动能定理知识总结

2022-06-26

总结是一种事后记录方式,针对于工作结束情况、项目完成情况等,将整个过程中的经验、问题进行记录,并在切实与认真分析后,整理成一份详细的报告。如何采用正确的总结格式,写出客观的总结呢?以下是小编整理的关于《动能定理知识总结》,欢迎阅读,希望大家能够喜欢。

第一篇:动能定理知识总结

动能定理机械能守恒定律知识点例题(精)

1. 动能、动能定理 2. 机械能守恒定律

【要点扫描】

动能 动能定理

-、动能

如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理

做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+„„=?mvt2-?mv02

1、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2、“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.

3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.

4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.

5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理.

6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.

7、对动能定理中的位移与速度必须相对同-参照物.

三、由牛顿第二定律与运动学公式推出动能定理

设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为vt,则:

根据牛顿第二定律F=ma„„① 根据运动学公式2as=vt2―v02„„②

由①②得:Fs=mvt2-mv02

四、应用动能定理可解决的问题

恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等.

机械能守恒定律

-、机械能

1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.

(1)物体由于受到重力作用而具有重力势能,表达式为 EP=mgh.式中h是物体到零重力势能面的高度. (2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为EP=mgh,若物体在零势能参考面下方低h处其重力势能为 EP=-mgh,“-”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同-物体在同-位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.

(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.

2、重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初-EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=EP末—EP初 应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.

3、动能和势能(重力势能与弹性势能)统称为机械能.

二、机械能守恒定律

1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.

2、机械能守恒的条件

(1)对某-物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.

(2)对某-系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.

3、表达形式:EK1+Epl=Ek2+EP2

(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP是相对的.建立方程时必须选择合适的零势能参考面.且每-状态的EP都应是对同-参考面而言的.

(2)其他表达方式,ΔEP=-ΔEK,系统重力势能的增量等于系统动能的减少量. (3)ΔEa=-ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另-部分b的机械能的减少量,

三、判断机械能是否守恒

首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.

(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;

(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.

(3)对-些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒

【规律方法】

动能 动能定理

【例1】如图所示,质量为m的物体与转台之间的摩擦系数为μ,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?

解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力μmg.

根据牛顿第二定律μmg=mv2/R„„① 由动能定理得:W=?mv2 „„②

由①②得:W=?μmgR,所以在这-过程摩擦力做功为?μmgR 点评:(1)-些变力做功,不能用 W=Fscos求,应当善于用动能定理. (2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)-同代入公式.

【例2】-质量为m的物体.从h高处由静止落下,然后陷入泥土中深度为Δh后静止,求阻力做功为多少?

提示:整个过程动能增量为零,则根据动能定理mg(h+Δh)-Wf=0 所以Wf=mg(h+Δh) 答案:mg(h+Δh)

(一)动能定理应用的基本步骤

应用动能定理涉及-个过程,两个状态.所谓-个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.

动能定理应用的基本步骤是:

①选取研究对象,明确并分析运动过程.

②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.

③明确过程始末状态的动能Ek1及EK2 ④列方程 W=解.

【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少? -

,必要时注意分析题目的潜在条件,补充方程进行求解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单.先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.

FL-μ(M-m)gs1=-?(M-m)v02

对末节车厢,根据动能定理有-μmgs2=-mv02 而Δs=s1-s2

由于原来列车匀速运动,所以F=μMg. 以上方程联立解得Δs=ML/(M-m).

说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便.最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组.

(二)应用动能定理的优越性

(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这-过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.

(2)-般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是-种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解. 【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是:

A. B. C. D. 零

解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有 F=mv12/R„„①

当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有 F/4=mv22/2R„„②

在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22-?mv12=-?FR 所以,绳的拉力所做的功的大小为FR/4,A选项正确. 说明:用动能定理求变力功是非常有效且普遍适用的方法.

【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能? 解析:(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒定,h=?at2,消去t即得

由牛顿第二定律得:F=mg+ma= (2)升力做功W=Fh=

在h处,vt=at=

(三)应用动能定理要注意的问题

注意1:由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.

【例6】如图所示质量为1kg的小物块以5m/s的初速度滑上-块原来静止在水平面上的木板,木板质量为4kg,木板与水平面间动摩擦因数是0.02,经过2s以后,木块从木板另-端以1m/s相对于地面的速度滑出,g取10m/s,求这-过程中木板的位移.

解析:设木块与木板间摩擦力大小为f1,木板与地面间摩擦力大小为f2. 对木块:-f1t=mvt-mv0,得f1=2 N 对木板:(fl-f2)t=Mv,f2=μ(m+ M)g 得v=0.5m/s 对木板:(fl-f2)s=?Mv2,得 s=0.5 m 答案:0.5 m 注意2:用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变力F所做的功. 【例7】质量为m的小球被系在轻绳-端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某-时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) A、mgR/4 B、mgR/3 C、mgR/2 D、mgR 解析:小球在圆周运动最低点时,设速度为v1,则 7mg-mg=mv12/R„„①

设小球恰能过最高点的速度为v2,则 mg=mv22/R„„②

设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得: -mg2R-W=?mv22-?mv12„„③ 由以上三式解得W=mgR/2. 答案:C 说明:该题中空气阻力-般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点.

