)教科书选修2-3第一章计数原理中的内容,排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。在高考中也是考点之一,本节重点在向学生渗透分类讨论,转化等数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。简单的两种计数原理和排列组合 基本掌握了,由于本班学生的基础不是很好,数学水平参差不齐,所以采取小组合作学习的方式合理分配学生资源,借助集体的智慧来解决问题。本节课是在学生掌握简单的排列组合问题的基础上的,对排列组合问题的一个拓展。

三、教学目标:

知识目标:1.掌握加法原理和乘法原理,并能用这两个计数原理解决简单问题。2.掌握排列、组合问题应用的几种常见方法。能力目标:掌握有限制条件的排列组合的应用题的常用分析方法。情感目标:体会解决排列组合问题中运用的数学思想。

四、教学重点、难点分析:

重点:有限制条件的排列组合问题的综合应用。难点:解决较复杂的排列组合问题的思想与解题策略

五、教学过程设计:

1.课程引入:平安夜的故事:

“苹果”是平平安安的谐音,象征着平安、祥和之意,所以说平安夜吃苹果能保一年平安。时间:13年12月24日晚。地点:XX职校女生公寓楼302室。

人物:寝室所有成员,包括英亚、竹萍、陈燕、刘佳、徐红、周甜、龚佳、钱丽共八人。在这个特别的夜晚,刘佳提议,准时在十二点吃苹果,可大家发现没有准备苹果。陈燕说:“我这里有些苹果。”她拿出一袋苹果。大家一看,只有大小不一的五个。竹萍说:“我柜子里面还有几个梨。”竹萍拿出来一清,有四个形状各异的梨。大家说:“没办法了,拿三个梨来凑吧。”

出招:从四个形状各异的梨中拿出三个,有多少种方法? 竹萍从中拿出了三个最好看的梨。

徐红说:“我不喜欢吃梨,我只喜欢吃苹果,所以我一定要吃苹果。” 英亚说:“好吧。我来负责分派。”

出招:要保证徐红一定吃到苹果,有多少种分派方法? 周甜说:“我也要吃苹果!平安夜当然吃苹果。”

出招:,徐红和周甜两人都吃到苹果,有多少种分派方法?

竹萍出招:五个大小不一的苹果和三个形状各异的梨分给八个人,每人一个,其中周甜吃苹果,徐红吃梨,有多少种分派方法?

有人说,你们俩只能有一个人吃苹果。徐红说:“那让周甜吃苹果吧,我吃梨好了。钱丽说:“这样吧,我们把八个水果放在桌上排成一排,然后关灯,每人摸一个。” 出招:八个不同的水果排成一排,有多少种排方法?

刘佳说:“平安夜,第一个一定要放苹果以示平安。”出招:五个大小不一的苹果和三个形状各异的梨排成一排,第一个一定要放苹果,有多少种排法?

陈燕说:“第一个放不放苹果不要紧,大家只要尽量把苹果和梨分开就好,就是不要让任何两个梨挨在一起。” 出招:五个大小不一的苹果和三个形状各异的梨排成一排,其中梨不能挨在一起,有多少种排方法? 徐红说:“这样不好,分梨分离。我们寝室每个人都应该团结,心不能分离。所以,应该把这些梨全放在一起。出招:五个大小不一的苹果和三个形状各异的梨排成一排,其中梨必须放在一起有多少种排方法? 正在大家讨论得正热烈的时间,响起了熄灯铃声。

“唉啊,快。”英亚低声叫道:“睡觉时间到了!快去床上!”

英亚连忙关掉灯。黑暗中谁低声叫了一句:“快拿水果!”大家连忙从桌上各自摸起一个水果,快速钻入被窝。寝室迅速安静下来。

渐渐地,八个同学都在安静中睡着了。当然,最终她们没有破坏寝室的纪律,没有在半夜起来吃苹果。故事新编:(课下思考)

对<平安夜的故事>进行重新编排,要求在故事里穿插至少三个有关排列,组合,或基本计数原理的问题。

从上面的故事中找出我们所运用到的排列组合这一章所学的知识和方法。

设计意图:用一则小故事引出排列组合常见的问题:相邻,不相邻,特殊元素,特殊位置安排的问题。

2、典例分析:(分组讨论,学生讲解,教师指导帮助总结)

(1)特殊元素和特殊位置优先策略:

1、由0,1,2,3,4,5,可以组成多少个没有重复数字的五位奇数。师:若改成偶数呢,又该如何分析?

