轴流式水轮机改造

2022-07-28

第一篇:轴流式水轮机改造

水轮发电机组改造增容

龙溪河梯级电站建于50年代末,共有狮子滩、上硐、回龙寨、下硐4个电站,总装机容量104.5MW,狮子滩电站是龙溪河梯级电站的第一级,首部有库容为10.28亿m3(有效库容7.48亿m3)的多年调节水库。建成后,梯级电站在重庆系统中担负调频、调相、调峰和事故备用等任务。随着电网的扩大,1975年四川省形成了统一电网,陆续修建了一批大、中型水电站。但是,网内水电站除龙溪河梯级和我厂大洪河电站(有不完全年调节水库,电站装机35MW)外,均为迳流式电站,因此,龙溪河梯级电站在系统中担负了对川西迳流电站一定的补偿调节作用。

狮子滩水电站是我国第一个五年计划重点建设项目。电站兴建于1954年,建成于1957年。第一台机组于1956年10月1日并网发电,电站原装有4台单机容量为12MW的水轮发电机组,设计年均发电量为2.06亿kW.h,年有效运行小时为4290h,机组立项改造前安装投运以来共发电(截止1992年底)63.41亿kW.h,有效运行小时(截止1992年底)为65.62万h,其中:1号机运行17.3万h,发电16.31亿kW.h;2号机运行15.4万h,发电15.06亿kW.h;3号机运行16.8万h,发电1.61亿kW.h;4号机运行16.09万h,发电15.95kW.h。

狮子滩水库经过长度为1462.5m、直径为5m的压力隧洞、差动式调压井及长度为133.213m、直径为5m的压力钢管及4根直径为2.6m的钢支管分别引水至各机组。各机组压力水道长度分别为:1636.18m(1号);1638.978m(2号);1642.131m(3号),1644.83m(4号)。机组的主要参数如下:

水轮机:

号:HL216-LJ-200;

头:HP=64.3m;Hmax=71.5m;

Hmin=45m;

量r=25.4m3/s;

设计出力:Nr=13.8MW;

吸出高度:Hs=0.6m;

额定转速:nr=273r/min;

飞逸转速:np=490r/min;

接力器直径:φ400mm;

接力器工作油压:1.75~2.0MPa;

接力器最大行程:240mm。

发电机:

号:TS-425/84-22;

额定容量:15MVA;

额定出力:12MW;

额定电压:10.5kV;

额定电流:827A;

额定频率:50Hz;

功率因素:0.8;

静子接线:双Y;

转子电压:188V;

转子电流:470A。

主励磁机:型号:ZLS-99/24-8;

额定出力:125kW;

副励磁机:型号:ZLS-54/8-6;

额定出力:6.5kW;

永磁机:型号:TY65/13-16;

额定容量:1.5kVA;

调速器:

号:S-38型;

工作容量:78.45kN.m;

工作压力:1.75~2.0MPa。

2 改造增容研究过程

2.1 改造增容的提出

狮子滩电站机组及辅助设备运行至1992年已有36~37年,除少数辅助设备进行过更换外,主要设备均未更换。由于运行年久,设备日益老化,都需要有计划地进行改造、更新。针对50年代制造投入的水轮机效率低,设计时考虑机组运行方式与目前实际运行情况有较大的变化等情况,省局在1990年组织了科研、运行单位共同研究了机组设备状况和系统运行方式后,提出机组改造增容的要求。并要求对水轮机转轮改(选)型和利用发电机残余寿命增容至15MW等工作立即开展可行性研究。

2.2 改造增容可行性研究

1990年9月初,狮子滩水力发电总厂成立了龙溪河梯级电站改造增容工作领导小组及各专业工作组,遵照省局的指示,我厂在四川省电力试验研究院(以下简称试研院)、东方电机厂科协、四川省水力发电学会咨询部等单位的帮助和配合下,重点对水轮机转轮改(选)型和利用发电机残余寿命增容等工作展开可行性研究。

2.2.1 发电机试验研究

在有关单位配合下,进行了发电机一系列试验、研究工作,并分别提出了试验报告(东方电机厂:“发电机电磁计算”、“机械强度计算”、“发电机通风试验”、“发电机气隙磁密测算”;试研院:“发电机静子老化鉴定试验”、“发电机温升试验”)。试验表明:静子绝缘无老化特征,绝缘尚有较高的电气强度和绝缘裕度,通过发电机通风改造,发电机可增容至15MW有功运行。 2.2.2 水轮机提高效率的研究

机组能否增容,提高水机出力是需要解决的第一个关键问题。1990年11月,试研院提出“龙溪河梯级电站的增容改造设想及狮子滩电站增容改造的可行性研究”的规划性报告,鉴于国内尚无完全适合狮站增容用的转轮,故在1990年12月,在省电力局主持下,我厂与试研院正式签订了“狮子滩电站增容改造用新型水轮机转轮的研制协议”。要求在狮子滩电站对其水轮机转轮进行模型设计、试验研究中,在保持狮子滩电站水工部分及水轮机埋设部件不大动的条件下,要求水轮机改造达到以下目标:

(1)提高水轮机过流能力15%以上;

(2)提高水轮机平均运行效率2%以上;

(3)提高机组出力2000~3000kW;

(4)原水轮机功率摆动大,新机应予以改进;

(5)要求新机具有良好的抗气蚀性能及运行可靠性。

之后,试研院与四川省机械设计研究院水力发电设备研究所(以下简称机械院)合作,联合研制狮子滩电站专用改型转轮,经优选后,机械院委托东电电器公司制造模型水轮机及模型转轮,并确定模型转轮的定型试验在水利水电科学院机电所(以下简称水科院)低水头能量台上进行。上述单位通力合作,在1991年11月,完成了3个水轮机新转轮和两个改型转轮,共计5个转轮及模型机的设计制造及试验工作,其中包括完成了S

10、S20以及改型转轮S11的能量性能对比试验和S20、S

21、S30,3个新转轮在水科院低水头能量台上定型试验,将试验结果与国内已研制成功的bo=0.2,Q′max<1000L/s的优秀转轮A

10、A232的参数比较,见表1。

表1 bo=0.2,Q′max>1000L/s的优秀转轮主要参数对比表

转轮 名称 [td]最大单位

流量 Q′max /L.s-1 [td]单位转速 n′out [td]最高效率

ηmax /% [td]备

注 A10-25 [td]1080 [td]68 [td]88.2 [td]用标准尾水管、低水头台试验,当转轮换算为350mm时,ηmax=89%。 A232-35 [td]1040 [td]69.5 [td]90.7 [td]用标准尾水管,在高水头试验台试验,按IEC公式换算为低水头时ηmax=89.8%。 S30-35