机械能守恒定律

(一)单个物体在变速运动中的机械能守恒问题

【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)( ) A、mgh; B、mgH; C、mg(H+h); D、mg(H-h)

解析:这-过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为 E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh

答案:A

【例2】如图所示,-个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点.-个质量为m的小球以初速度v0沿AB运动,刚好能通过最高点D,则( )

A、小球质量越大,所需初速度v0越大

B、圆轨道半径越大,所需初速度v0越大

C、初速度v0与小球质量m、轨道半径R无关

D、小球质量m和轨道半径R同时增大,有可能不用增大初速度v0

解析:球通过最高点的最小速度为v,有mg=mv2/R,v=

这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足?m v02=mg2R+?mv2,v0=

(二)系统机械能守恒问题

【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,-个小球从A点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.

答案:B

解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度vD为mgh—mg2R=?mvD2;

所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=?mv02;

由于平抛运动的水平速度不变,则vD=v0cosθ,所以,仰角为

【例4】如图所示,总长为L的光滑匀质的铁链,跨过-光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某-端下落,则铁链刚脱离滑轮的瞬间,其速度多大?

解析:铁链的-端上升,-端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=El,和增量表达式ΔEP=-ΔEK分别给出解答,以利于同学分析比较掌握其各自的特点. (1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0 滑离滑轮时为终态,重心离参考面距离L/4,EP=-PLgL/4 Ek2=Lv2即终态E2=-PLgL/4+PLv2

由机械能守恒定律得E2= E1有-PLgL/4+PLv2=0,所以v=

(2)利用ΔEP=-ΔEK,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔEP= PLgL/4,动能增量ΔEK=PLv2,所以v=

点评:(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.

(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为-半铁链至另-半下端时重力势能的减少,然后利用ΔEP=-ΔEK求解,留给同学们思考.

【模拟试题】

1、某地强风的风速约为v=20m/s,设空气密度ρ=1.3kg/m3,如果把通过横截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_________,大小约为_____W(取-位有效数字)

2、两个人要将质量M=1000 kg的小车沿-小型铁轨推上长L=5 m,高h=1 m的斜坡顶端.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800 N。水平轨道足够长,在不允许使用别的工具的情况下,两人能否将车刚好推到坡顶?如果能应如何办?(要求写出分析和计算过2程)(g取10 m/s )

3、如图所示,两个完全相同的质量为m的木板A、B置于水平地面上它们的间距s =2.88m.质量为2m 、大小可忽略的物块C置于A板的左端. C与A之间的动摩擦因数为μ1=0.22,A、B与水平地面的动摩擦因数为μ2=0.10, 最大静摩擦力可认为等于滑动摩擦力. 开始时, 三个物体处于静止状态.现给C施加-个水平向右,大小为

的恒力F, 假定木板A、B碰撞时间极短且碰撞后粘连在-起.要使C最终不脱离木板,每块木板的长度至少应为多少?

4、对-个系统,下面说法正确的是( )

A、受到合外力为零时,系统机械能守恒

B、系统受到除重力弹力以外的力做功为零时,系统的机械能守恒

C、只有系统内部的重力弹力做功时,系统的机械能守恒 D、除重力弹力以外的力只要对系统作用,则系统的机械能就不守恒

5、如图所示,在光滑的水平面上放-质量为M=96.4kg的木箱,用细绳跨过定滑轮O与-质量为m=10kg的重物相连,已知木箱到定滑轮的绳长AO=8m,OA绳与水平方向成30°角,重物距地面高度h=3m,开始时让它们处于静止状态.不计绳的质量及-切摩擦,g取10 m/s2,将重物无初速度释放,当它落地的瞬间木箱的速度多大?

6、-根细绳不可伸长,通过定滑轮,两端系有质量为M和m的小球,且M=2m,开始时用手握住M,使M与m离地高度均为h并处于静止状态.求:(1)当M由静止释放下落h高时的速度.(2)设M落地即静止运动,求m离地的最大高度。(h远小于半绳长,绳与滑轮质量及各种摩擦均不计)

【试题答案】

1、

2、解析:小车在轨道上运动时所受摩擦力为f f=μMg=0.12×1000×10N=1200 N 两人的最大推力F=2×800 N=1600 N F>f,人可在水平轨道上推动小车加速运动,但小车在斜坡上时f+Mgsinθ=1200 N+10000·1/5N=3200 N>F=1600 N 可见两人不可能将小车直接由静止沿坡底推至坡顶.

若两人先让小车在水平轨道上加速运动,再冲上斜坡减速运动,小车在水平轨道上运动最小距离为s (F-f)s+FL-fL-Mgh=0

答案:能将车刚好推到坡顶,先在水平面上推20 m,再推上斜坡.