变式:7种不同的花种在排成一列的花盆里,若两种葵花不种中间,也不种在两端的花盆里,问有多少种不同的种法?

设计意图: 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,要求学生熟练掌握。(2)相邻元素捆绑策略:

例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法。练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法? 设计意图:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.(3)不相邻问题插空策略: 例3.一个晚会的节目有4个舞蹈,两个相声,三个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

变式:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同的插法种数为________.师:元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 拓展:请同学把上述两个问题综合在一起出道题,题中包含相邻和不相邻问题。

设计意图:帮助学生分析这两类问题的解决办法,并进行延伸,通过小组讨论解决问题,形成思路。(4)、定序问题:空位,插入;倍缩策略

例4.7人排队,其中甲乙丙3人顺序一定,共有多少种不同的排法?

练习:学考考试6门科目,历史要排在化学前面考,有多少种不同的安排顺序? 师:定序问题可以用倍缩法,还可转化为占位插入模型处理

设计意图:通过演示,板书让学生理解占位插入模型的含义,从而解决排列组合中相似的问题。(5)重排问题求幂策略:

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法? 练习:

1、4人争夺3个比赛项目的冠军,问冠军得主的可能性。

2、某8层大楼,一楼电梯上来8名乘客,他们到各自的一层下电 梯,下电梯的方法有()种。师:一般地n不同的元素没有限制地安排在m个位置上的排列数为(6)排列组合混合问题先选后排策略:

例6.有5个不同小球,装入4个不同的盒内,每盒至少装一球,共有多少种不同的装法。

练习:一个班有6名战士,其中正副班长各1人,现在从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有________种。师:解决排列组合的混合问题,先选后排是最基本的指导思想.设计意图:近几年高考中出现频率较多的一类问题,通过典型例题找出解决问题的思路,引导学生寻求解题办法。

(7)平均分组问题除法策略:

例8.6本不同的书,按如下方式分配,各有多少种不同的分法? 1.分成一堆一本,一堆2本,一堆3本。2.甲得一本,乙得2本,丙得3本。3.一人得一本,一人得2本,一人得3本。4.平均分成3堆,每堆2本.5.分给甲乙丙三人,每人选2本。

练习:1.将13个球队分成3组,一组5个队,其他2组4个队,有多少分法?

2.某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为__________.师:平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(n为均分的组数)避免重复计数。

设计意图:学生对于这类问题容易把几个问题混淆,通过解决这个例题让学生理解平均分组问题的解决方案。

(8)合理分类与分步策略:

例8.在一次演唱会上共10名演员,其中8人能够唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少种选派方法?

师:请同学们选择3个分类标准进行讨论:

练习:从4名男生和3名女生中选4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有________.设计意图:解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。

课堂检测:(考题重现)

1、(2014年广西)有6名男医生,5名女医生,从中选出2名男医生,1名女医生,组成一个医疗小组,则不同的选法共有____种。

2、(2013大纲卷)6个人排成一行,其中甲乙两人不相邻的不同排法有____种。

3、(2013北京)将序号分别为1,2,3,4,5的5张参观卷,全部分给4人,每人至少一张,如果分给同一人的2张参观卷连号,那么不同的分法种数是_____种。

4、(2014北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有_____种。

5、(2014四川)6个人从左到右排成一排,最左端只能排甲或乙,最右端不能排甲,则不同的排法有_____种。

6、(2014重庆理)某次联欢会要安排3个歌舞类节目,两个小品和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是_____.小结:

回顾上述几个例题的解答过程,我们可以看到一个共同的特点,就是利用一一对应关系将一种不易直接求得其数目的计数模式转化为另一种易于计算的模式,从而收到了简化问题的效果,可以说,这种通过建立一一对应关系而化难为易的方法是数学中一种常用的方法,并且在代数问题发挥着极大的作用。另外,我们还推出了几个模型,大家回去后希继续对这个模型进行研究,掌握这个模型的各种变化,并要善于把各种具体问题归结成这个模型的某一种方式,那么解排列组合问题就有了一定的规律可循了。

六、教学评价与反思:

篇3:排列、组合题的解题策略

我们知道, 排列的定义是:从n个不同元素中取出m (m≤n) 个元素, 按一定的顺序排成一列, 叫做从n个不同元素中取出m个元素的一个排列.而排列数的定义是:从n个不同元素中取出m (m≤n) 个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数.