[td]1020 [td]70 [td]89.5 [td](1)尾水管主要流道面积仅为标准管的

74.7%~81%。

(2)转轮出口尺寸为前者的89.7%。 (3)在低水头试验台上试验。

(4)按计算,在相同流量下,尾水管损失增加使水轮机效率下降约1.47%~1.87%。

考虑到S30特殊流道带来的不利影响,应该说转轮的综合能量指标高于A10及A272,是近年来国内研制的bo=0.2且具有大过流能力的优秀转轮之一,属国内先进水平。经换算,新研制的S30转轮用于狮站时,其各项指标均达到和超过合同要求。

2.2.3 提出可行性报告

在前期大量试验、研究的基础上,我厂于1991年底完成了狮子滩电站改造增容的可行性研究工作,提出了改造增容的前提条件为

1)尽可能不改动原已建的水工建筑物,并要求改造增容工期尽可能短;(2)引用流量增加是有一定限度的;(3)狮库按优化调度10年的统计,运行年均毛水头为64.39m。在经过水轮机提高效率研究及发电机一系列电气试验后,我厂提出了狮子滩电站改造增容可行性报告,由省局主持召开了有9个单位的工程技术人员共45人参加的审查会。审查意见指出:“从5个模型转轮中推荐采用的S30型转轮,其资料和数据是通过全模拟试验获得的,可以用作真机出力效率换算的依据。转轮试验是在水工建筑物基本不变,水轮机主轴不予更换的条件下进行的,难度大,其增容幅度达25%,且具有较高的能量指标,在短短1年内研制完成是很不容易的。狮子滩电站换为该转轮后,在相同设计水头下,水轮机单机出力可由12MW增至15MW以上,模型最高效率89.5%,预计真机效率为92.0%,满足四川省电力科试所与长寿发电厂签订的各项技术指标”。会议同意以S30型转轮作为狮子滩电站改造增容更换用的转轮。

审查会议同意将对称型活动导叶改为非对称导叶。鉴于顶盖、底环的止漏环,抗磨板等已严重磨损,为有利于制作和安装,同意更换。水轮机仍使用橡胶轴承。尾水管直锥段按模型试验尺寸予以扩大。

发电机(2号发电机)经过电磁计算和静子绝缘老化鉴定以及温升试验表明,静子绝缘无老化特征,绝缘尚有较高的电气强度和绝缘裕度,在进风温度为30℃、功率因素0.8

5、定子电压10.5kV、定子电流970.6A、转子电流497A时,发电机可带15MW有功运行。

励磁系统经测算和试验能满足发电机15MW,无功11.25MVAR,功率因素0.8条件下运行。

主变压器多年运行工况较好,常规试验数据正常,近期内短时超负荷运行基本可以承受。110kV、10kV开关遮断容量严重不足,应予全部更换。

可行性方案审查后,省局要求我厂“尽快完成初步设计,并上报我局审查,抓紧落实选择水轮机制造厂订货工作”。

2.3 完成初步设计

根据省局要求,我厂组织有关技术力量提出了初步设计报告。1992年在我厂提出初步设计报告后,省局又再次组织了对初步设计的审查。初步设计报告对狮子滩电站改造增容从几个方面进行了分析和论证

1)对狮子滩电站改造增容技术上的可行性,经济上的合理性进行2)对下一阶段设备改造的技术设计和施工设计明确了任务,提出了要求;(3)计算并提出了狮子滩近期改造增容的总概算;(4)对改造增容的经济效益进行了计算分析,省局审查后同意了初步设计报告,下达了狮站改造增容的第一批费用及形象进度要求。

3 机组改造施工、试验及运行情况

3.1 首台机组改造施工和鉴定验收

1992年12月,在东电电器公司将水轮机需更换的加工件已按合同要求完成,我厂已按初步设计要求完成了狮子滩电站2号机组各项技术和施工准备,主要准备工作有:水工建筑、水力机械、发电机通风系统改造施工图及“发电机通风系统改造施工工艺”、“机械部分改造施工工艺”、“水工部分改造施工工艺”、“改造增容综合施工进度网络图”等报告文件,于10月11日开始了狮子滩电站2号水轮发电机组的改造增容施工工作,并结合改造增容进行了机组大修。由于我厂对此项工作缺乏经验,也由于水轮机设计制造上的一些问题,如:导叶平面密封不良、转轮标高低5mm、顶盖漏水等,使施工工期超过预计工期。直到1993年3月12日机组空车启动试运行开始,接着又与电力科试所共同进行了发电机通风系统改造后的通风温升试验,至3月19日甩负荷试验后,机组才正式交调度管理,整个机组施工期长达99d。改造后对机组进行了通风,温升试验;运行稳定性试验,效率试验及电站引水系统水头损失试验,并提出了相应的试验报告。

为了给改造增容鉴定提供更完整的资料,经我厂研究决定:于1993年7月26日、27日、31日三次由狮子滩电站作2号机组带15MW负荷试验。当时由于环境温度较高,空冷器供水量已超过设计值,冷风温度及线圈温度均超过允许值。为了能得到准确的定量试验结果,8月11日,由厂组织有关专业技术人员并邀请了电力科试所有关同志一道,使用符合试验精度要求的仪表再次进行了机组带15MW试验。1993年9月,由四川省电力工业局主持,组织有关专家进行了现场鉴定验收,与会专家一致认为:狮子滩电站2号机组改造增容是成功的,后续3台机可参照2号机进行改造。鉴定验收意见如下:

(1)提供的技术文件资料齐全,论据可靠,内容和测试数据可信;

(2)按狮子滩水轮机实际流道条件研制的S30型水轮机转轮,在bo/D′1=0.2,Q1>1000L/s的条件下,其能量指标具有国内先进水平;

(3)现场试验及实际运行表明,改造后的机组各部位振动摆度值符合国标要求,运行稳定性良好;

(4)改进后的机组单台增容3MW,增容率为25%,且水轮机效率提高,与原旧转轮相比,平均运行效率约提高4%,实测在水头55.25m(设计水头58m)及满负荷运行条件下,水轮机效率达91%,过流能力提高21%;

(5)发电机通风改造后,冷却总风量增加5%,改善了发电机内的风量分布,下端进风量增加15%,在相同运行条件下,其定子线圈各部温度特别是原高温区——线圈上、下端部,均有较大幅度降低;

(6)狮子滩电站其余尚未改造的相同3台机组参照2号机改造后,可增加电网调峰容量12MW,有利于减少高峰时段电网对用户的限电和增加电网的备用容量,提高电网的供电可靠性和电能质量,按照过去10年水文资料测算,全站年均增发电量1000万kW.h,本梯级其它水电站减少弃水损失电量200万kW.h,在丰水期以其增加的12MW容量替代相等容量的火电,其增加的容量在高峰时段工作,电网迳流式电站担负其它段的负荷,每年丰水期可使迳流水电站减少弃水,增发电量约1100万kW.h,总计电网年增发电量约为2300万kW.h,经济与社会效益十分显著:

