变压器绕组损伤与检测

2022-09-10

变压器在工作时难免会受到各种意外情况的形成的短路电流的损害。如果短路故障发生在离变压器不远的线路上的时候, 将有巨大的不均匀的纵向和横向电动力作用在变压器的线圈绕组上, 可能导致了绕组发生扭曲、鼓包等变形现象和移位。另外, 因为在运输和安装等过程中发生碰撞和挤压等原因, 也有可能损害和移位变压器的线圈绕组。因此, 有效的对变压器是否形变以及形变的情况做一个准确的判断和测定, 是电力测试实验的一项重要工作。

1 变压器绕组线圈变形带来的危害

如果绕组线圈内部的机械结构不牢固, 就会产生凸出, 扭曲等形变, 严重时可能导致突发性损害事件。在严重的短路电流的冲击下, 变压器发生了形变, 就算没有马上产生危害, 也为以后的事故埋下了隐患。虽然有时候绝缘距离没有发生改变, 但是绝缘体材料的绝缘特性已经发生了改变, 有时导致局部的击穿放电, 如果加之雷电产生的电压, 有可能产生栟间击穿放电现象, 导致绝缘体放电事故的发生, 有时候虽然变压器正常运行, 但是由于放电缓慢而长期的作用, 导致绝缘体损伤而产生击穿放电;如果变压器线圈绕组的轴发生了机械损坏, 当再次遇到短路击穿电流时候, 将无法承受而发生机械损害。

因此, 及时的发现存在问题的变压器, 进行变压器绕组线圈的损伤实验, 并进行有计划地检修和吊罩验证, 可以节省大量的财力物力, 防止变压器意外事故的发生。

2 变压器线圈损害的特点

对损害的变压器的事后分析和检测经过大量的总结和实验, 发现变压器绕组线圈变形是导致各种损害的原因。若变压器的绕组已经被损害但是没有被及时的发现而继续运行使用, 那么有可能造成事故的发生, 轻者造成停电, 重的可能使得变压器发生烧毁和融化。造成变压器绕组线圈变形的原因很多, 有些是因为机械特性和工艺强度不够、绕组线圈不够紧密、承受外部机械冲击和短路电流冲击的能力不强等。由此可知变压器绕组线圈变形的客观原因主要是外部机械冲击和短路电流的破坏, 其中最多的是变压器短路电流的冲击如果短路电流过大, 则产生的点动力有可能使得绕组线圈变形甚至崩溃。

3 变压器绕组线圈损害的原因

电力变压器线圈通常是由以绝缘垫块隔开的铜和铝线段所构成的, 这种系统的特性在发生短路时是变化的, 因为绝缘垫块的弹性跟其压紧程度有关, 即与压力有关。理论分析说明, 作用在变压器线圈上的电动力可分为轴向 (纵向) 力及径向 (横向) 力两种。径向力的作用方向取决于线圈相互位置和其电流方向。对双线圈变压器而言, 径向力使得外部线圈拉伸, 而压紧内部线圈。为了加强内部线圈对径向力的刚度, 一般是将线圈绕制在由绝缘筒支撑的撑条上。此时, 该线圈不但要承受压缩应力的作用, 而且同时受到撑条所产生的弯曲应力作用, 出现经常见到的梅花状和鼓包状绕组变相现象。

变压器线圈受到的轴向力可使线段与线匝在竖直方向弯曲, 压缩线段间垫块, 并部分的传递到铁轭, 意图使其离开芯柱。通常, 最大的弯曲力产生在位于线圈端部的线段上, 而最大的压缩力则出现于线圈高度中心的垫块上。

如果变压器在运行过程中遭受突发性短路故障电流冲击时, 每个线圈都将受到强大的径向力与轴向力的共同作用。变压器绕组初始故障的变现形式大多表现为内绕组出现的变形, 尤其是对自耦变压器, 发生鼓包, 扭曲和移位等不可恢复的变形现象, 其发展的典型形式是绝缘被破坏, 随后出现饼间击穿, 匝间短路和主绝缘段放电或完全击穿。

4 变压器绕组损害的检测方法

变压器绕组发生局部机械变形后, 其内部电感、电容等分布参数必然发生相对变化。最初使用的绕组变形诊断方法是集中参数检测法, 它是通过测量绕组的电感即漏抗、短路阻抗等集中电气参数的变化来判断变压器绕组是否发生了变形的。

近年来国内外大量的研究都利用网络分析技术, 通过测量变压器中各个绕组的传递函数H (jω) , 并对测试结果进行纵向和横向 (三相之间) 比较, 可灵敏有效的诊断绕组的扭曲, 鼓包和移位等变形现象。可利用现代网络分析技术, 通过测量传递函数H (jω) 来判断变压器绕组变形的方法, 可以分为低压脉冲法 (简称LVI) 和频率响应法 (简称FRA) 两种。

4.1 脉冲法

其原理是变压器的一端对地加入标准信号, 同时用数字化设备测量绕组两端的对地数字信号强度:VO (t) 和Vi (t) , 并进行相应的计算和处理, 最终得到h (t) 和H (jω) 即变压器绕组的传递函数。

4.2 频率响应分析法

频率响应分析法的方法就是在变压器的两端输入不同频率的波VS, 用数字化的测量设备记录输入的信号的波形函数:Vi (n) 和VO (n) , 对数据进行计算和处理后得到不同频率的传输特性H (n) 。

电力传输系统中的变压器的传输函数主要取决于其内部的电感和电容的分布情况。我们可以选用频率在10KHz~1MHz的的信号进行扫描测量, 选取500以上的线性分布扫描点进行分析和记录将会有较好的效果。

由于频率响应法主要是建立在变压器的绕组线圈对不同的频率信号的反映不同的基础上的, 由此而绘制出变压器的频率响应特征图, 就要求测量测试系统具有极高的精确的和稳定性, 并具有一些专业的专门的诊断功能才行。目前已投入使用的测试系统中, 大都采用进口的高性能硬件来保证线路的可靠性和稳定性, 采用先进的数字技术进行处理, 测试系统本身具备较好的抗干扰能力和较高的精确度。

5 绕组线圈损害的诊断方法

频率响应分析法来诊断变压器绕组线圈变形的主要原理是利用变压器变形的线圈对不同频率的输入信号有不同的响应的基础上的, 若一台变压器在突发性事故短路后测的的频率响应特性结论和事故前的频率响应特性情况一致, 则表明本次故障并没有对电路线圈产生损害。

这是一种检测和判断变压器的新方法, 在国内也已经开展了几年了, 得到了各方面的重视, 但目前仍处于经验积累的阶段, 在实际应用中还存在一些问题。还有由于测试所用接线电缆为专用的电缆, 设计时对其电气参数考虑较充分, 但在实际应用中电缆和其接头牢固程度不足, 导致测试结果重复性不好, 需要反复测试。这些实际应用中发现的不足若能进一步改进, 将能使变压器绕组变形测试技术变得更完美的应用, 使它发挥更大的作用。

摘要:本文阐述了变压器绕组因损伤后产生了形变以后的危害, 产生形变的特点及其原因特点。本文主要是介绍响应频率分析法的判断途径和应该避免的问题。根据频响特性曲线的不同情况可以判断损伤的严重性, 但检测时应该注意细节分析和比较, 否则将判断失误。

关键词:变压器绕组损伤,响应频率,电动力,绕组

上一篇:外资企业财务管理中内部控制问题探讨下一篇:浅谈ULTRA-PERMTM500型渗透率仪在岩心实验中的应用