组合的定义是:从n个不同元素中取出m (m≤n) 个元素, 并成一组, 叫做从n个不同元素中取出m个元素的一个组合.组合数的定义是:从n个不同元素中取出m (m≤n) 个元素的所有组合的个数, 叫做从n个不同元素中取出m个元素的组合数.

排列与组合二者最根本的区别在于是否与顺序有关.下面, 笔者就教学中的排列、组合的一些解题策略作一阐述.

一、解排列应用问题常见方法

1.无限制条件的简单排列应用问题, 可直接用公式求解.

2.有限制条件的排列问题, 可根据具体的限制条件, 用“直接法”或“间接法”求解.

3.“相邻”问题在解题时常用“捆绑法”, 可以把两个或两个以上的元素当做一个元素来看, 这是处理相邻问题最常用的方法.

4.“不相邻”问题在解题时最常用的是“插空法”.

二、解组合应用问题常见方法

1.无限制条件的简单组合应用问题, 可直接用公式求解.

2.有限制条件的组合问题, 可根据具体的限制条件, 用“直接法”或“间接法”求解.

三、均匀编号分组的常见解法

n个不同元素分成m组, 其中r组元素个数相同且考虑各组间的顺序, 其分法种数为, (A为非均匀不编号分组中的分法数) .

题型一:排列的应用

例1有5名男生, 4名女生排成一排:

(1) 从中选出3人排成一排, 有多少种排法?

(2) 若男生甲不站排头, 女生乙不站排尾, 有多少种不同的排法?

(3) 要求女生必须站在一起, 有多少种不同的排法? (4) 若4名女生互不相邻, 有多少种不同的排法?解: (1) 只要从9名学生中任选三名排列即可, 共有A93=9×8×7=504 (种) 排法.

(2) 将排法分成两类:一类是甲站在排尾, 其余的可全排列, 有A88种排法:另一类是甲既不站排尾又不站排头有种站A71法, 乙不站排尾而站余下的7个位置中的一个有A71种站法, 其余人全排列, 于是这一类有A71·A71·A77种排法.

由分类计数原理知, 共有A88+A71·A71·A77=287 280 (种) 排法.

(3) 女生先站在一起, 是女生的全排列, 有A44种排法, 全体女生视为一个元素与其他男生全排列有A66种排法, 由分步计数原理知, 共有A44·A66=17 280 (种) 排法.

(4) 分两步走, 第一步:男生的全排列有A55种排法;第二步:男生排好后, 男生之间有4个空, 加上男生排列的两端共6个空, 女生在这6个空排列, 有A64种排法, 由分步计数原理知, 共有A55·A64=43 200 (种) 排法.

题型二:组合应用题

例2“抗震救灾, 众志成城”.在我国青海玉树抗震救灾中, 某医院从10名医疗专家中抽调6名奔赴前线, 其中这10名医疗专家中有4名是外科专家, 问:

(1) 抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?

(2) 至少有2名外科专家的抽调方法有多少种?

解: (1) 分步:首先从4名外科专家中任选2名, 有C42种选法, 再从除外科专家的6人中选取4人, 有C64种选法, 所以共有C42·C64=90种抽调方法.

(2) “至少”的含义是不低于, 有两种解答方法:

法一 (直接法) :按选取的外科专家的人数分类:

一类:选2名外科专家, 共有C24·C46种选法;

二类:选3名外科专家, 共有C34·C36种选法;

三类:选4名外科专家, 共有C44·C26种选法.

根据分类计数原理知, 共有C42·C64+C43·C63+C44·C62=185 (种) 抽调方法.