(7)狮子滩电站2号水轮发电机组改造增容研究工作全面达到了预期效果,其改造是成功的,为该厂几个梯级电站机组改造增容工作提供了可靠的依据,在国内同型机组的改造增容中可以推广应用。 3.2 后续机组的改造施工及试验

在2号机组改造增容成功的基础上,四川省电力工业局要求我厂立即着手进行后续3台机的改造增容工作,下达了项目计划通知。为保证后续机组改造增容的成功,我厂着重抓了以下几方面的工作:

(1)在1993年7月12日~14日,我厂与科研、设计、制造单位一起就狮子滩电站

1、

3、4号机改造增容水机部分有关技术进行了研究,对2号机改造中存在的问题从底环、顶盖、导叶、双连壁、转轮等各方面提出了30条修改意见,补签了技术协议,使改造方案更加合理、完善。

(2)对改造中新、旧部件的配合,改造与未改造部分的联接过渡,请设计部门现场核实,研究落实方案,对送到制造厂加工的设备,制定详细的措施。

(3)从新修订改造的施工工艺,在总结2号机改造增容的基础上,对施工工艺中存在的问题进行修订,制订了切实可行的工艺措施,如尾水管直锥段新里衬安装,浇二期混凝土,由原来分3段浇筑改为4段浇筑,每段浇筑一次,保证了混凝土的密实、可靠;导叶部分预组装改为导叶全部整体预装,保证了顶盖、底环、导叶几大部件安装的正确性;减少工作时间等等,使施工工艺更好的指导施工。

(4)制订详细周密的施工计划、施工安全、技术组织措施,施工网络进度图,使施工管理更加科学化,减少盲目性。

(5)施工中以工艺措施为指导,按施工网络进度图控制施工进度,精心组织、合理安排,努力克服施工中的各种不利因素,保证施工的正常进行。

(6)通过各台机组发电机改造前通风温升试验,找出各台发电机影响增容的关键问题。制订出每台发电机通风系统改造的方案,对症下药。针对发电机空气冷却器容量已不能满足增容后夏天运行的要求,研究增大1~4号机的空冷器的热交换容量技术措施,将4台机的空冷器更换为热交换率较高的新型针刺式空气冷却器。

(7)施工中强化质量意识,加强责任制落实,严格厂、车间、班组三级验收责任制,建立健全了检修任务书,采取激励竞争机制,充分调动广大职工和工程技术人员的工作积极性。对重点技术难题、难点,厂组织有关人员进行技术攻关,不断提高施工管理质量和施工质量。如针对2号机改造后,转轮标高比固定部分标高下沉5mm的问题,经研究对后续3台机改造时,拆机后对转动及固定部分标高进行核实,具体定出每台机的加工尺寸,保证了每台机转轮的标高正确;后续3台机施工中,在中心复核时,发现发电机静子中心与顶盖、底环中心相差较多,经讨论认为发电机静子中心不易变动,而采用调整新顶盖、底环安装中心的办法,解决了这一技术问题。

狮子滩电站后续3台机改造增容,在省局、电力科试所领导支持下,在厂精心组织领导下,经广大职工、工程技术人员的共同努力,施工1台,总结1台,不断提高施工质量和管理水平,不断缩短施工工期。3号机施工从1994年11月12日至1995年1月31日正式交付调度运行,历时80d,比2号机施工工期缩短19d;4号机施工从1995年3月8日至1995年5月23日正式交付调度运行,历时76d,比2号机施工工期缩短23d;1号机施工与1号主变及10kVⅠ段改造施工同步,由于受主变更换及10kVⅠ段开关改造的影响,施工从1995年9月18日至1995年12月2日正式交付调度运行,比2号机施工时间缩短大约1/4,改造后机组投入系统运行正常。为保证增容改造后机组能发挥效益及安全运行,在机组改造的同时,对发电机开关及1号、2号变压器也作了更新增容。

1996年7月11日至18日,由四川省电力科学研究院与我厂一道对改造后的

3、

4、1号机组进行了效率试验和稳定性试验,并提出了“狮子滩水力发电总厂狮子滩电站1号、3号、4号机组效率试验报告”和“狮子滩电站1号、4号机组改造增容后,运行稳定性试验总结”报告。在此之前,于1995年3月,对3号机组进行了运行稳定性试验,提出了“狮子滩电站3号机组改造增容后运行稳定性试验报告”。

1995年2月11日~16日,1995年12月18日~21日,四川省电力试验研究院与我厂共同对改造后的3号机组、1号机组进行通风、温升试验,分别提出了狮子滩电站1号、3号、4号机组改造增容后通风、温升总结报告,经改造前试验,4号机组不需通风改造,故未再作改造后的试验。

从机组的稳定情况试验及效率试验看,1号、2号、3号机组在各运行工况稳定性良好,振动摆幅均符合国家有关规范,但2号机组在特定工况区存在有由尾水管偏心涡带产生的低频压力脉动而导致机组低频振动及功率摆动问题。4号机组运行稳定性相对较差,存在一定程度的动力不平衡和磁力平衡现象,摆幅值超过国家标准,尾水管存在明显的压力脉动现象,对机组的运行稳定性存在较大的影响。

从水轮机的效率测试看,1号机真机最高效率可达92.33%(相对值),2号机最高效率可达91.5%,3号机最高效率可达92%(相对值),4号机最高效率为91%,高效区在11~13MW,平均运转效率约89%,改造后机组的效率提高较多,平均运转效率提高约4%。

通风温升试验情况表明:通风改造非常成功,1~3号机组改造后总风量有了较大幅度的增加,增加了4%~7%,风量分配也趋合理,下端部分的进风量比改前增加14%~18%,风速分布,风压分布也更趋合理。改后发电机定子线圈的温升有了明显下降,1~2号机下端鼻部一般下降了1~18K,渐开线部分一般下降1~25K,槽部降低1~6K,但3号机较改造前增加,4号机组根据改造前试验情况,通风系统未作改造,仅更换了空气冷却器,从4台机组通风温升试验情况看,发电机能够满足改造后安全稳定运行的要求。 3.3 改造后机组和电站出力特性

1996年10月10日,我厂对改造后机组和电站的出力特性进行了测量,并对水轮机汽蚀情况作了检查,编写了“狮子滩电站改造增容机组运行报告”。

从电站的出力特性试验及现场汽蚀情况检查看,电站毛水头在63.73m也即上游水位在341m左右,电站单台机和两台机组同时运行,尚可达到单机出力1.5万kW的增容目标,3台机组和4台机组同时运行,单机出力最大只能达到13.8MW和13.3MW。从电站运行记录看,1995年7月30日,电站几乎在最高水位运行时,电站在接近防洪限制水位时段运行(即345~346m),电站实测最大出力56.2MW。从引水系统水头损失试验看,引水损失与引用流量成平方关系,随着引用流量增加,引水系统总的水头损失成平方增加。改造后,电站在哪些情况能够达到4台机组满出力运行的增容目标,还需进一步试验测量。同时也需进一步分析水系统损失对电站出力的影响。从现场汽蚀检查的情况看,水轮机叶片存在严重的翼型汽蚀,当机组运行有8500h以上,叶片就开始发生汽蚀,且各块叶片的汽蚀情况不同,说明同一转轮叶片翼型控制不一致。

