必修5正弦定理

2024-05-08

必修5正弦定理(通用13篇)

篇1:必修5正弦定理

课题: §1.1.1正弦定理

授课类型:新授课

一、教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

二、教学重点

正弦定理的探索和证明及其基本应用。

三、教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

四、教学过程

Ⅰ.课题导入

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?Ⅱ.讲授新课

[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,abcsinA,sinB,又sinC1,A ccc

abc则csinsinsinabc从而在直角三角形ABC中,CaB sinsinsin有

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinBbsinA,则

同理可得

从而asinAbsinB,csinCbsinB,a

sinAbsinBcsinCAcB

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,C

由向量的加法可得ABACCB

则jABj(AC

CB)∴jABjACjCBj

jABcos900A0jCBcos900C

∴csinAasinC,即

同理,过点C作jBC,可得

从而ac bc a

sinAb

sinBc

sinC

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

a

sinAb

sinBc

sinC

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;

(2)a

sinAb

sinBc

sinC等价于a

sinAb

sinB,c

sinCb

sinB,a

sinAc

sinC

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如absinA; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinAsinB。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。

解:根据三角形内角和定理,ab

C1800(AB)

1800(32.0081.80)

66.20;

根据正弦定理,asinB42.9sin81.80

b80.1(cm); sin32.0根据正弦定理,asinC42.9sin66.20

c74.1(cm).sin32.0评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。

解:根据正弦定理,bsinA28sin400

sinB0.8999.因为00<B<1800,所以B640,或B1160.⑴ 当B640时,C1800(AB)1800(400640)760,asinC20sin760

c30(cm).sin40

⑵ 当B1160时,C1800(AB)1800(4001160)240,asinC20sin240

c13(cm).sin40评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。Ⅲ.课堂练习

第5页练习第1(1)、2(1)题。

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c

(答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结)

(1)定理的表示形式:a

sinAsinBsinC

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角;

②已知两边和其中一边对角,求另一边的对角。

Ⅴ.课后作业

第10页[习题1.1]A组第1(1)、2(1)题。

bcabckk0; sinAsinBsinC

篇2:必修5正弦定理

【学习要求】

1.发现并掌握正弦定理及证明方法。

2.会初步应用正弦定理解斜三角形.

3.三角形的面积公式

【学习过程】

1.正弦定理证明方法:(1)定义法(2)向量法(3法四:法一:(等积法)在任意斜△ABC当中,S△ABC=absinCacsinBbcsinA.两边同除以abc即得:

法三:(外接圆法)

如图所示,∠A=∠D,∴CD2R.同理2R ==.可将正弦定理推广为:abc== =2R(R为△ABC外接圆半sinAsinBsinC12121212abc==.sinAsinBsinC径).2.正弦定理:在一个三角形中,各边与它所对角的正弦的比相等,都

等于这个三角形的外接圆的直径,即

注意:正弦定理本质是三个恒等式:

三角形的元素:a,b,c,,,C

已知三角形的几个元素求其他元素的过程叫解三角形。

3.定理及其变形 :(1)sinA:sinB:sinC=a:b:c;

abcabc(2)====2R; sinAsinBsinCsinAsinBsinC

(3)a=2RsinA,;b=_2RsinB ;c=2RsinC;

abc(4)sinA=;sinB=;sinC=.2R2R2R

4.正弦定理可以解决的问题:

(1)_已知两角和任意一边,求其他两边和一角;(唯一解)abc=== 2RsinAsinBsinCabcbac,, =.sinAsinCsinCsinBsinCsinB

(2)已知两边和其中一边的对角,求其他的边和两角.(常见:大一小二)

5.常用面积公式:

对于任意ABC,若a,b,c为三角形的三边,且A,B,C为三边的对角,则三角形的面积为:

111①SABC_____ha(ha表示a边上的高).②SABCabsinCacsinB____________ 22

2例1:在ABC中,已知A45,B30,c10,求b.例2:在ABC中,已知A45,a2,b2,求B

例3:在ABC中,已知B45,a,b2,求A,C和c

总结:(1)已知两角和任意一边,求解三角形时,注意结合三角形的内角和定理求出已知边的对角;应用正弦定理时注意边与角的对应性

(2)应用正弦定理时注意边与角的对应性;注意由sinC求角C时,讨论角C为锐角或钝角的情况.例4不解三角形,判断下列三角形解的个数.

