酶工程原理与应用

2024-05-01

酶工程原理与应用(共6篇)

篇1:酶工程原理与应用

酶法提取原理

摘要:简要介绍了酶法提取的基本原理、特点及提取速率的影响因素,结合酶法在提取有效成分中的应用实例和与其他技术的联用,对酶法在中药提取领域的前景进行展望。

关键词:酶法;中药提取;综述

中药是中华民族灿烂文明中一朵盛开的奇葩,有着几千年的悠久历史。中药成分复杂且很多贵重有效成分含量很低,因此中药开发中的关键工序即为如何有效地提取中药中的有效成分。传统提取方法如煎煮、回流、浸渍、渗漉法,存在着周期长、工序多、提取率不高等缺点。酶作为一种生物催化剂,在中药提取中,对中草药细胞壁的有效成分进行分解破坏,从而降低传质阻力,提高提取率;可改变中药目标产物的生理生化性能,优化产物效用,并且酶法提取操作简单,条件温和,环保无毒,现已将其用于中药提取过程。本文就酶法的提取技术及其应用进展方面进行综述。

1酶法提取的基本原理

大多数中药为植物性草药,中药材中的有效成分多存在于植物细胞的细胞质中。在中药提取过程中,溶剂需要克服来自细胞壁及细胞间质的传质阻力。细胞壁是由纤维素、半纤维素、果胶质等物质构成的致密结构,选用合适的酶(如纤维素酶、半纤维素酶、果胶酶)对中药材进行预处理,能分解构成细胞壁的纤维素、半纤维素及果胶,从而破坏细胞壁的结构,产生局部的坍塌、溶解、疏松,减少溶剂提取时来自细胞壁和细胞间质的阻力,加快有效成分溶出细胞的速率,提高提取效率,缩短提取时间[1]。

而且,在中药提取中酶法可作用于目标产物,改善目标产物的理化性质,提高其在提取溶剂中的溶解度,减少溶剂的用量,降低成本;也可改善目标产物的生理生化功能,从而提高其效用。

2酶法提取的特点

2.1反应条件温和,产物不易变性

酶法提取主要采用酶破坏细胞壁结构,具有反应条件温和、选择性高的特点,而酶的专一性可避免对底物外物质的破坏。在提取热稳定性差或含量较少的化学成分时,优势更为明显。杨云龙等[2]用酶法提取洋葱中黄酮类化合物,采用酶解法来处理洋葱皮,避免了因高温对黄酮类化合物结构的破坏,提高了黄酮类化合物的提取率。

2.2提高提取率,缩短提取时间

酶法预处理减少了中药材中有效成分的溶出及溶剂提取时的传质阻力,缩短了提取时间,提高了提取率,具有很大的应用价值。张文森[3]使用复合酶法提取茉莉花中有效成分,相比较传统的水提取,提取温度由85~90℃降至50℃,提取时间由3h降至1h,提取率由55%~60%升至65%~70%。

2.3降低成本,环保节能

酶法是绿色高效的植物提取技术,可利用相关的酶制剂来提高提取物的极性,从而减少有机溶剂的使用,降低成本。

2.4优化有效组分

酶法不仅可以应用在中药材的提取过程,也可对中药提取物进行酶法处理,优化有效组分,提高目标产物的药用价值。肖连冬使用碱性蛋白酶对啤酒糟麦芽蛋白进行水解,在最佳酶解条件下,麦芽蛋白的起泡性、溶解性和乳化性分别达到167%、22.68%和13.8%,比未改性前的麦芽蛋白分别提高了735%、247%和27.8%。

[4]

2.5工艺简单可行

酶法提取在原工艺条件上仅增加了1个操作单元,反应条件温和易获得,不需要对原有工艺设备进行过多的改变,对反应设备的要求较低,操作简单。姚晓琳等

[5]在研究酶法提取柑橘黄酮时,与原有醇提工艺相比,仅在乙醇浸取提取步骤前增加了一个步骤——适量酶液酶解提取。总黄酮提取率可达2.67±0.06%,提取率大幅提高。