3、分析:这题重点是分析运动过程,我们必须看到A、B碰撞前A、C是相对静止的,A、B碰撞后A、B速度相同,且作加速运动,而C的速度比A、B大,作减速运动,最终A、B、C达到相同的速度,此过程中当C恰好从A的左端运动到B的右端的时候,两块木板的总长度最短。

解答:设l为A或B板的长度,A、C之间的滑动摩擦力大小为f1,A与水平面的滑动摩擦力大小为f

2∵μ1=0.22。 μ2=0.10 ∴„„ ①

且 „② -开始A和C保持相对静止,在F的作用下向右加速运动。

有 „③

A、B两木板的碰撞瞬间,内力的冲量远大于外力的冲量。由动量守恒定律得

mv1=(m+m)v2 „④

碰撞结束后到三个物体达到共同速度的相互作用过程中,设木板向前移动的位移为s1. 选三个物体构成的整体为研究对象,外力之和为零,则

„⑤

设A、B系统与水平地面之间的滑动摩擦力大小为f3。对A、B系统,由动能定理

„ ⑥

„⑦

对C物体,由动能定理由以上各式,再代入数据可得l=0.3(m)

„„„ ⑧

4、解析:A,系统受到合外力为零时,系统动量守恒,但机械能就不-定守恒, 答案:C

5、解析:本题中重物m和木箱M的动能均来源于重物的重力势能,只是m和M的速率不等. 根据题意,m,M和地球组成的系统机械能守恒,选取水平面为零势能面,有mgh=?mv+?Mv

从题中可知,O距M之间的距离为 h/=OAsin30°=4 m 当m落地瞬间,OA绳与水平方向夹角为α,则cosα==4/5 而m的速度vm等于vM沿绳的分速度,如图所示,则有 vm=vMcosα

所以,联立解得vM=

m/s 答案:m/ s

6、解:(1)在M落地之前,系统机械能守恒(M-m)gh=(M+m)v2,

(2)M落地之后,m做竖直上抛运动,机械能守恒.有: mv2=mgh/;h/=h/3

离地的最大高度为:H=2h+h/=7h/3

第二篇:动能 动能定理教学设计

高二物理组 邱先明

一 教学目标

1、知识与技能

(1)进一步理解动能的概念,掌握动能的计算式。

(2)能够理解动能定理的推导过程,提高科学探究的能力。

(3)知道动能定理的适用条件,能够应用动能定理解决实际问题。

2、 过程与方法

(1)运用归纳推导方式推导动能定理的表达式,理解理论探究的方法及科学思维的重要意义。

(2)通过对实际问题的分析,对比牛顿运动定律,掌握运用动能定理分析解决问题的方法及特点.

3、情感、态度与价值观

(1)通过动能定理的归纳推导培养学生对科学研究的兴趣。 (2)通过对动能定理的应用感悟量变与质变之间的关系。

二 教学重点

1、 动能的概念。

2、 动能定理的推导和理解

三 教学难点

动能定理的理解和应用

四 教学方法

实验探究法,推理归纳法,讲授法

五 教学用具

多媒体课件,导轨,物块

六 课时安排

1课时

七 教学过程

导入新课:

初中时我们已经学过,物体由于运动而具有的能叫做动能,如绕地球运动的卫星,流动的河水,掉落的花盆,飞行的子弹,都具有动能。那么它们的动能到底有多少?做功与动能的改变之间究竟又存在怎样的关系呢?下面我们就一起来学习“动能 动能定理”,共同探讨这些问题。

新课教学:

猜想:

一颗静止的子弹头,并不可怕。因为它没有动能,而从枪膛中打出的子弹头,非常可怕。致人死地。(原因在于速度)

一个奔跑过来的小孩子,即使要撞上你,你也不觉得可怕,因为小孩子的质量很小,而奔过来的是一个成人、一个牛或一辆车你会感到害怕而避让。(因它质量很大) 分组实验:

①介绍实验装置:让滑块A从光滑的导轨上滑下,与木块B相碰,推动木块做功. ②学生动手操作并观察现象:

a.让同一滑块从不同的高度滑下,可以看到:高度大时滑块把木块推得远,对木块做的功多. b.让质量不同的滑块从同一高度滑下,可以看到:质量大的滑块把木块推得远,对木块做的功多. ③从功能关系定性分析得出结论:

物体的质量越大,速度越大,它的动能就越大.

那么动能与物体的质量和速度之间有什么定量关系呢? 思考题一:

一架飞机在牵引力的作用下(不计阻力),在起飞跑道上加速运动,速度越来越大,问: ①飞机的动能如何变化?为什么? ②飞机的动能变化的原因是什么? ③牵引力对飞机所做的功与飞机动能的变化之间有什么关系? 学生讨论并回答:

①在起飞过程中,飞机的动能越来越大,因为飞机的速度在不断增大. ②由于牵引力对飞机做功,导致飞机的动能不断增大. ③据功能关系:牵引力做了多少功,飞机的动能就增大多少. 渗透研究方法:由于牵引力所做的功和动能变化之间的等量关系,我们可以根据做功的多少,来定量地确定动能. 思考题二:

如图所示,一个物体的质量为m,初速度为v1,在与运动方向相同的恒力的作用下发生一段位移,速度增大到v2,求:力F对物体所做的功多大? 解:

22v2v1112222WFsmaWmv2mv1 vv22212a22v2v12ass2aFma教师分析概括:合力F所做的功等于

12mv这个物理量的变化;又据功能关系,F所做

12mv这个量表示物体的动能.