(l)a=5,b=4,A=120(2)a =7,b=l4,A= 150(3)a =9,b=l0,A= 60(4)c=50,b=72,C=135练习:

1、在△ABC中,一定成立的是

A、acosAbcosBB、asinAbsinBC、asinBbsinAD、acosBbcosA

2.在△ABC中,若∠A:∠B:∠C=1:2:3,则a:b:c3.已知在△ABC中,a=10,∠A=60°,b=10,则cosB=___________.4.在△ABC中,已知a2,b2,A30,解三角形。

5.(1)在ABC中,已知b,B600,c1,求a和A,C

(2)ABC中,c,A450,a2,求b和B,C

篇3:谈正弦定理与余弦定理的运用

例1在△ABC中,a,b,c分别为内角A、B、C的对边,根据下列条件,判断△ABC的形状(1)acos A=bcos B;(2)(a2+b2)sin(A-B)=(a2-b2)sin(A+B).

分析:对于上述例1中(1)和(2)分析以后可以发现,给出的条件中都是既有边长也有角度,所以一般都应该对于给出的这类条件进行整理,最终化简为仅有角度或者边长的形式,而在这个过程中一般采用正弦定理和余弦定理的变式效果会更好.

解:对于(1)的求解,可以考虑两种方法,

解法1:因为a=2Rsin A,b=2Rsin B,所以2Rsin Acos A=2Rsin Bcos B,即sin2A=sin2B,所以2A=2B或者2A+2B=π.

可以得到A=B或者,所以该三角形为等腰或者直角三角形.

解法2:因为,所以,即a2(b2+c2-a2)=b2(a2+c2-b2)将该表达式进行因式分解可得(a2-b2)(a2+b2-c2)=0,也就是a=b或者a2+b2=c2,同样得到该三角形为等腰或者直角三角形.

相比(1)而言,(2)的形式相对复杂,一般在解题过程中发现A+B这样的条件往往化为π-C,但本题等式两侧的次数相对对称,对于左侧的A-B需要展开,因此右侧保留A+B,得到

a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)],即2a2cos Asin B=2b2cos Bsin A,此时可以将所有条件化角或者化边,可以得到sin Asin B(sin2A-sin2B)=0或者,也就是sin2A=sin2B或者(a2-b2)(a2+b2-c2)=0,同(1)类似,可以得到该三角形为等腰或者直角三角形.

二、观察结构,注重与定理的联系

例2在△ABC中,a,b,c分别为内角A、B、C的对边,

(2)若△ABC的面积为S,且2S=(a+b)2-c2,求tan C的值.

分析:上述两个问题给出的条件与问题之间存在较大距离,需要对给出的条件进行代数变形,而结构中都含有边长的平方关系,可以与正、余弦定理的公式联系在一起.

(2)由于条件右侧含有a2+b2-c2的形式且最终所求也与角C有关,容易想到左侧的面积,所以条件可以化为

三、利用图形,恰当选择变量和定理

正、余弦定理是三角形内边角关系的两个定理,因此还有一类问题需要在图形中解决长度和角度问题.

例3如图1,在边长为1的等边△ABC中,D、E分别为边AB、AC上的点,若A关于直线DE的对称点A1恰好在线段BC上,求AD长度的最小值.

分析:由于需要求解线段长度,则将线段放在三角形中进行计算.图中存在对称,不妨连结A1D,得A1D=AD,因此可以在△A1BD中进行求解,而对于图形问题的变量选择,可以选择边长也可以选择角度.