法二 (间接法) :不考虑是否有外科专家, 共有C610种选法;考虑选取1名外科专家, 共有C41·C65种选法;没有外科专家参加, 有C66种选法, 所以共有C610-C41·C65-C66=185 (种) 抽调方法.

题型三:分组问题

例3 6本不同的书, 按下列要求处理, 分别有多少种分法?

(1) 分三堆, 一堆1本, 一堆2本, 一堆3本.

(2) 分给甲、乙、丙3人, 甲1本, 乙2本, 丙3本.

(3) 分给甲、乙、丙3人, 一人1本, 一人2本, 一人3本.

(4) 分三堆, 有两堆各1本, 另一堆4本.

解: (1) 先在6本书中任取一本, 作为一堆, 有C61种取法, 再从余下的5本书中任取两本, 作为一堆, 有C52种取法, 最后从余下的三本中取三本作为一堆, 有C33种取法,

故共有分法C61·C52·C33=60 (种) .

(2) 由 (1) 知, 分成三堆的方法有C61·C52·C33种, 而每种分组方法仅对应一种分配方法, 故甲得一本, 乙得二本, 丙得三本的分法亦为C61·C52·C33=60 (种) .

(3) 由 (1) 知, 分成三堆的方法有C61·C52·C33种, 但每一种分组方法又有A33不同的分配方案, 故一人得一本, 一人得二本, 一人得三本的分法有C61·C52·C33·A33=360 (种) .

(4) 平均分堆要除以堆数的全排列, 不平均分堆则不除, 故共有 (种) .

总之, 处理排列、组合问题的总原则是:

(1) 弄清事件的情景:首先, 搞清有无“顺序”要求, 若有则用Anm, 反之用Cnm;其次, 弄清目标的实现, 是分步达到的, 还是分类达到的, 从而正确选用计数原理, 一个复杂问题往往是分类与分步交织在一起的;最后看一下元素可否重复.

(2) 掌握“双向”解题路径, 即“正面凑”与“反面剔”, 一道题目“正面凑”繁, “反面剔”简, 反之亦然.

篇4:排列组合问题的解题技巧与策略

一、特殊元素的优先安排法

对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排.操作时,针对实际问题,有时“元素优先”,有时“位置优先”.

例1.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )

二、相邻问题的捆绑法

对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看做一个元素再与其他元素进行排列,同时对相邻元素内部进行自排.

例2.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )

A.60 B.48 C.42 D.36

解:从3名女生中任取2人“捆”在一起记做A,(A共有6种不同排法),剩下一名女生记作B,两名男生分别记做甲、乙;则男生甲必须在A、B之间(若甲在A、B两端.则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求),此时共有6×2=12种排法(A左B右和A右B左),最后再在排好的三个元素中选出四个位置插入乙,所以共有12×4=48种不同排法.

三、不相邻问题的插空法

对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可.

例3:马路上有编号为1、2、3…9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种?

解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有种.

四、顺序固定问题的选位不排法

对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起排列,然后用总排列数除以这几个元素之间的全排列数.或先在总位置中选出顺序一定元素的位置而不参加排列,然后对其他元素进行排列.也可先放好顺序一定元素,再一一插入其他元素.

例4:5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况?

六、分排问题的直排法

把n个元素排成若干排的问题,若没其他的特殊要求,可用统一排成一排的方法处理.

例6:7个人坐两排座位,第一排坐3人,第二排坐4人,则有种排法.

解:7个人,可以在前后两排随意就座,没有其他的限制条件,故两排可以看成一排处理,所以不同的坐法有.

七、允许重复排列的住店法

解决允许重复排列的问题要注意区分两类元素:一类元素可重复,另一类元素不能重复.把不能重复的元素看着“客”,能重复的元素看着“店”,再利用分步计数原理直接求解的方法称为“住店法”.

例7:7名学生争夺五项冠军,获得冠军的可能种数是多少种.

解:因同一学生可同时夺得n项冠军,故学生可重复排列,将7名学生看成7家“店”,五项冠军看成5名“客”,每个客有7种住宿方法,由分步计数原理得N=八、分配问题的先分堆再排列法

对于不同的元素放入几个不同的盒内,当有的盒内有不小于2个元素时,不可分批进入,必须先分堆再排入.