22的功等于物体动能的变化,所以在物理学中就用

(一) 动能:

1.大小:物体的动能等于物体质量与物体速度的二次方的乘积的一半. 2.公式:Ek=12mv

23.动能是标量 4.单位:焦耳(J)

(二) 动能定理

1.各字母所表示的意义:

物体的末动能;Ek物体的初动W合力对物体所做的功;Ek21表示表示表示能. 2.动能定理:合力对物体所做的功等于物体动能的变化. 3.公式:W=Ek2-Ek1 4.讨论

①当合力对物体做正功时,物体动能如何变化? ②当合力对物体做负功时,物体动能如何变化? 学生答:

当合力对物体做正功时,末动能大于初动能,动能增加; 当合力对物体做负功时,末动能小于初动能,动能减少. 5.动能定理的适用条件

动能定理既适合于恒力做功,也适合于变力做功,既适用于直线运动,也适用于曲线运动.

(三)动能定理的应用

例题1:

一架喷气式飞机,质量m=5×103 kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m时,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力.(学生解答上述问题)

3.抽查有代表性的解法在实物投影仪上展示:

解法一:以飞机为研究对象,它做匀加速直线运动受到重力、支持力、牵引力和阻力作用. ∴F合=F-kmg=ma

又v-0=2as ∴a由①和②得:Fkmgm∴Fkmgmv222

vv22s

23②

2s2s0.02510105103602225.310N=1.8×104 N 解法二:以飞机为研究对象,它受到重力、支持力、牵引力和阻力作用,这四个力做的功分别为WG=0,W支=0,W牵=Fs,W阻=-kmgs.据动能定理得:Fs-kmgs=

12mv20代入数据,解得F=1.8×104 N

比较两种解法的区别,得出结论:

解法一采用牛顿运动定律和匀变速直线运动的公式求解,要假定牵引力是恒力,而实际中牵引力不一定是恒力. 解法二采用动能定理求解.因为动能定理适用于变力,用它可以处理牵引力是变力的情况. 而且运用动能定理解题不涉及物体运动过程中的加速度和时间,因此用它来处理问题时比较方便. 动能定理解题的方法和步骤. ①确定研究对象及运动过程

②受力分析,并确定各个力所做的功 ③明确初、末状态的动能

④列方程求解,对结果进行必要的讨论说明

巩固与练习:教材125页1,2,3题

小结

这节课我们在初中学习动能的基础上,进一步明确了动能的大小与质量、速度的定量关Ek1212mv2系,即,还知道了动能的单位是J,动能是标量。也知道了做功能改变物体的mv22W12动能,mv12。这样我们在研究物体运动状态时,又有了一种新的方法,也就是从功和能的角度来研究的方法。

布置作业:1. 课本126页5,6题写在作业本上

2.想一想,做一做,能否通过自由落体运动验证动能定理?

3.预习下一节。

板书设计

22v2v1112222WFsmaWmvmv1 vv222212a22v2v12ass2aFma

一 动能

1.物体由于运动而具有的能,叫做动能。 2.公式:EK12mv 23.动能是标量,是状态量 4.单位:焦耳(J) 二 动能定理

1.内容:合外力所做的功等于物体动能的变化。 2.公式: WEKEK或W2112mv2212mv1

23.解题步骤:

①确定研究对象,分析运动过程 ②受力分析,并确定各个力所做的功 ③明确初、末状态的动能

④列方程求解,对结果进行必要的讨论说明

第三篇:动能和动能定理教学设计

一、教材分析

1.内容分析

《动能和动能定理》主要学习一个物理概念:动能;一个物理规律:动能定理。 从知识与技能上要掌握动能表达式及其相关决定因素,动能定理的物理意义和实际的应用。

过程与方法上,利用牛顿运动定律和恒力功知识推导动能定理,理解“定理”的意义,并深化理解第五节探究性实验中形成的结论Wv2;

通过例题1的分析,理解恒力作用下利用动能定理解决问题优越于牛顿运动定律,在课程资源的开发与优化和整合上,要让学生在课堂上切实进行两种方法的相关计算,在例题1后,要补充合力功和曲线运动中变力功的相关计算;

通过例题2的探究,理解正负功的物理意义,初步从能量守恒与转化的角度认识功。 在态度情感与价值观上,在尝试解决程序性问题的过程中,体验物理学科既是基于实验探究的一门实验性学科,同时也是严密数学语言逻辑的学科,只有两种方法体系并重,才能有效地认识自然,揭示客观世界存在的物理规律。