解法1:不妨设A1B=x,AD=y,则在△A1BD中,

例3给出一个图形,要解决某条线段长度的最值问题,需要将该线段放在三角形内利用正余弦定理进行计算,由于所选三角形的不一样以及求解所用定理的不同,选择了两种不同的变量设法,而这也是求解图形问题常见的解决方法.

篇4:正弦定理和余弦定理

正、余弦定理是高考的必考内容,主要涉及解三角形中的求角、求边的问题和判断三角形的形状.

(1)解三角形就是已知三角形中的三个独立元素(至少一边)求出其他元素的过程. 三角形中的基本元素(边和角)与非基本元素(如中线、高、角平分线、外接圆半径、内切圆半径)之间的联系要通过有关的概念与公式(周长、面积、射影定理、勾股定理、内角和定理、全等关系、正余弦定理等)的掌握来实现.

(2)解斜三角形分以下四种类型:

①已知三角形的两角和任一边,求三角形的其他边与角;

②已知三角形的两边和其中一边的对角,求三角形的其他边与角;

③已知三边,求三个角;

④已知两边和它们的夹角,求第三边和其他两个角;

(3)理解已知两边和其中一边的对角解斜三角形时,有一解、二解或无解三种情况,并会判断哪些条件使得三角形有一解、二解或无解.

(4)关于三角形的已学过的一些结论:如边角不等关系;全等关系;三角形的面积公式等等,在解三角形过程中可能要用到.

(5)要注意归纳总结学习过程中的一些共性和结论. 如常见的三角形边角关系恒等式、三角形面积的公式等.

(6)注意三角公式的灵活运用,主要是利用两角和与差的三角函数、二倍角的三角函数,诱导公式等进行三角函数变换.

篇5:必修5正弦定理

一、课题:正弦定理(2)

二、教学目标:1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形,解决实际问题;

2.熟记正弦定理abc2R(R为ABC的外接圆的半 sinAsinBsinC

径)及其变形形式。

三、教学重点:正弦定理和三角形面积公式及其应用。

四、教学难点:应用正弦定理和三角形面积公式解题。

五、教学过程:

(一)复习:

1.正弦定理:在一个三角形中各边和它所对角的正弦比相等,abc2R(R为ABC的外接圆的半径); sinAsinBsinC

1112.三角形面积公式:SABCbcsinAacsinBabsinC. 222 即:

(二)新课讲解:

1.正弦定理的变形形式:

①a2RsinA,b2RsinB,c2RsinC;

2.利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:

(1)两角和任意一边,求其它两边和一角;

(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角。

一般地,已知两边和其中一边的对角解斜三角形,有两解或一解(见图示)。C aaB1 B 2abc,sinB,sinC; 2R2R2R③sinA:sinB:sinCa:b:c. ②sinABabsinAbsinAababab一解两解一解一解

3.正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化: 例如,判定三角形的形状时,经常把a,b,c分别用2RsinA,2RsinB,2RsinC来替代。

4.例题分析:

例1在ABC中,1 AB2 sinAsinB的()

A.1只能推出2B.2只能推出1 C.

1、2可互相推出D.

1、2不可互相推出

解:在ABC中,ABab2RsinA2RsinBsinAsinB,因此,选C.

说明:正弦定理可以用于解决ABC中,角与边的相互转化问题。

例2在ABC中,若lgalgclgsinB,且B为锐角,试判断此三角形的形状。解

:由lgalgclgsinB,得:sinB

B450B90,2asinA① 

c2sinC2

将A135CC2sin(135C)。

∴sinCsinCcosC,∴cosC0,故C90,

A45,∴ABC是等腰直角三角形。

说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角?

(2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断。

例3某人在塔的正东方沿南60西的道路前进40米后,望见塔在东北方向上,若沿途测得

塔的最大仰角为30,求塔高。

D解:如图,由题设条件知:CAB1906030,ABC451453015,

北 C

∴ACB180BACABC1803015135,又∵AB40米,在ABC中,B

AC40

,sin15sin135

40sin15

30)1),∴AC

sin13

5在图中,过C作AB的垂线,设垂足E,则沿AB测得塔的最大仰角是CED,∴CED30,在RtABC中,ECACsinBACACsin301),

在RtDCE中,塔高CDCEtanCED1)tan30

10(3(米).