篇5:排列组合解题方法

相离问题插空法主要用来解决2个或若干个不相邻元素的排列组合问题,是解决排列组合问题的常见方法之一。它是指先把无位置要求,无条件限制的元素排列好,然后对有位置要求,受条件限制的元素进行整理,再将受条件限制的元素插入到已排列好的无条件限制元素的间隙或两端中。

例1 在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?

解析:该题若直接进行解答较为麻烦,此时可以借助相离问题插空法,可以使问题迎刃而解。先将原来的6个节目排列好,这时中间和两端有7个空位,然后用一个节目去插7个空位,有A种方法;接着再用另一个节目去插8个空位,有A种方法;将最后一个节目插入到9个空位中,有A种方法,由乘法原理得:所有不同的添加方法AAA=504种。

例2 停车场划出一排12个停车位置,今有8辆车需要停放,要求空位置连在一起,不同的停车方法有多少种?

解析:先排好8辆车有A种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有C种方法。故共有AC种方法。

2.相邻问题捆绑法

相邻问题捆绑法作为排列组合题最为常见的解法之一,就是在解决对于某几个元素相邻问题时,将相邻元素作为整体加以考虑,视为一个“大”元素参与排序,然后再单独对大元素内部各元素间的排列顺序进行一一分析排列。

例3 有6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有多少种?

解析:由于甲、乙两人必须要排在一起,故可将甲、乙两人捆绑起来作为一个整体进行考虑,即将两人视为一人,再与其他四人进行全排列,则有A种排法,甲、乙两人之间有A种排法。由分步计数原则可知,共AA=240种不同排法。

例4 6个球放进5个盒子,每个盒子都要放球,有多少种不同的方法?

A. 3600 B. 1800 C. 360 D. 120

解析:此题共6个球要分为5份,那么必有两个球在一起,所以从6球当中选择两球捆绑在一起的情况为C种,那么此时将捆绑的两球作为一个整体和另外4球进行全排列,则总的情况为CA=1800种。故选B.

3.多元问题分类法

多元问题分类主要用解决元素较多,情况多种时的排列组合问题。它是在弄清题意的基础上,按结果要求将其分成不相容的几类情况加以考虑,分别计数,最后一一相加,进行总计。,

例5 设集合I={1,2,3,4,5}。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法有多少种?

A. 15 B. 39 C. 45 D. 49

解析:若集合A、B中没有相同的元素,且都不是空集,则有:

(1)从5个元素中选出2个元素,有C=10种选法,小的给A集合,大的给B集合;

(2)从5个元素中选出3个元素,有C=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;

(3)从5个元素中选出4个元素,有C=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;

(4)从5个元素中选出5个元素,有C=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为:10+20+15+4=49种方法,故答案为D。

4.特殊元素优先安排法

特殊元素优先安排法是指在具有特殊元素的排列组合问题中,应优先对特殊元素进行安排,再考虑其它元素。

例6 用0,1,2,3,4这五个数组成没有重复数字的三位数,其中属于偶数的共有多少(C).

A. 60 B. 40 C. 30 D. 24

解析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为0不能排在首位,故0是其中“特殊元素”,应对其进行优选考虑。按0排在末尾和不排在末尾的情况可以分为两类,具体包括:

(1)0排在末尾,有A种;(2)0不排在末尾时,先用偶数排个数,再排百位,最后排十位,有AAA种;由分类计数原理,共有偶数30种,故答案选C。

5.顺序固定问题用“除法”

在解决某些元素顺序一定的排列问题时,可先将这些顺序一定的元素与其他元素一起进行排列,然后再用总的排列数除以这些元素的全排列数。

例7 有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左至右,女生从矮到高排列,则共有多少种排法?