4 改造增容效益分析 (1)由于水轮机效率提高了约4%,狮子滩4台机组改造增容后,在与改造前相同运行条件下,机组效率提高将增加发电量;又因引用流量增加,可减少汛期弃水,增发洪水电能,原狮子滩与梯级年均增发电量分别为1000万kW.h及1165万kW.h。

(2)龙溪河梯级增发电量及增加调峰容量对系统有显著的经济效益。

(a)狮子滩电站机组改造增容后,在水库高水位情况下,电网最大可增加调峰容量或备用容量约12MW,在当时电网严重缺乏高峰容量的情况下,可减少高峰时段电网对用户的限电,提高电网供电的可靠性,有利于国民经济的发展。

(b)狮子滩电站改造增容,在丰水期电网以其增加的近12MW的调峰容量,代替系统等容量的火电调峰,可减少火电调峰损失,由于狮子滩水库具有多年调节能力,汛期可以让网内迳流式电站大发,减少弃水,这样,每年丰水期可使迳流式水电站减少弃水,增加发电量1100万kW.h。

水电站水轮发电机组增容改造

作者:轴承供应商网 发布时间:2009-6-12 9:06:29 文字选择:大 中 小 浏览次数:126

提高机组总体效率达到增加机组出力的目的是水电站增容改造的主要课题。机组总体效率应当从水力、机械及电磁三方面综合考虑。转轮改造是增容改造的重点。 水轮发电机组增容改造是水电站技术改造的主要课题。一方面。由于设备老化,机组实际效率显著下降。另一方面,技术进步促进水轮发电机组效率进一步提高。因此,投产较早的水轮发电机组通过技术改造后效率有较大的提升空间。 从经济角度来看,水电站建设资金的主要部分是水工建筑物,在不增加水耗的前提下,通过对机电设备技术改造,提高机组总体效率,增加机组出力。与新建电站相比,技术改造投资少,见效快,经济效益好。水轮发电机组的总体效率由水力、机械及电磁三方面因素综合决定。制定增容改造方案过程中应当全面考虑影响机组效率的多方面因素,应用当前机组制造的新材料及新技术,采取综合的优化方案,达到机组总体效率提高的目的。

本文针对投产较早的水电站影响机组效率的主要因素进行分析,提出机组增容的途径。

1提高水力利用效率

1.1提高转轮效率,适当增加转轮单位流量。 转轮的改造是水电站增容改造的重点。较早投产的水轮机由于当时技术条件的限制,性能落后,制造质量差。我国转轮系列型谱中如HL240,HL702,ZZ600等转轮是国外上个世纪30年代至40年代的技术水平。另一方面,运行多年的转轮经过多次空蚀后补焊打磨,变形加上过流部面磨损,密封间隙增加,效率明显下降。例如双牌水电站水轮机转轮是HL123(即HL240),80年代中期机组总体效率是86%,最大出力可达50MW,目前最高只能发出48MW。 随着科学技术的进步,转轮的设计与制造已经达到一个新的高度度。优化设计技术,CFD(计算流体力学)技术及刚强度分析技术应用于转轮设计领域,使转轮设计技术有一个质的飞跃。特别是CFD的应用,使转轮设计达到量体裁衣的水平。消除了选型套用与实际水力参数的误差。叶片模压成型技术及数字控制加工技术的应用,使加工出厂的转轮与理论设计偏差缩小,转轮效率可达94.5%,与老型号转轮相比,新混流式转轮效率可提高2%~3%,轴流式转轮效率可提高4%~5?。由此可见,转轮的改造能使机组效率有一个较大的提升。

适当增加转轮的单位流量,充分利用丰水季节水能,经济效益也十分可观,但转轮过流量受到座环高度的限制,也就是受到导叶相对高度的限制。改造后的转轮单位流量不可能无限制增加,另一方面,流量加大,流量上升,空蚀特性变差,水轮机可靠性不能保证。因此,流量增加,应提出适当的要求,专家推荐几种转轮的最大单位流量如下: 转轮型号 单位流量 HL240 1.45m3/s HL220 1.28 m3/s HL180 1.15 m3/s 转轮选择可直接选用与实际水力参数相符或相近的转轮。经过真机运行检验后其转轮的能量特性及费可靠性良好的转轮用于水力参数相符或相近的场合,改造的成功率有把握。且能省去模型试验的费用。

改造费用低,经济效益好。转轮选择的另一个方法,是用与实际水力参数相差不多的转轮,经过改型设计后,直接使用,也可省去模型试验的费用,其可靠性及能量特性也有保证。

转轮选择的第三个方法是利用CFD技术。根据实际水力参数进行量体裁衣式的设计。理论上这样的转轮最符合实际情况。各项指标都能达到最优。但对大中型电站而言,转轮可靠性至关重要。量体裁衣式设计出来的转轮必须经过模型试验。这样转轮设计制造的周期较长,费用也很高。 1.2减小转轮漏水量 由于泥沙磨损,转轮密封装置间隙增大也是机组效率下降的原因之一。转轮密封装置损坏,检修时难以修复,因此在更换转轮时同时对密封装置进行改造,减小漏水量,提高效率。

1.3降低尾水水位到设计水位 由于长期泄洪,投产较早的电站尾水河道存在不同程度的拥塞,导致设计尾水水位上升,机组利用水头下降,出力降低。清理尾水河道,使尾水水位控制在设计水位的范围,可以使机组出力增加。特别对于低水头电站,尾水水位的变化对机组出力影响大,清理尾水河道可获得良好的经济效益。 2减小机械损失,提高机组效率 2.1 推力轴承改造

目前弹性金属塑料瓦技术成熟,造价不高,应用广泛。逐步取代传统的巴氏合金推力瓦。与巴氏合金相比,弹性金属塑料瓦突出的优点是磨擦系数小,因此用弹性金属塑料瓦替代巴氏合金瓦可以减小机械损失,提高机组效率。值得注意的是,应用弹性金属塑料瓦的机组停机过程较长,而且导叶漏水较大的情况下,机组有 潜动 现象发生。

2.2改造发电机通风系统,减小机组通风损耗

老式风路系统,风量分配不合理,漩涡大,风损大,挡风板过多,给检修、维护带来不便。新式风路可使总风量减少20%~30%,通风损耗减小50%,电机效率可以提高0.3%~0.6%。风路系统配合冷却器一起改造可使电机定子最高点温度降低6~10℃;转子温度10~15℃。因此对于定子线圈及转子线圈绝缘没有缺陷的机组,可以不对定子及转子进行改造,而只改造通风系统,就可以提高发电机的容量。盐锅峡电站就是采用这种改造方式。这样即可节省投资,也可缩短改造的工期。