3例4如图所示,在等边三角形中,ABa,O为中心,过O的直线交AB于M,交AC

于N,求

1的最大值和最小值。OM2ON

2解:由于O为正三角形ABC的中心,∴AO

设MOA,则

,MAONAO,6A



2,在AON中,由正弦定理得: 3

OMOA,∴OM,

sinMAOsin[()]sin()

M

N

B

在

AOM中,由正弦定理得:ON

sin()

6,1112121222

[sin()sin()](sin),2222

OMONa66a223∵,∴sin1,33

41118

故当时取得最大值,2OM2ON2a2

2311152

所以,当,or时sin,此时取得最小值. 222

334OMONa

六、课练:《

七、课堂小结:1.正弦定理能解给出什么条件的三角形问题?

2.由于有三角形面积公式,故解题时要注意与三角形面积公式及三角形外

接圆直径联系在一起。

八、作业:

1.在ABC中,已知atanBbtanA,试判断这个三角形的形状;

222

篇6:必修5正弦定理

您身边的志愿填报指导专家

第 5 课时:§1.3 正弦定理、余弦定理的应用(1)

【三维目标】:

一、知识与技能

1.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题;

2.体会数学建摸的基本思想,应用解三角形知识解决实际问题的解题一般步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案。

3.了解常用的测量相关术语(如:仰角、俯角、方位角、视角及坡度、经纬度等有关名词和术语的确切含义);综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;

4.能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力

5.规范学生的演算过程:逻辑严谨,表述准确,算法简练,书写工整,示意图清晰。

二、过程与方法

通过复习、小结,使学生牢固掌握两个定理,熟练运用。

三、情感、态度与价值观

激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 【教学重点与难点】:

重点:(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题;

(2)掌握求解实际问题的一般步骤. 难点:根据题意建立数学模型,画出示意图 【学法与教学用具】:

1.学法:让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。【授课类型】:新授课 【课时安排】:1课时 【教学思路】:

一、创设情景,揭示课题

总结解斜三角形的要求和常用方法

(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题: ①已知两角和任一边,求其它两边和一角;

②已知两边和其中一边的对角,求另一边的对角,从而进一步求其它的边和角(2)应用余弦定理解以下两类三角形问题: ①已知三边求三内角;

②已知两边和它们的夹角,求第三边和其它两个内角

二、研探新知,质疑答辩,排难解惑,发展思维

例1(教材P18例1)如图1-3-1,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D,测

第 1 页

版权所有@中国高考志愿填报门户



您身边的志愿填报指导专家

得ADC85,BDC60,ACD47,BCD72,CD100m.设A,B,C,D在同一平面内,试求A,B之间的距离(精确到1m).解:在ADC中,ADC85,ACD47,则DAC48.又DC100,由正弦定理,得

DCsinADC100sin85AC134.05m.sinDACsin48在BDC中,BDC60,BCD72,则DBC48.又DC100,由正弦定理,得 DCsinBDC100sin60BC116.54m.sinDBCsin48在ABC中,由余弦定理,得

图AB2AC2BC22ACBCcosACB134.052116.5422134.05116.54cos7247

3233.95,所以 AB57m 答A,B两点之间的距离约为57m.本例中AB看成ABC或ABD的一边,为此需求出AC,BC或AD,BD,所以可考察ADC和BDC,根据已知条件和正弦定理来求AC,BC,再由余弦定理求AB.例2(教材P18例2)如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,测出该渔轮在方位角为45,距离为10nmile的C处,并测得渔轮正沿方位角为105的方向,以

9nmile/h的速度向小岛靠拢,我海军舰艇立即以21nmile/h的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min).解:设舰艇收到信号后xh在B处靠拢渔轮,则AB21x,BC9x,又AC10,ACB45180105120.由余弦定理,得ABACBC2ACBCcosACB,2即21x109x2109xcos120.222222化简,得36x9x100,解得xh40min(负值舍去).32图1-3-2