2.内容地位

通过初中的学习,对功和动能概念已经有了相关的认识,通过第六节的实验探究,认识到做功与物体速度变化的关系Wv2。将本节课设计成一堂理论探究课有着积极的意义。因为通过“动能定理”的学习,深入理解“功是能量转化的量度”,并在解释功能关系上有着深远的意义。为此设计如下目标:

二、目标分析

1、三维教学目标

(一)、知识与技能

1.理解动能的概念,并能进行相关计算;

2.理解动能定理的物理意义,能进行相关分析与计算; 3.深入理解W合的物理含义; 4.知道动能定理的解题步骤;

(二)、过程与方法

1.掌握恒力作用下动能定理的推导;

1 2.体会变力作用下动能定理解决问题的优越性;

(三)、情感态度与价值观

体会“状态的变化量量度复杂过程量”这一物理思想;感受数学语言对物理过程描述的简洁美;

2.教学重点、难点:

重点:对动能公式和动能定理的理解与应用。

难点:通过对动能定理的理解,加深对功、能关系的认识。 教学关键点:动能定理的推导

三、教法和学法

依据《物理课程标准》和学生的认知特点,在课堂教学设计中要通过问题探究的方式,强化学生在学习过程中基于问题探究的过程性体验,为此,采取“任务驱动式教学”设计程序化的问题,有效引导学生自主、合作和有效的探究性学习。为此,在教学设计中重点突出三个环节:“问题驱动下学生对教材的理解”、“问题解决中对物理规律的深化理解”、“引申提高中对物理规律的深化应用”。所以任务驱动式教学成为本节课重要的教学方式,同时采取精讲释疑教学法;

学生的学法采取:任务驱动和合作探究;

选取多媒体展示、尝试练习题和“任务驱动问题” 本节课为一课时。

创设情境巡回指导指导调控精讲难点总结拓展课堂评价提出问题,导入新课任务驱动,感知教材合作探究,分享交流精讲点拨,释疑解惑典例引领,内化反思课堂总结,布置作业回忆旧知自主学习讨论展示互动交流巩固应用反思总结

四、教学过程

设计成6个教学环节:提出问题,导入新课;任务驱动,感知教材;合作探究,分享交流;精讲点拨,释疑解惑;典例引领,内化反思;课堂总结,布置作业。

基于旧知的复习,提出以下问题:

【提出问题,导入新课】通过橡皮筋对小车做功,探究“功与物体速度的变化关系”,得出了Wv2,但具体的数学表达式应当是什么?本节课我们将一起探讨这一问题。板书课题

【任务驱动,感知教材】给出问题,引导学生自学教材,并带着这些问题在学习小组内进行合作性学习,进行兵教兵,实现基本问题学生自学掌握。

在这一过程中教师一定要不断地巡回指导个学习小组的讨论与合作性学习,以学生的身份认真积极地参与讨论。教师要收集一些问题,为释疑解惑收集素材,进行有效地点拨服务。

2 时间控制在10min内。为此设计了四个程序性问题,加强学生对教材的感知与理解。

1.动能EK与什么有关?等质量的两物体以相同的速率相向而行,试比较两物体的动能?如果甲物体做匀速直线运动,乙物体做曲线运动呢?

已知m12m2,v1v2,甲乙两物体运动状态是否相同?动能呢?

车以速度v04m做匀速直线运动,车内的人以相对于车1m向车前进的方向走动,分ss别以车和地面为参照物,描述的EK是否相同?说明了什么?通过以上问题你得出什么结论?

2.动能定理推导时,如果在实际水平面上运动,摩擦力为f,如何推导?

如果在实际水平面上F先作用一段时间,发生的位移L1,尔后撤去,再运动L2停下来,如何表述W合?

3.试采用牛顿运动定律方法求解教材的例题1,并比较两种方法的优劣? 4.做正功与做负功表现的现象是什么?本质上是什么?表述你的看法。 【合作探究,分享交流】讨论展示学案,时间控制在8min内;

【精讲点拨,释疑解惑】着眼于知识内容的挖掘与适当的拓展。时间控制在6min内。 ⑴W合的理解:如果物体受到多个共点力作用,同时产生同时撤销,则:W合=F合l; 像例题1所给出的物理场景下,运用动能定理求解合力功,通过受力分析图又可以进一步求解某一分力。同学们对教材73页“动能定理不涉及物体运动过程的加速度和时间,因此用它处理问题常常比较方便”加深印象。

如果发生在多物理过程中,不同过程作用力个数不相同,则:W合=W1W2Wn ⑵对标量性的认识: ⑶对“增加”一词的理解; ⑷对状态变化量与过程量的理解:

【典例引领,内化反思】时间控制在12min内. 对例题1的分析与拓展:

方法体系上“引导学生分析题干中已知运动学相关物理量比较多,要引导学生进行有效的受力分析,通过动能定理引导学生求解合外力,由此再求解某一分力,这是解决问题的一般思路。为加强这两种方法的对比,一定要引导学生运用牛顿运动定律进行解决。

总结出利用动能定理的解题步骤;

注重同一物理场景下的变式训练:如何求解阻力?末态速度?位移?时间? 给出拓展例题:

拓展例题1:如图71所示,用拉力F作用在质量为m的物体上,拉力

3 与水平方向成角度,物体从静止开始运动,滑行l1后撤掉F,物体与地面之间的滑动摩擦系数为,求:撤掉F时,木箱的速度?木箱还能运动多远?