解析:先在7个位置上作全排列,有A=5040种排法。其中3个女生因要求“从矮到高”依次进行排列,只有一种顺序,对应的排法为A=6种,所有共有A / A=A=840种。

篇6:高考数学排列组合问题解题技巧

排列组合有关的题型主要从以下三个方面去考查考生:

1、掌握分类计数原理和分步计数原理及其简单应用;

2、理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质及其简单应用;

3、掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。

与排列组合相关的高考题,它的知识背景与生活息息相关,考查的形式主要基于“基础知识+思想方法+数学能力”这三种方式结合的模式。排列组合相关知识内容并不难,但主要难在解题方法上面。

排列组合典型例题分析一:

有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

(1)选其中5人排成一排;

(2)排成前后两排,前排3人,后排4人;

(3)全体排成一排,甲不站排头也不站排尾;

(4)全体排成一排,女生必须站在一起;

(5)全体排成一排,男生互不相邻;

(6)全体排成一排,甲、乙两人中间恰好有3人;

(7)全体排成一排,甲必须排在乙前面;

(8)全部排成一排,甲不排在左端,乙不排在右端.

解析:(1)从7个人中选5个人来排,是排列.有A75=7×6×5×4×3=2 520(种).

(2)分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73·A44=5 040(种).事实上,本小题即为7人排成一排的全排列,无任何限制条件.

(3)(优先法)

方法一:甲为特殊元素,先排甲,有5种方法;其余6人有A66种方法,故共有5×A66=3600种;

方法二:排头与排尾为特殊位置,排头与排尾从非甲的6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3600种。

(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44×A44=576种.

(5)(插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,

故共有A44×A53=1 440种.

(6)(捆绑法)把甲、乙及中间3人看作一个整体,第一步先排甲乙两人,有A22种方法;第二步从余下5人中选3人排在甲乙中间,有A53种;第三步把这个整体与余下2人进行全排列,有A33种方法.故共有A22·A53·A33=720种.

(7)(消序法)A77/2=2 520.

(8)(间接法)A77-2A66+A55=3 720.

位置分析法:分甲在排尾与不在排尾两类.

常见的求解排列组合题的主要方法有以下这么几种:

插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。

捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

转化法:对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解。

剩余法:在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法。

对等法:在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一。在求解中只要求出全体,就可以得到所求。

排异法:有些问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中排除。

排列组合典型例题分析二:

用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个(用数字作答).

解析 依题意按分类计数原理操作:

(1)当没有一个数字是偶数时,从1,3,5,7,9这五个数字中任取四个数,再进行全排列得无重复数字的四位数有A54=120个(或C54A44=120个);

(2)当仅有一个数字是偶数时,先从2,4,6,8中任取一个数,再从1,3,5,7,9中任取三个数,然后再进行全排列得到无重复数字的四位数有C41C53A44=960.故由分类计数原理得这样的四位数共有N=120+960=1080个。

一些考生容易在此块内容丢分,主要是由于排列组合试题知识相互交错,综合性强,思路灵活,解答时往往容易将二者的概念混淆,理不清,辨不明是排列问题,还是组合问题,进而造成解题失误。

考生要想拿到排列组合的分数解题时应注意不断积累经验,总结解题规律,掌握若干技巧,使看似复杂的问题迎刃而解。

排列组合问题作为高考数学常考内容,其考查形式大部分都以选择题、填题等形式出现,在一些省份的高考数学中会以解答题形式考查考生,试题的难度一般以中档题为主。

★ 《数学广角》教案

★ 数学广角重叠问题教学设计

★ 《数学广角的重叠问题》的评课稿

★ 小学五年级数学广角教学反思

★ 三年级数学广角搭配问题的教学反思

★ 三年级数学广角教学反思

★ 《数学广角》第二课时教案设计

★ 五年级上册数学广角知识点

★ 数学广角说课教案设计

篇7:排列与组合的解题策略

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。

一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。

例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有()

A6 B.9 C.11 D.23

解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B

二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四、消序

例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解析:先在7个位置中任取4个给男生,有 种排法,余下的3个位置给女生,只有一种排法,故有 种排法。

五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。非常多的人输就输在时间上,我是特别注重效率的。第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。论坛有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。学了速读之后,感觉有再多的书都不怕了。而且,速读对思维和材料组织的能力都大有提高,个人总结,拥有这个技能,基本上成功一半,剩下的就是靠自己学多少的问题了。平时要多训练自己一眼看多个字的习惯,慢慢的加快速度,尽可能的培养自己这样的习惯。当然,有经济条件的同学,千万不要吝啬,花点小钱在自己的未来上是最值得的,多少年来耗了大量时间和精力,现在既然势在必得,就不要在乎这一刻。建议有条件的同学到这里用这个软件训练速读,大概30个小时就能练出比较厉害的快速阅读的能力,这是给我帮助非常大的学习技巧,极力的推荐给大家.(给做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字)

六、对应

例、在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比几场?