BCsinACB9xsin12033由正弦定理,得sinBAC,所以BAC21.8,方位角为

AB21x1

4第 2 页

版权所有@中国高考志愿填报门户

您身边的志愿填报指导专家

4521.866.8.答:舰艇应沿着方向角66.8的方向航行,经过40min就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A到B与渔轮从C到B的时间相同,所以根据余弦定理可求出该时间,从而求出AB和BC;再根据正弦定理求出BAC.例3 如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别为3512和4928,CD间的距离是11.12m,已知测角仪高1.52m,求烟囱的高。

四、巩固深化,反馈矫正

1.在四边形ABCD中,已知ADCD,AD10,AB14,BDA600,BCD1350,求BC的长 2.在四边形ABCD中,ABBC,CD33,ACB300,BCD750,BDC450,求AB的长 3.四边形ABCD中,ABBC,ADDC,且EAF600,BC5,CD2,求AC

4.我炮兵阵地位于A处,两观察所分别设于C、D,已知ACD为边长等于a的正三角形。当目标出现于B,测得CDB450,ACD750(A、B在CD两侧),试求炮击目标的距离AB。

5.把一根长为30CM的木条锯成两段,分别作钝角三角形ABC的两边AB和BC,且ABC120,如何锯断木条,才能使第三边AC最短?

0

五、归纳整理,整体认识

1.解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解

2.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.3.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六、承上启下,留下悬念

七、板书设计(略)

八、课后记:

第 3 页

篇7:必修5正弦定理

(一)教学目标

正弦定理、余弦定理体现了三角形中边角之间的相互关系,学会在测量学、运动学、力学、电学等许多领域有着广泛的应用.培养学生空间想象能力和运算能力.教学过程: 解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 [例题分析]

3、某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才能到达M汽车站?

课时5巩固练习

1.如图,要测量河对岸A、B两点间的距离,今沿河岸选取相距40米的C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则AB的距离是 2.一船以226km/h的速度向正北方向航行,在A处看灯塔S在船的北偏东45,1小时30分钟后航行到B处看灯塔S在船的南偏东15,则灯塔S与B之间的距离为.3、如图,两条道路OA、OB相交成60角,在道路OA上有一盏路灯P,00

第1题

OP10米,若该灯的有效照明半径是9米,则道路OB上被路灯有效照明的路段长度是 米。

第3题

4.已知△ABC中,BC=2,AB+AC=3,中线AD的长为y,若以AB的长为x,则y与x的函数关系式是 ,并指出自变量x的取值范围.5.某观察站C在城A的南20西的方向,由城A出发的一条公路,走向是南40东,在C处测得距C为31千米的公路B上有一人正沿公路向A城走去,走了20千米之后,到达D处,此时C、D之间的距离为21千米,试问此人还要走几千米可到达A城?

C 0

0

篇8:必修5正弦定理

(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用

难点:利用向量知识证明定理

(二)教学目标

(1)知识目标:

①要学生掌握正余弦定理的推导过程和内容;

②能够运用正余弦定理解三角形;

③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的.学习数学的兴趣。

(三)教学过程

教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。

教学过程分如下几个环节:

教学过程课堂引入

1、定理推导

2、证明定理

3、总结定理

4、归纳小结

5、反馈练习

6、课堂总结、布置作业

具体教学过程如下:

(1)课堂引入:

正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?

(2)定理的推导。

首先提出问题:RtΔABC中可建立哪些边角关系?

目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:

①引导学生从SinA、SinB的表达式中发现联系。

②继续引导学生观察特点,有A边A角,B边B角;

③接着引导:能用C边C角表示吗?

④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?

发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

第二步证明定理:

①用向量方法证明定理:学生不易想到,设计如下:

问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破

实践:师生共同完成锐角三角形中定理证明

独立:学生独立完成在钝角三角形中的证明

总结定理:师生共同对定理进行总结,再认识。

在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。

在定理总结之后,教师布置思考题:定理还有没有其他证法?