3减小电磁损失

3.1 定子铁芯改造,减小铁芯损失

铁芯损失是发电机电磁损失的主要部分。投产较早的机组硅钢片磁滞损失较大,加之多年运行后铁芯松动,绝缘老化,涡流损失增加。选用性能较好的硅钢片对铁芯进行改造可使发电机效率进一步提高。 3.2取消直流励磁机,采用可控硅励磁

投产较早的大中型水轮发电机组多采用直流励磁机励磁。这种励磁方式故障多,维护费用高,用机组附加损耗增加。采用可硅励磁方式不仅能提高励磁系统可靠性,降低维护费用,还能提高机组效率。

第二篇:电厂汽轮机改造调研报告

协鑫太仓电厂汽轮机改造调研报告

一、 设备概况

汽轮机为上海汽轮机厂生产的引进型、亚临界一次中间再热、反动凝汽式汽轮机,产品型号:N300-16.7/538/538型;该型汽轮机与我公司的汽轮机的主要不同之处是我公司采用了冲动式汽轮机,高中压转子没有设置平衡盘,所有推力依靠结构型式及推力瓦进行平衡。

二、改造内容

1. 喷嘴组的更换

1.1. 对新喷嘴的通流面积进行适当调整,以提高机组的整体性能。

1.2. 此项工作由北京龙威发电技术有限公司负责实施,西安热工院负责负责对设计图纸进行审查、确认;并对现场实测数据方式及结果进行确认并进行安装技术指导;

2. 高压缸汽封改造

2.1. 高压进汽平衡活塞5圈、高压排汽平衡活塞3圈、中压进汽平衡活塞2圈共10圈,每圈汽封中一道高齿改为刷式汽封。

2.2. 此项工作由南京信润科技有限公司负责实施。西安热工院负责对设计图纸进行审查、确认;负责对现场实测数据方式及结果进行确认;对汽封的加工工艺及质量进行监理。

3. 低压缸汽封改造

3.1. 低压端部轴封:低压端部轴封左右对称,共8(2*4)道全部改成蜂窝汽封。

3.2. 低压隔板:第

2、

3、

4、

5、

6、7六级每级迎汽侧后面一道齿改为刷式,两侧共12圈。

3.3. 低压叶顶汽封:第

1、

2、

3、

4、5级叶顶汽封每级迎汽侧后面一道齿改为刷式,共10圈。

3.4. 此项工作由南京信润科技有限公司负责实施。西安热工院负责对设计图纸进行审查、确认;负责对现场实测数据方式及结果进行确认;对汽封的加工工艺及质量进行监理。

4. 中压缸、小机轴端汽封采用蜂窝汽封技术进行改造:

4.1. 中压2至9级隔板汽封8环;

4.2. 中压1至9级叶顶汽封9环;

4.3. 高中压缸轴端汽封电端、调端内侧汽封各4环,共8环;

4.4. 每台小机(共两台)前后轴封最外端各3环,每台6环,共计 12环。

4.5. 上述共计37环更换为蜂窝汽封。

5. 其它改造

5.1. 高压缸内外缸夹层在挡汽环处加装阻汽片。

5.2. 高压静叶持环动、静叶汽封分别为2×11道、3×11道共计55道重新镶齿、调整。

5.3. 低压一号内缸横向结合面加密封键(共四道,现场施工)。

5.4. A、B小机汽缸横向结合面加密封键(共四道,现场施工)。

5.5. 4~8项工作由秦皇岛五洲电力设备有限公司负责实施,西安热工院负责对现场实测数据方式及结果进行确认;对汽封的加工工艺及质量进行监理。

6. 疏水系统及冗余系统改造

6.1. 主、再热蒸汽系统

6.1.1. 主蒸汽管道疏水合并:实施方案:取消主蒸汽管道三通前疏水门(016-SV2503)和其门前手动隔离门(015-HR250006)及其管道,扩容器侧加堵头。取消主蒸汽管道三通后A侧主蒸汽管疏水门(020-SV2505)和其门前隔离手动门(018-HR250008)及其管道,扩容器侧加装堵头。以上两疏水管路合并后再与B侧主蒸汽管疏水管在手动隔离门(HR250007)前合并。注:取消主蒸汽管道三通前疏水门(SV2503)和主蒸汽管道三通后A侧主蒸汽管疏水门(SV2505)控制系统。

6.1.2. 高旁减温水管路:实施方案:在高旁减温水调整门(002-CV2611)后,加装手动截止球阀一个,取消电动门前后管道放水、放气,高旁减压阀前加装电动闸阀。

6.1.3. 高排逆止门后管道疏水:实施方案:取消冷再热蒸汽管疏水门(004-SV2514),手动隔离门(005-HR25015),取消高排逆止门后疏水气动门(008-SV2510)和手动门(009-HR25012)将管路在原高排逆止门后疏水手动门(009-HR25012)前合并。

6.1.4. 热再蒸汽管道疏水:实施方案:取消再热蒸汽管疏水门(022-SV2506)及前手动隔离门(021-HR25018),取消再热蒸汽管2号疏水门(024-SV2508)及前手动隔离门(023-HR25020),将两管路在1号中主门前疏水手动门(013-HR25019),与1号中主门疏水管合并。合并位置位于3米平台,阀门也布置在3米平台。注:热工拆除取消的原热再蒸汽蒸汽管道疏水气动阀控制系统;

6.1.5. 高压门杆漏汽:实施方案:高压门杆漏汽小集管在12.6m水平段由原来的ф60×6mm改为ф89×7mm后接至再热主气门前管道。

6.2. 抽汽系统

6.2.1. 抽汽管道疏水:实施方案:取消各段抽汽电动门与逆止门之间疏水。注:热工拆除取消的原抽汽电动门与逆止门之间疏水气动阀控制系统。

6.2.2. 抽汽管道放气:实施方案:取消各段抽汽管道放空气门。

6.2.3. 原高排通风阀管道:实施方案:在二段抽汽接口管道底部接疏水管路至高排逆止门前疏水罐,在竖直管段处,接入快冷进汽。高压缸快冷排气由取消的轴封安全门排大气管路接入。

6.2.4. 将高压外缸疏水、高压第一级疏水接入高排母管。

6.3. 轴封供汽系统

6.3.1. 轴封供汽滤网:实施方案:取消轴封供汽排污滤网,同时取消放水管路。 取消轴封供汽安全门,在原排汽管接入高压缸快冷排气。

6.3.2. 在低压轴封供汽管加装手动调整门及压力表

6.3.3. 主汽至汽机汽封系统管路:实施方案:取消主汽至汽机轴封系统管路及所属疏水阀门组,在隔断处加堵头。注:热工拆除取消的主汽供轴封系统气动阀及其控制元件。

6.3.4. 冷再供轴封系统:实施方案:取消冷再供轴封管路,在隔断处加堵头。注:热工拆除取消的冷再供轴封系统气动阀及其控制系统。

6.3.5. 轴封溢流:实施方案:轴封溢流分开两路,原旁路仍接至凝汽器,原主路改接至八段抽汽温度测点后,更换原气动门,门尽量靠近凝汽器,门前管道φ133,门口φ159。在气动门后加装疏水。