如果拉力的方向改为斜向下,求再滑行的位移?

如果拉力改为水平,路面不同段滑动摩擦系数是不一样的,如何表示Wf? 该题目着重考查合力功、正交分解和最值问题。

拓展例题2:如图72所示,一质量为m的物体,从倾角为,高度为h的斜面顶端A点无初速度地滑下,到达B点后速度变为v,然后又在水平地面上滑行x0位移后停在C处,

求:1.物体从A点滑到B点的过程中克服摩擦力做的功? 2.物体与水平地面间的滑动摩擦系数?

3.如果把物体从C点拉回到原出发点A,拉力至少要做多少功?

引申思考:物体沿斜面下滑过程中,如果在B点放一挡板,且与物体碰撞无能损,以原速率返回,求最终物体停留在什么地方?物体在斜面上通过的路程是多少?

该题目着重考查多方物理过程中合力功、W合的理解,以及W合Ek在反复折线运动问题中的相关应用,属于提高性的题目。

【课堂总结,布置作业】

1.对动能概念和计算公式再次重复强调。

2.对动能定理的表述、理解、应用中采取的思维方法,以及问题类型做必要总结。 3.通过动能定理,再次明确功和动能两个概念的区别和联系、加深对两个物理量的理解。 以上教学过程中的着墨部分:【感知教材】、【合作探究】和【释疑解惑】三部分。 作业:教材P74:

1、

2、

3、

4、5;

五、板书设计

§7.7 动能和动能定理

一、动能表达式的推导

1、公式推导

2、动能的理解

二、动能定理

1、W合=Ek2- Ek1 物理意义: 理解:

2、应用 例题

1、 解题步骤 拓展例题

1、 拓展例题

2、

六、教学反思

1.在课堂上提出的主要问题都必须是在课前精心设计好的,问题要紧扣教学目标,突出重点、克服难点、发展能力、学会学习,要有代表性,能使学生举一反

三、触类旁通。

4 像推导动能定理的时候,必须设计程序化的问题:如何表征外力F?采取什么方法表征位移l?如何计算恒力功W?

2.提问的目的和方式要随教学进度灵活变化:复习旧课,抓住新旧知识之间的联系,提出问题,设疑激趣,导入新课;表演实验,列举实例,提出问题,指导学生进行分析和思考;课后结尾,总结深化,提出问题,承上启下,使学生回味无穷,增强学生学习的主动性。

3.动能定理的解题步骤必须强调到位。

第四篇:高中物理《动能和动能定理》说课稿

今天说课的题目是普通高中课程标准试验教科书《物理》必修二第七章机械能守恒定律,第七节动能和动能定理的内容,此内容为本节的第1课时。

一、教材分析:

本课时内容主要包括动能和动能定理等两部分,属于掌握的范围,是在学习了“探究功与速度的关系”的基础上的知识。学生在初中已经学习过动能的概念,可结合初中学习经验来帮助学生理解动能及动能定理的涵义。动能定理贯穿于这一章教材,是这一章的重点。课本在讲述动能和动能定理时,没有把二者分开讲述,而是以功能关系为线索,同时引人了动能的定义式和动能定理,这样叙述,思路简明,能充分体现功能关系这一线索,

1、知识与技能

(1)理解动能概念,能进行相关计算; (2)理解动能定理的物理意义,能进行相关分析与计算;

2、过程与方法

(1)掌握恒力作用下动能定理的推导; (2)通过小组讨论,体会利用动能定理解决实际问题的优越性。

3、情感、态度与价值观

通过本节学习,学生从中领略到物理等自然学科中所蕴含的严谨的逻辑关系,反映了自然界的真实美。 教学重难点

教学重点:对动能公式和动能定理的理解与应用 教学难点:动能定理的理解和应用

根据以上教学目标将详讲动能和动能定理,以突出重点和突破难点。

二、说教法:

动能定理是本章的重点之一,也是整个力学的重点之一,对学生以后的学习有着举足轻重的地位,学生对动能定理的适用条件的清楚认识,知道不论外力是否为恒力,也不论物体是否做直线运动,动能定理都成立,是本节教学过程中的难点之一,要突破学生思维上的这一难点,设计实验是关键。

分析例题之后,让学生做一道题,大家使用的方法不同,通过比较,学生体会到应用动能定理解题比较方便、灵活。

三、说学法:

学生在学习这一节时,对动能公式比较容易掌握,但是要真正意义上理解动能定理,还是有一定难度的。要真正地理解动能定理,必须要循序渐进,遵循教学中直接经验与间接经验相结合的规律,从生活中众多实例出发,通过分析、感受真正体验动能定理的内涵,此外,可以通过实验设计、动手操作等环节,让每一位同学都积极参与课堂教学,真正做到有意义学习。

四、教学过程:

1、复习回顾,导入新课

2、讲授新课

3、课堂小结:

4、巩固练习:教材例题

5、作业设置:课后习题。 板书设计

第七节动能和动能定理

一、动能

1、定义:物体由于运动而具有的能,叫动能

2、公式:

3、动能是标量,是状态量

4、单位:焦耳(j)

二、动能定理

1、定义

2、表达式:

3、解题步骤:

(1)确定研究对象及其运动过程 (2)受力分析,并确定各个力所做的功 (3)明确初、末状态的动能

(4)列方程求解,对结果进行必要的讨论说明

第五篇:高一物理示范课 动能和动能定理

动能定理是本章教学重点,也是整个力学的重点,《课程标准》要求“探究恒力做功与物体动能变化的关系.理解动能和动能定理,用动能定理解释生活和生产中的现象”.因此,在实际教学中要注重全体学生的发展,改变学科本位的观念,注重科学探究,提倡学习方式的多样化、强调过程和方法的学习,以培养学生的“创新意识、创新精神和实践能力”为根本出发点,激励学生“在教学过程中的主动学习和探究精神”,调动学生学习的主动性、积极性,促进其个性全面健康地发展和情感态度与价值观的自我体现. 教学重点

理解动能的概念;会用动能的定义式进行计算. 教学难点

1.探究功与物体速度变化的关系,知道动能定理的适用范围. 2.会推导动能定理的表达式. 课时安排 1课时 三维目标 知识与技能

1.理解动能的概念. 2.熟练计算物体的动能. 3.会用动能定理解决力学问题,掌握用动能定理解题的一般步骤.过程与方法 1.运用演绎推导方式推导动能定理的表达式,体会科学探究的方法. 2.理论联系实际,学习运用动能定理分析解决问题的方法. 情感态度与价值观

1.通过演绎推理的过程,培养对科学研究的兴趣. 2.通过对动能和动能定理的演绎推理,使学生从中领略到物理等自然学科中所蕴含的严谨的逻辑关系,反映了自然界的真实美.

教学过程

导入新课 视频导入

利用大屏幕投影展示风力发电与龙卷风的视频片断,让学生观察、自主提问、分组探讨.

教师引导参考问题:1.风力发电是一种重要的节能方法,风力发电的效率与哪些因素有关?

2.龙卷风给人类带来了极大的灾难,龙卷风为什么具有那么大的能量呢? 故事导入

传说早在古希腊时期(公元前200多年)阿基米德曾经利用杠杆原理设计了投石机,它能将石块不断抛向空中,利用石块坠落时的动能,打得敌军头破血流. 同学们思考一下,为了提高这种装置的杀伤力,应该从哪方面考虑来进一步改进?学习了本节动能和动能定理,就能够理解这种装置的应用原理.

问题导入

英国传统跑车的代表品牌莲花也是以制造小排量、车体极度轻量化的速度机器而著称.一辆莲花Elise,排量只有1.8 L,由于重量只有675 kg,却可以创造出百公里加速5.9 s的惊人纪录. 使莲花跑车速度达到100 km/h需要对它做多少功?如果这一过程是以恒定的额定功率实现的,那么该车发动机的额定功率大约应是多少? 推进新课

一、动能的表达式

情景设置:大屏幕投影问题,可设计如下理想化的过程模型: 设某物体的质量为m,在与运动方向相同的恒力F的作用下发生一段位移l,速度由v1增加到v2,如图所示.

提出问题:

1.力F对物体所做的功是多大? 2.物体的加速度是多大?

3.物体的初速度、末速度、位移之间有什么关系? 4.结合上述三式你能综合推导得到什么样的式子? 推导:这个过程中,力F所做的功为W=Fl 根据牛顿第二定律F=ma 2v2v12而vv=2al,即l=

2a22212ma(v2v12)把F、l的表达式代入W=Fl,可得F做的功W=

2a

1212mv1 也就是W=mv222根据推导过程教师重点提示: 11.mv2是一个新的物理量. 21212.mv2是物体末状态的一个物理量,mv12是物体初状态的一个物理量,其差22值正好等于合力对物体做的功.合力F所做的功等于这个物理量的变化,所以在物理学中就用这个物理量表示物体的动能. 总结:1.物体的动能等于物体质量与物体速度的二次方的乘积的一半. 12.动能的公式:Ek=mv2. 23.动能的标矢性:标量. 4.动能的单位:焦(J). 教师引导学生分析动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值.引导学生学会从实验现象中思考分析,最终总结归纳出结论.同时注意实验方法——控制变量法. 例 质量为2 kg的石块做自由落体运动,求石块在第1 s末、第2 s末的动能是多少?