通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。

(3)例题设置。

例1△ABC中,已知c=10,A=45°,C=30°,求b.

(学生口答、教师板书)

设计意图:①加深对定理的认识;②提高解决实际问题的能力

例2△ABC中,a=20,b=28,A=40°,求B和C.

例3 △ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解

例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。

可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。

设计意图:

①增强学生对定理灵活运用的能力

②提高分析问题解决问题的能力

③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。

(四)归纳小结。

借助多媒体动态演示:图表

使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。

这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。

(五)反馈练习:

练习①△ABC中,已知a=60,b=48,A=36°

②△ABC中,已知a=19,b=29,A=4°

③△ABC中,已知a=60,b=48,A=92°

判断解的情况。

通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。

篇9:必修5正弦定理

一、预习问题:

1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。那么斜三角形怎么办?确定一个直角三角形或斜三角形需要几个条件?

2、正弦定理:在一个三角形中,各边和它所对角的的比相等,即。

3、一般地,把三角形的三个角A,B,C和它们所对的边a,b,c叫做三角形的,已知三角形的几个元素求其它元素的过程叫做。

4、用正弦定理可解决下列那种问题

已知三角形三边;②已知三角形两边与其中一边的对角;③已知三角形两边与第三边的对角;④已知三角形三个内角;⑤已知三角形两角与任一边;⑥已知三角形一个内角与它所对边之外的两边。

5、上题中运用正弦定理可求解的问题的解题思路是怎样的?

二、实战操作:

例

1、已知:在ABC中,A45,C30,c10,解此三角形。

例

2、已知:在ABC中,A45,AB6,BC2,解此三角形。

篇10:必修5正弦定理

§1.1.1 正弦定理

【情景激趣】

有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道?

【目标明晰】

1.知识与技能

通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.2.过程与方法

让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作.3.情感态度与价值观

培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.二、教学重点、难点

1.重点:正弦定理的探索和证明及其基本应用.2.难点:已知两边和其中一边的对角解三角形时判断解的个数.学习过程

(一)自主探究

RtABC中,设BC=a,AC=b,AB=c,,有abcsinA,sinB,又sinC1则ccc

以上关系式是否仍然成立?可分为c那么对于任意的三角形,sinAsinBsinC

锐角三角形和钝角三角形两种情况: abc

1.叙述正弦定理的内容:

2.正弦定理的变形

①边化角:a=,b=,c=;

②角化边:sin,sin,sinC;

3.正弦定理的推论: a:b:c

从而知正弦定理的基本作用为:

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作_______

【交流释疑】

(二)合作探讨

类型一已知两角及一边解三角形

例1.在ABC中,已知A45,B60,a42cm,解三角形.

变式:在ABC中,已知B45,C60,a12cm,解三角形.

规律总结:

类型二已知两边及一边的对角解三角形

例2.在ABC中,cA45,a2,求b和B,C.

变式

:在ABC中,bB60,c1,求a和A,C.

规律总结:

类型三判断三角形的形状

例3在ABC中,已知a2tanBb2tanA,试判断三角形的形状。

变式:已知在ABC中,bsinBcsinC,且sin2Asin2Bsin2C,试判断三角形的形状。

规律总结:

类型四 三角形面积公式

1absinC,并运用此结论解决下面问题:

2(1)在ABC中,已知a2,b3,C150,求SABC;仿照正弦定理的证法一,证明SABC

(2)在ABC中,已知c10,A45,C30,求b和SABC;

规律总结:

【反思回忆】

● 目标回忆

● 构建体系

● 总结规律

● 完善存疑

【课时练习】完成课时作业

(一)课时作业

(一)第一章解三角形

§1.1.1正弦定理

1.正弦定理适用的范围是()A.直角三角形B.锐角三角形C.钝角三角形D.任意三角形

2.△ABC的内角A,B,C的对边分别为a,b,c,若c

等于 bB120,则a()

B.2C

D

A

3.在△ABC中,若A2B,则a等于()