6.3.6. 轴封管路疏水:实施方案:铺设两路疏水集管DN50,以轴封母管减温器为界,减温器前所有疏水直接接入一路疏水集管,减温器后所有疏水接入另一路疏水集管。两路疏水集管就近接入轴封溢流门后至凝汽器的管道。辅汽至轴封供汽旁路加装自动疏水器及疏水旁路作为热备用。

6.3.7. 辅汽至轴封供热减温站移位:辅汽至轴封供热减温站移位到原冷再供轴封系统的位置。

6.4. 凝结水系统

6.4.1. 取消凝结水至储水箱管路及阀门。

6.4.2. 取消凝结水泵进出口安全门

6.4.3. 更换五号低加出口至除氧器流量孔板:实施方案:提供孔板设计参数:压力:1MPa;温度:130℃;流量量程:0~900t/h,对应孔板差压:0~100kPa,管道尺寸为φ325×8。

6.5. 汽轮机本体疏水系统。

6.5.1. 取消1号、2号调门后汽轮机放气及其管路。

6.5.2. 高压调门疏水:实施方案:取消

1、2号高压调门孔板后疏水阀门,将管路在与3号~6号调门孔板疏水在手动门前合并。

6.5.3. 四段抽汽管上开孔加装疏水集管,位置在抽汽电动门前。

6.5.4. 高中压缸平衡管疏水管路阀门取消,管道接至四段抽汽疏水集管。

6.5.5. 再热汽门控制阀漏汽改接至四抽管路上的疏水集管上。

6.5.6. 合并再热蒸汽导管疏水管路,保留B侧,取消A侧管道、阀门

6.5.7. 原高中压缸冷却蒸汽管取消,高中压外缸 两端和中压内上缸、中压平衡盘汽封套处分别封堵。

6.5.8. 取消中压外下缸中部疏水管(1╳2),在距下缸外表面100mm处切开,封堵。扩容器侧加堵头。

6.5.9. 取消中压外下缸排汽区疏水(1╳2),在距下缸外表面100mm处切开,封堵。扩容器侧加堵头。

6.5.10. 高中压缸平衡管(1╳4),取消法兰及孔板,直管接通。

6.5.11. 中压外上缸法兰(高中压平衡盘加平衡块)堵板开孔接入原中压缸冷却蒸汽处快冷,同时割除堵板处加平衡块的导向管。

6.6.小机供汽系统:

实施方案:拆除主汽供轴封系统相关的阀门和管道。

6.7.高、低加疏水放气系统

6.7.1. 取消各高、低加所有汽侧启动排汽门和相应管道。

6.7.2. 取消各高、低加所有化学清洗、充氮系统的阀门和相应管道

6.7.3. 取消高、低加正常疏水和危急疏水站的所有疏水排大气阀门和相关管道。

6.7.4. 各高加危急疏水调整门前手动门改为电动门,并做下列联锁:1)加热器水位高Ⅰ值时发报警并联开此电动门。2)加热器水位低于高Ⅰ值时联关此电动门。

6.7.5. 六号低加至七号低加疏水管路安装走向变更:实施方案:重新铺设的管道与原疏水调整门前管径一致,吊架视空中钢架结构位置灵活设置。取消气动门后手动门。阀门靠近七号低加疏水口。

6.7.6. 七号低加至八号低加疏水管路安装走向变更:实施方案:重新铺设的管道与原疏水调整门前管径一致,取消气动门前后手动门,气动门布置靠近八号低加疏水口。

6.7.7. 八号低加正常疏水:实施方案:取消8号低加正常疏水调整门前后手动门及其放水,将疏水调整门移位至0米层,尽可能靠近凝汽器热水井。

6.7.8. 1号、2号、3号高加,5号、6号、7号、8号低加水位控制整体抬高200mm。

6.7.9. 1号、2号、3号高加运行排汽一次门、5号、6号低加运行排汽总门改为球阀。

6.8.低压门杆漏汽至轴加系统:实施方案:在低压门杆漏汽至轴加手动门前接管路加装手动门接至改造后的轴封溢流至8号低加调整门后。

6.9. 取消锅炉5%启动旁路至高疏扩一路管道及阀门,在5%旁路至定排管道上封

堵。

6.10. 高压旁路阀前加装电动闸阀:实施方案: 将高压旁路阀向冷再管道方向移动1000mm左右,给水减温水管道做相应移动,将高压旁路阀前支吊架取消,在此位置加装电动闸阀,重新设计支吊架。

三、改造后实施效果

以#6机300MW机组为例,通过汽轮机改造,在300MW情况下,汽轮机热耗由8682.2kJ/(kW·h)下降至8067.6 kJ/(kW·h),供电煤耗由340 g/(kW·h)降为316 g/(kW·h)。节能效益非常可观。

第三篇:6轴流式流体机械的叶轮理论

对于轴流式流体机械,同样可采用欧拉方程来分析,但由于轴流式流体机械的叶轮数较少,叶片间的流道较宽,分析其实际能头时,要做很多修正。因而,其叶轮理论一般是用机翼理论来分析

§6-1基本名词术语 1.叶轮轮毂半径rh 2.叶片外缘半径rt

3.基元(基元级)叶片:在叶片的任意半径r及r+dr处将两个同心圆柱面切开,则这两个面之间的部分称为基元叶片。

4.翼型:设dr很小,基元叶片展开成平面,其中一个叶片的翼型断面 5.工作面:翼型凹面——正压力面 6.背面:翼型凸面——负压力面

7.翼型中线(骨架线骨线):翼型两面间内切圆圆心的连线 8.翼弦和弦长:中线端点的连线,长度L称为弦长

9.前缘点和后缘点:中线有两个端点,迎着来流方向的端点另一端点称为后缘点,翼型前缘是圆滑的,后缘是尖锐的

10.前驻点和后驻点:来流接触翼型后开始分离的点称为前驻点,绕流翼型后在后端会合的点称为后驻点

11.翼型厚度:与骨线垂直的翼形两面间的距离,max—最大厚度

maxl

fmaxl12.挠度:翼型中线与翼弦的距离f,f

bl13.翼展:垂直于纸面的翼型长度称为翼长或翼展b,相对翼展

14.前缘方向角:翼型前缘点处中线的切线与翼弦所形成的夹角x1 15.后缘方向角:翼型后缘点处中线的切线与翼弦所形成的夹角x2 16.翼形弯曲角:x1x2y2y1