解析:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故赛99场。

七、分排问题用直接法:把几个元素排成若干排的问题,可采用统一排成一排的排方法来处理。

八、住店法:解决“允许重复排列问题”要区分两类元素,一类元素可以重复,另一类不能重复,把不能重复的元素看作店,再利用分步计数原理直接求解称“住店法”

例.7名学生争五项冠军,获得冠军的可能种数有()

A.种 B.种 C.种 D.种

解析:七名学生看作七家“店”,五项冠军看作5名“客”,每个客有7种住法,由分步计数原理可得 种,故选A

九、特殊元素的“优先排列法”:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考其他的元素。

十、相邻问题用捆绑法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

十一、探索:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律

例、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。

解析:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种

篇8:排列组合问题的类型和解题策略

1.特殊优先法:特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例1(2007年重庆)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法总数为______

解析:(1)第六节课的安排方案有种;(2)数学课的安排方案有种;(3)其余四门功课的安排方案有种。不同的排法种数为.

2.捆绑法:指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

例2(96年上海高考题)有8本互不相同的书,其中数学书3本,外文书2本,其它书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,同时外文书也恰好排在一起的排法共有______种。

解析:采用捆绑法,把3本数学书视为一个元素,把2本外文书视为一个元素,与3本其他书进行排列,共有种,然后3本数学书内部再进行排列,有种,2本外文书内部进行排序有种,两次是分步完成的,应采用乘法,所以排法共有:种。

3.插空法:指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。

例3 (2008年安徽)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()

A. B.

C.D.

解析:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,所以共有种调整方法.故选C.

4.插板法:在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。

例4.将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?

A.24 B.28 C.32 D.48

解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是种。

5.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

例5.6个人排队,甲、乙、丙三人按“甲—乙—丙”顺序排的排队方法有多少种?

分析:不考虑附加条件,排队方法有种,而其中甲、乙、丙的种排法中只有一种符合条件。故符合条件的排法有种。

例6.4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

分析:先在7个位置上作全排列,有种排法。其中3个女生因要求“从矮到高”排,只有一种顺序故只对应一种排法,所以共有种。

6.分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。

例7.7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?

分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有种。

7.多元问题:分类讨论法,对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例8(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种.(以数字作答)。

解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有种方法,用四种颜色着色有种方法,从而共有24+48=72种方法,应填72.

8.分组问题与分配问题:①分组问题:均匀分组,除法处理;非均匀分组,组合处理

例9.有9个不同的文具盒:(1)将其平均分成三组;(2)将其分成三组,每组个数2,3,4上述问题各有多少种不同的分法?

分析:(1)此题属于分组问题:先取3个为第一组,有种分法,再取3个为第二组,有种分法,剩下3个为第三组,有种分法,由于三组之间没有顺序,故有种分法。(2)同(1),共有种分法,因三组个数各不相同,故不必再除以。

②分配问题:定额分配,组合处理;随机分配,先组后排。

例10.有9本不同的书:(1)分给甲2本,乙3本,丙4本;(2)分给三个人,分别得2本,3本,4本。上述问题各有多少种不同的分法?

分析:(1)此题是定额分配问题,先让甲选,有种;再让乙选,有种;剩下的给丙,有种,共有种不同的分法(2)此题是随机分配问题:先将9本书分成2本,3本,4本共有三堆,再将三堆分给三个人,共有种不同的分法。

9.至多(至少)型:对于排列组合中含有“至多”或“至少”字眼的问题,一般利用转化思想,将其化归为问题的反面,即用间接解法求解.

例11(2008年高考四川卷文)从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法有______种.

解析:从10个同学中挑选4名参加某项公益活动有种不同挑选方法,从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法.∴甲、乙中至少有1人参加的不同挑选方法共有种.

上一篇:再写赶海小学作文350字左右下一篇:非水险核保工作职责