A.2bsinAB.2bcosAC.2bsinBD.2bcosB

4.已知△ABC中,A∶B∶C=1∶1∶4,则a∶b∶c等于().A.1∶1∶4B.1∶1∶2C.1∶

1D.2∶2在△ABC中,若sinAsinB,则A与B的大小关系为().A.ABB.ABC.A≥BD.A、B的大小关系不能确定

6.在△ABC中,C105,B45,c5,则b的值为()

A5(31)B5(31)C10D5(6

7.在△ABC中,已知a3,b4,sinB

A002)2,则sinA=()3311BCD 1 46

2

8.在△ABC中,已知B30,b,c150,那么这个三角形是()

A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰三角形或直角三角形

9.根据下列条件,判断三角形解的情况,其中正确的是()

A、a8,b16,A30,有两解 B、b18,c20,B60,有一解

C、a5,b2,A90,无解

10.ABC中,C=2B,则 D、a30,b25,A150,有一解 sni3B等于()sniB

baacA、B、C、D、abca

311.三角形两边之差为2,夹角的余弦值为。该三角形的面积为14,则这两边分别为()

5A、3和5B、4和6C、5和7D、6和8

a4,b42,12.在ABC中,A=60°,则角B等于()

A、45°或135° B、135°C、45°D、以上答案都不对

13.在ABC中,已知(bc):(ca):(ab)4:5:6,则sinA:sinB:sinC等于

14.在ABC中,a3,b1,B30,则三角形的面积等于。

15.在ABC中,若acosAbcosB,则ABC的形状为16.在ABC中,已知bc8,B30,C45,则bc.

17.在ABC中,如果A30,B120,b12,那么aABC的面积是.

18在ABC中,bc

30,SABC,则A19.在△ABC中,三边a、b、c所对的角分别为A、B、C,已知,b=2,△ABC的面积S=3,求角C

20..在三角形ABC中,角A,B,C所对的边分别为a,b,c,且A,B为锐角,sinA

=,sinB

=(1)求A+B的值:

(2)若

a-b=

篇11:必修5正弦定理

一、正弦定理

1.正弦定理及其证明

abc. sinAsinBsinC

课本利用三角形中的正弦函数的定义和向量的数量积两种方法证明了正弦定理,同学们可以思考一下有没有别的方法呢?答案是肯定的.证明如下:

当△ABC为锐角三角形时(如图所示),过点A作单位向量i垂直于AB,因为ACABBC,所以·iAC·i(ABBC)·iAB·iBC,bcos(90°A)0acos(90°B),在一个三角形中,各边和它所对角的正弦的比相等,即

ab. sinAsinB

当△ABC为钝角或直角三角形时也可类似证明.

2.正弦定理常见变形公式 即bsinAasinB,得

bsinAcsinAcsinBasinBasinCbsinC,b,c; sinBsinCsinCsinAsinAsinB

(2)a:b:csinA:sinB:sinC;

(3)a2RsinA,b2RsinB,c2RsinC(R为△ABC外接圆的半径);(1)a

(4)sinA(5)abc,sinB,sinC; 2R2R2Rabcabc. sinAsinBsinCsinAsinBsinC

注:这些常见的变形公式应熟练掌握,在具体解题时,可根据不同的题设条件选择不同的变形公式.

3.正弦定理的运用

利用正弦定理,可以解决以下两类有关解三角形的问题:

①已知两角和任意一边,求其他两边和另一角;

②已知两边和其中一边的对角,求另一边的对角.

二、余弦定理

1.余弦定理及表达式

三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.

a2b2c22b2c2a22bcco;s Acao;s Bc2a2b22acbo.s C注:余弦定理反映了a,b,c,A,B,C元素间的动态结构,揭示了任意三角形的边、角关系.

2.余弦定理的另一种表达形式

b2c2coAs2bc

c2a2coBs2aca2; b2;

用心爱心专心

a2b2c2

coC; s2ab

注:若已知三边求角时,应用余弦定理的此表达形式简单易行.