17.叶栅:相同翼型等距排列的翼型系列 18.叶栅列线:叶栅中各翼型的相对应点的连线 19.平面直列叶栅:叶栅列线为直线

20.栅距:两相邻翼型在叶栅列线方向上的距离t,t2r/z r—为圆柱切面的半径 z—为叶片数

21.叶栅稠密度:弦长l与栅距t之比

tl22.冲角:来流w与弦的夹角称为冲角 23.正冲角:冲角在翼弦以下(工作面迎着来流) §6-2机翼和叶栅的升力理论

一、弧立翼型的升力理论 ①升力Fy:垂直于w ②阻力Fx:平行于w

FyCw2y2blFw2

xCx2bl③Cy—升力系数 与断面形状,冲角,表面粗④Cx—阻力系数

糙度雷诺数

—滑翔角

⑤升阻比tgFx1FyCyFytgFxC

x

切线与纵坐标的夹角为min,tgmin取最小值时,升阻比最大

二、叶栅

1.速度

已知:Q,A,,D,n 对于等半径的叶栅: 圆周速度u1u2u 相对速度的轴向分速

w1mw2mwmcmQA

wmwuwu2wtgww2u1u22wmw1uw2u2cmcm2ccu2uu122

ucu1cu22wuw1uw2u2w1ww2cmc1c212w1uw2uu

2.动力学基本方程式——叶栅

①作用在基元上的力有升力dFy,和阻力dFx其合力为dF ②dF与圆周方向一夹角为90()

③dF的圆周分量为dFudFcos90dFsin() ④使翼型dr转动的推动功率

dPudFsin()

⑤叶片数为Z,则所需总功率

ZdPzudFsin()

⑥流经dr段的流量为dQT,则功率为

dQTHTzudFsin()dFdFycosCy,dFyCyw22bdrdQTZtdrcmHTHTsin()lu2w2gtcmcos22Cy1ucmsin2gtcmsin()cosg,cmw/sin

HTCyltu(cu2cu1)g2cuwwucusincossincoscossin12cu1tg/tg当叶轮以角速度ω转动时,由于叶轮内外半径的不同引起内外断面处圆周速度的不同,而希望内外断面所产生的能头相同,否则形成二次回流,由欧拉方程知

u2外cu2外gu2内cu2内gu2外u2内cu2外cu2内由于c2m内c2m外QA

2外2内扭曲叶片cm2c2外cm2外c2内cm2内w2内y2内cu2内cu2外

y2外u2内u2外+2-2oo0o

第四篇:2轴流风机

本招标文件轴流风机包括大系统新风机及设备管理用房排风机(兼排烟风机)、排烟风机和送风机,安装在通风空调机房或冷冻机房和小通风机房内,为公共区、设备管理用房通风空调系统正常工况或火灾工况服务。 2.1采用规范与标准

设备及施工技术所涉及的产品标准规范、工程标准规范、验收标准规范等应遵照(但不限于)下列技术标准和规范。出现两个标准不一致,或本技术规格书所使用的标准与供货商所使用的标准不一致时,除非特别说明,应按较高标准执行,并且所有标准采用合同生效时的最新版本。

《通风机基本型式尺寸参数及性能曲线》(GB/T 3235) 《工业通风机尺寸》 (GB/T 17774) 《消防排烟风机耐高温试验方法》 (GA 211) 《工业通风机用标准化风道进行性能试验》(GB 1236)

《声学、风机和其它通风设备辐射入管道的声功率测定、管道法》(GB/T 17697) 《空调风机噪声声功率级测定—混响室法》(JB/T 10504) 《工业通风机 现场性能试验》(GB/T 10178) 《一般用途轴流通风机技术条件》(JB/T 10562); 《通风机转子平衡》(JB/T 91014) 《工业通风机叶轮超速试验》( JB/T 6445) 《风机包装通用技术条件》(JB/T 6444) 《工业通风机噪声限值》( JB/T 8690) 《通风机振动检测及其限值》(JB/T 8689) 《空调用通风机安全要求》(GB 10080)

《风机和罗茨鼓风机噪声测量方法》(GB/T 2888) 2.2 术语与定义 2.2.1标准空气状态

空气温度20℃,相对湿度65%,压力101.3kPa,密度1.2kg/m3时的空气状态。 2.2.2额定风量

风机在标准状态下的风量,单位为m3/h或m3/s。 2.2.3设计风量 风机在设计状态下的风量,单位为m3/h或m3/s。 2.2.4风机全压

风机在设计状态下,通风机出口法兰处全压与通风机进口法兰处全压之差,单位为Pa。 2.2.5风机静压

风机在设计状态下,通风机全压与通风机动压之差,单位为Pa。 2.2.6静压比

以风机本体进、出口作为界面而计算的静压与全压之比值。 2.2.7风机左式、右式

气流自叶轮流向电机,人面对叶轮,接线在左侧为“风机左式”,人面对叶轮,接线在右侧为“风机右式”。 2.2.8通风机能效限定值

在标准规定测试条件下,允许通风机的效率最低的保证值。 2.3 工作条件

2.3.1正常工况:环境温度≤45℃相对湿度≤95%。 2.3.2仓储工况:环境温度≤45℃相对湿度≤95%。 2.4 技术要求

2.4.1 整体技术要求

(1)风机表面应清洁、平整、无碰伤、划痕及锈斑;漆层牢固、色泽均匀一致,无起泡、缩皱和剥落现象。 (2)电机为内置式。

(3)风机由机壳、叶轮、电机、软接头、电源接线盒等组成,吸风端无接管的风机需设置集流器和入口网罩。

(4)风机应为高效、低噪声设备。 (5)排风机(兼排烟风机)、排烟风机具有耐高温280℃、持续运行1h的功能要求。 (6)风机出口最大风速不超过17m/s。

(7)风机电机的底座及支架应有特别的锁紧及固定以保证安全可靠。

(8)在额定转速的工作区域内,风机的实测空气动力性能曲线与提供的性能曲线偏差应满足一下要求:(9)在额定流量、压力下,风机的流量、压力最大偏差不大于±5%,风机效率最大偏差不大于3%,噪声达到《工业通风机噪声限值》JB/T8690要求。

(10)风机使用寿命年限不小于15年,第一次大修前安全运转时间≥24000h。 (11)风机配用电机采用380V / 50Hz电源,电源接线盒须考虑合乎规定的进线要求并设于机壳外便于操作处(根据各车站设计要求确定)。

(12)由于风机设置在地下机房内,要求风机结构紧凑,且风机整体设计应考虑风机的拆卸维修,连接风机的软接、基础固定螺栓均可灵活拆卸。 (13)耐高温风机配套的软接需耐高温280℃/1h。 (14)风机叶轮的动、静平衡应满足G2.5级振动要求。所有风机在装配后应做整机动平衡,其标准应基于ISO 1940及AMCA 204/3标准G 2.5 级,出厂前并在每台风机上附有由计算机打印出的振动频谱分析图表。 2.4.2主要部件和材料性能要求 (1)叶片

1)风机动叶片采用高强度铝合金材料钢模压力铸造或高强度钢板叶片;