解析:先求出第1 s末和第2 s末的速度再求出动能值,明确变速运动的物体动能是时刻变化的. v1=gt1=10×1 m/s=10 m/s,v2=gt2=10×2 m/s=20 m/s

11Ek1=mv12=100 J,Ek2=mv22=400 J. 22答案:100 J 400 J

知识拓展

例2 一架喷气式飞机,质量m=5.0×103 kg,起飞过程中从静止开始滑跑.当位移达到l=5.3×102 m时,速度达到起飞速度v=60 m/s.在此过程中飞机受到的平均阻力是飞机重力的0.02倍.求飞机受到的牵引力. 解法一:以飞机为研究对象,它做匀加速直线运动且受到重力、支持力、牵引力和阻力作用

F合=F-kmg=ma ①

v2又v-0=2al,所以a= ②

2l22v2由①和②得:F-kmg=m

2l

v2602334F=kmg+m=0.02×5×10×10 N+5×10×N=1.8×10 N. 22l25.310解法二:以飞机为研究对象,它受到重力、支持力、牵引力和阻力作用,这四

1个力做的功分别为WG=0,W支=0,W牵=Fl,W阻=-kmgl.据动能定理得:Fl-kmgl=mv2,

24代入数据,解得F=1.8×10 N. 课堂训练

质量为m的物体静止在水平桌面上,它与桌面之间的动摩擦因数为μ,物体在水平力F作用下开始运动,发生位移s1时撤去力F,问物体还能运动多远? 解析:研究对象:质量为m的物体. 研究过程:从静止开始,先加速,后减速至零. 受力分析、过程草图如图所示,其中mg(重力)、F(水平外力)、N(弹力)、f(滑动摩擦力),设加速位移为s1,减速位移为s2

方法一:可将物体运动分成两个阶段进行求解

物体开始做匀加速运动位移为s1,水平外力F做正功,f做负功,mg、N

1不做功;初始动能Ek0=0,末动能Ek1=mv12

21根据动能定理:Fs1-fs1=mv12-0 2又滑动摩擦力f=μN,N=mg

1则:Fs1-μmgs1=mv12-0 21物体在s2段做匀减速运动,f做负功,mg、N不做功;初始动能Ek1=mv12,末

2动能Ek2=0 1根据动能定理:-fs2=0-mv12,又滑动摩擦力f=μN,N=mg

21则:μmgs2=0-mv12

2即Fs1-μmgs1-μmgs2=0-0 s2=(Fmg)s1. mg方法二:从静止开始加速,然后减速为零,对全过程进行求解. 设加速位移为s1,减速位移为s2;水平外力F在s1段做正功,滑动摩擦力f在

(s1+s2)段做负功,mg、N不做功;初始动能Ek0=0,末动能Ek=0 在竖直方向上:N-mg=0 滑动摩擦力f=μN 根据动能定理:Fs1-μmg(s1+s2)=0-0 得s2=(Fmg)s1. mg布置作业

教材“问题与练习”第

3、

4、5题.

板书设计

动能和动能定理

能,叫动能1.物体由于运动而具有的122.公式Ekmv动能23.动能是标量,是状态量动4.单位:焦(J)能体能的变化1.合外力所做的功等于物和 122.WEk2Ek1或W1mv2动mv1222能3.解题步骤:定程动能定理(1)确定研究对象及运动过理(2)受力分析,并确定各个力所做的功(3)明确初,末状态的功能说明(4)列方程求解,对结果进行必要的讨论活动与探究

课题:估测自行车受到的阻力

目的:自行车仍是我国主要的代步工具,根据动能定理估测自行车行驶过程中所受阻力,既加强对基础知识的理解,又可以使学生形成学以致用的思想. 方法:骑自行车时,如果停止用力蹬脚蹬,设此时自行车的速度为v0,由于受到阻力f作用,自行车前进一段距离l后将会停下来,根据动能定理,有12-fl=0mv0

22mv0即阻力f=

2l实验中需测出人停止用力后自行车前进的距离l,自行车和人的总质量m,以及初速度v0. 初速度可以通过以下三种方法测得:

1.在停止用力前,尽可能使自行车做匀速直线运动,通过测量时间和距离,计算出平均速度,以它作为停止用力时的初速度. 2.测出自行车从停止用力到静止时前进的距离和时间,再根据匀减速运动的规律,求出初速度. 3.停止用力时从车上释放一个小石块,测出释放的高度和石块在水平方向通过的距离,即可求得初速度.

教 学 反 思

探究式教学是实现物理教学目标的重要方法之一,同时也是培养学生创新能力、发展学生非智力因素的重要途径.因此,本节教学设计从动能的概念入手就注重对学生的引导,使学生在探究中提出问题、设计方案、解决问题.在操作上,本节教学设计注重为学生创设一个和谐自由的教学氛围.在动能的影响因素及动能定理表达式的推导过程中,有师生间的讨论、分析,甚至是相互质疑.在探究过程中,重点引导学生从外力做功和物体的动能变化量两个方面思考,选择受力情况较为简单,而动能变化量又较容易得到的具体运动形式,同时要考虑误差的大小.在解题过程中,让学生体会到了运用动能定理解决问题的优点和方法、步骤.本节课运用实验探究法,通过质量相同的物体高度的不同和高度相同质量不同的两种情况,得出动能和质量、速度的关系.

上一篇:单亲家庭调查问卷下一篇:电气化铁路新技术