3.余弦定理的运用

利用余弦定理,可以解决以下两类有关解三角形的问题:

(1)已知三边,求三个角;

(2)已知两边和它们的夹角,求第三边和其他两个角.

注:这两类问题在有解时都只有一个解.

4.勾股定理和余弦定理的区别与联系

勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系.由余弦定理及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.因此,勾股定理可以看作是余弦定理的特殊情况,余弦定理可以看作是勾股定理的推广.

篇12:必修5正弦定理

【三维目标】:

一、知识与技能

1.学会利用余弦定理解决有关平几问题及判断三角形的形状,掌握转化与化归的数学思想; 2.能熟练地运用余弦定理解斜三角形;

二、过程与方法

通过对余弦定理的运用,培养学生解三角形的能力及运算的灵活性

三、情感、态度与价值观

培养学生在方程思想指导下处理解三角形问题的运算能力; 【教学重点与难点】:

重点:利用余弦定理判断三角形的形状以及进行三角恒等变形; 难点:利用余弦定理判断三角形的形状以及进行三角恒等变形 【学法与教学用具】:

1.学法:

2.教学用具:多媒体、实物投影仪.【授课类型】:新授课 【课时安排】:1课时 【教学思路】:

一、创设情景,揭示课题

1.余弦定理的内容?

2.如何利用余弦定理判断锐角、直角、钝角? 2.利用余弦定理可解决哪几类斜三角形的问题?

二、研探新知,质疑答辩,排难解惑,发展思维

例1(教材P在ABC中,AM是BC边上的中线,求证:AM16例6)

12(AB2AC2)BC2 2例2(教材P15例5)在ABC中,已知sinA2sinBcosC,试判断三角形的形状

a2b2sin(AB)例3 在ABC中,证明: sinCc2例4 已知三角形一个内角为60,周长为20,面积为103,求三角形的三边长。

例5三角形有一个角是60,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。

四、巩固深化,反馈矫正

1.在ABC中,设CBa,ACb,且|a|2,|b|3,a•b3,则AB_____

ab02.在ABC中,已知C60,a、b、c分别为角A、B、C所对的边,则的值等于bcca00________

五、归纳整理,整体认识

让学生总结本节课所学的内容及方法(1)知识总结:(2)方法总结:

六、承上启下,留下悬念 1.书面作业

七、板书设计(略)

篇13:必修5正弦定理

三维目标

知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

教学重点

余弦定理的发现和证明过程及其基本应用;

教学难点

勾股定理在余弦定理的发现和证明过程中的作用。

教学建议

课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的 启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.导入一

提问1:上节课,我们学习了正弦定理,解决了有关三角形的两类问题:已知两角和任意一边;②已知两边和其中一边的对角.三角形中还有怎样的问题没有解决?

已知两边和夹角;已知三边.首先分析最特殊的三角形——直角.如图1.已知两边a,b及夹角C90,能否求第三边?

勾股定理c2a2b

2提问2:在斜三角形中边和角有怎样的关系?

在△ABC中,当C90时,有c2a2b2.

实验:若a,b边的长短不变,C的大小变化,c2与a2b2有怎样的大小关系呢?

如图2,若C90时,由于b边与a边的长度不变,所以c边的长度变短,即c2a2b2.如图3,若C90时,由于b边与a边的长度不变,所以c边的长度变长,即c2a2b2.当C90时,c2a2b2,那么c2与a2b2到底相差多少呢?与怎样的角有关呢?显然应与∠C的大小有关.图1 图2 图

3导入新课二

师 上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题

在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示

A

师 由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解

解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得

A2=CD2+BD

∵在Rt△ADC中,CD2=B2-AD

又∵BD2=(C-AD)2=C2-2C·AD+AD

∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·COs

A

∴a2=b2+c2-2abcosA

.类似地可以证明b2=c2+a2-2cacosB

c2=a2+b2-2abcos

C

上一篇:小学英语教学论文:浅谈农村小学英语教学下一篇:慈母情深课堂反思