2)叶片与筒身间的运转间隙,普通风机应不大于叶轮直径的1%;排烟风机由于机械膨胀系数与常温不同,其间隙应不大于2%;

3)叶片应靠键与键槽牢固地固定在驱动轴上。轴向应通过锥套式连接结构将叶片缩紧在驱动轴相应的位置。便于拆装维护。 (2)电机

1)电机机轴承采用优质轴承,累计运行时间不小于7.5x10h,第一次维护前安全运转时间不小于1x10h。电动机需采用二级能效;

2)电动机为风冷、鼠笼式、全封闭湿热型标准产品,采用电机直接驱动方式,电机暴露于空气中,具排烟功能风机配套电机绝缘等级为H级,防护等级IP55,并能耐高温280℃持续运行1h;其它风机的配套电机绝缘等级为F级,防护等级IP54;

(3)风机所配用的电机应在连续运行的所有方面,符合IEC 34或相应级别的标准要求,可在t≤45℃,相对湿度φ≤95%的环境下连续操作;电机应是球式或柱式轴承,密封油脂或软润滑脂结构。风机及传动装置应具有良好的接地措施以避免静电累积。 (3)机壳

1)机壳采用优质钢板焊接而成;

2)且机壳法兰采用整体翻边形式,机壳镀锌层单层平均镀锌量不低于505g/m2。应使叶片边缘与机壳间的缝隙最小且各处保持均匀。 (4)减振

1)风机在组装过程中,静平衡先于动平衡,正常运行时,其机壳振动速度有效值不大于4.5mm/s;

2)应提供与风机配套的减振器和紧固螺栓。 2.5 控制方式

轴流风机由车站控制、就地控制二级组成,就地控制具有优先权。上述控制由低压配电、EMCS(招标人另行采购)共同实现。

2.5.1车站控制是指在车控室对风机及其相应风阀的运行状态作控制及显示。

2.5.2就地控制是在风机电源控制柜处进行操作,供机组安装、调试、检修时在现场使用,具有优先权。 2.6 安全装置

44对结构专业提供风机荷载点的静荷载和动荷载以及对基础的振幅与幅率要求,并提供安装要求。

2.7 相关接口及技术参数

2.7.1风机配用电机采用380V±2% / 50HZ±2% 三相电源; 2.7.2电机直接启动

2.7.3风机安装在地下车站中楼板基础上或吊装于车站顶板,为方便安装并防止或减少风机振动影响,风机出厂时,随机配备减振器、紧固件和软接头(如为排烟风机,则须选用耐高温软接-附国家级消防测试机构的型式试验证书);

2.7.4应提供各种型号风机运转时噪声频谱分析,以便配用消声器 2.7.5风机采用铜质或不锈钢铭牌及叶轮旋向和气流方向标志; 2.8必要的图表说明及图表的填写要求

2.8.1提供风机的技术性能参数表,包括但不限于以下内容:

3(1)风机型号、叶角、流量(m/s)、压力(Pa) (2)风机转速(rpm) (3)风机效率(%)

(4)风机声功率级噪声(dB(W)) (5)配用电机型号、功率(kw)、重量(kg) (6)风机外形尺寸、运输重量和运转重量(kg) (7)风机特性曲线及噪声频谱特性 (8)风机电气线路图、控制电路原理图

(9)提供叶片探伤报告、材质分析报告、电机耐高温检测报告、叶轮动静平衡试验 (10)提供电机性能试验报告。 2.9特别说明

2.9.1 风机应选用高效率、低噪声,一般设置在车站两端通风空调机房内,用于车站送风和回/排风,采用耐高温电机的轴流(混流)风机应既能作平时的排风,又能在车站的设备管理用房发生火灾时承担排烟功能;

2.9.2提供国家级消防产品认可证书,提供3C认证证书;

2.9.3提供电机性能检测及绝缘和耐高温检测报告(具有国家资质的检测单位出具); 2.9.4选用的耐高温软接须附国家级消防检测机构的型式试验证书; 2.9.5提供随机抽样进行的空气动力学试验、噪声试验、振动试验报告; 2.9.6提供风机特性曲线; 2.10供货范围 2.10.1 供货清单

详见各车站通风空调施工图设计文件。 2.10.2 整机及主要部件产地 (1)电动机供应厂商、产地 (2)轴承供应厂商、产地 (3)叶片铸造厂商、产地 (4)减振器供应厂商、产地 (5)耐高温软接的厂商.产地 2.11图纸及技术文件 2.11.1供货清单 2.11.2产品合格证书 2.11.3风机吊装及卧式安装图(含抗震支吊架及抗震作用技术数) 2.11.4性能曲线图

2.11.5安装说明、使用要求 2.11.6噪声值测试报告

2.11.7提供风机出厂前的压力试验和性能试验报告 2.11.8维护保养手册

第五篇:T35-11轴流风机简介

周口风机厂

T35-11轴流风机简介

轴流风机

性能简介

T35型轴流通风机是替代30K4的产品,T35是和国内外同类产品进行了分析对比,通过优化设计确定了风机的叶轮结构,电机进行了改进设计,结构上减少了流动损失,因而使风机效率提高到89.5%,噪声比A声级降低3.6dB,又增强了叶根处的强度,而避免了叶片断裂现象。本系列风机适用于输送非易燃、易爆、无腐蚀、无显著粉尘的气体,其环境温度不得超过80℃。它广泛应用于一般工厂、仓库、办公室、住宅内通风换气或加强暖气散热之用。也可在较长的排气管道内间隔串联安装,以提高管道中的压力。

结构 风机主要由叶轮、机壳、集风器等三部分组成。

叶轮部: 由叶片和轮毂组成,采用钢板(Q235)制成,按照客户选用安装角度焊于轮毂上。

机壳部: 由风筒、支架组成,均采用钢板(Q235)制成,风筒为圆筒形,与叶轮之间有一定间隙。

集风器部: 由集风器法兰、集风器组成。集风器为圆弧流线型,可减少气流入口的损失,材质为Q235。

安装与维修

安装

1、安装前应详细检查通风机是否因包装运输损坏变形,如有损坏变形,待修理后方可进行安装;

2、安装时要注意检查各连接部分有无松动,叶片与风筒间隙应均匀,不得刮碰;

3、连接出风口的管道重量不应由风机的风筒承受,安装时应另加支撑;

4、风机底座必须与地基平面自燃接合,不得强制连接。

5、安装完毕后,必须先进行试验,待运转正常后方可正式使用。

维修

1、流过通风机的空气必须为清洁干燥,不得混有杂质和过多的水蒸气;

2、通风机不准吊装,在长期闲置重新使用时必须检查各连接部分是否牢固可靠,转动是否灵活,并经试转后方可正式使用;

3、经常注意风机在运转中有无异常声音,振动是否加大,发现不正常情况时,应及时进行检修。

上一篇:质量与标准化期刊下一篇:质量整改行动方案