3酶法提取的影响因素

3.1药材颗粒度

为利于酶解,需对药材进行预处理。如用粉碎机作预处理,粉碎颗粒越细,越易悬浮在酶解液中,增加有效面积而易被酶水解,加快水解速度。但粉碎过细,吸附作用过强,反而会影响扩散作用。因此通常在提取前适当粉碎,可提高酶解效率。

3.2提取溶剂

酶法提取的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来,并且可溶解较多的有效成分。选择溶剂主要注意以下3点:(1)溶剂对有效成分溶解度大,对杂质溶解度小;(2)溶剂不能与中药的成分起化学变化;(3)溶剂要经济、易得、使用安全等。现在工业生产及实验室主要采用水、乙醇等作为提取的溶剂。

3.3温度及pH

温度增高,分子运动加快,溶解、扩散速度也加快,有利于有效成分的提出,所以热提常比冷提效率高。但温度过高,有些有效成分被破坏,酶的活性降低,甚至失活,同时杂质的溶出也增多。故一般加热不超过60℃,最高不超过100℃。过高或过低的pH都会导致酶失活,pH不仅影响酶立体构象,也影响底物解离状态。在最适宜的pH下进行提取,效率最高。

3.4酶解时间

有效成分的提取率通常随提取时间的延长而增加,直到药材细胞内外有效成分的浓度达到平衡为止。所以不必无限制地延长提取时间,一般用水加热提取以每次0.5~1h为宜,用乙醇加热提取每次以1h为宜。

3.5酶的用量

随着酶的浓度的升高,与底物的接触面积增大,酶解反应速率增大。但当酶的浓度达到过饱和时,底物浓度相对较低,酶与底物竞争,会对酶产生抑制作用,酶得不到充分利用,造成浪费。

4酶法提取在中药领域的应用实例

4.1酶法作用于植物细胞壁

植物细胞壁及细胞间质中的纤维素、半纤维素、果胶等具有大分子结构的物质是中药提取中传质的主要阻力来源。所以采用酶法提取,分解破坏植物细胞的细胞壁,多采用纤维素酶、半纤维素酶、果胶酶。

(1)纤维素酶。纤维素是由β-D-葡萄糖以1,4-β葡萄糖苷键连接,用纤维素酶酶解可以破坏β-D-葡萄糖苷键,使细胞壁破坏,有利于对有效成分的提取。项雷文等[6]通过正交实验法研究了纤维素酶法提取杭白菊中总黄酮的主要工艺参数(酶添加量、酶解时间、酶解温度和pH)对总黄酮提取率的影响。得到纤维素酶法提取的最佳条件为:酶添加量0.5%、酶解时间2.5h、酶解温度55℃、pH5.0,此条件下总黄酮提取率比对照组提高了19.2%。

(2)果胶酶。果胶酶是作用于果胶复合物的酶的总称。果胶酶有两种:果胶甲酯酶和多聚半乳糖醛酸酶。周向荣等[7]利用盐渍藠头提取其风味物质,考查了pH值、温度、加热时间、商品果胶酶添加量对盐渍藠头中蒜素提取效果的影响。在果胶酶同原料比为0.6%~1.2%,pH3.4、温度50℃、提取时间2~4h的条件下,蒜素的提取率可达到较高水平(0.21~0.27g/100ML),且出汁效果较好(90%~92%),固形物含量较高(19.2~19.8Brix),能较好地保持藠头特有的香气。

(3)半纤维素酶。戴瑜等[8]研究了半纤维素酶法提取杜仲叶中主要有效成分,即苯丙素类的绿原酸(CHA),通过单因素试验、正交试验和方差分析确定了半纤维素酶法提取杜仲叶中绿原酸的最佳操作条件。结果表明:加入996U/g半纤维素酶0.45%、pH4.0、温度40℃,得率最高可达38.01mg/g。

(4)复合酶。采用两种或两种以上的酶按一定比例进行组合,进行中药提取,可以较大地加快提取速率,提高提取率。吴国卿等[9]研究了复合酶法提取野木瓜汁的工艺。以野木瓜为原料,采用复合酶法提取野木瓜汁。确定了果胶酶与纤维素酶的最佳添加比例为1︰6。复合酶提取野木瓜汁的最佳酶解工艺条件为:复合酶添加量1.0%,酶解温度45℃,pH4.0,酶解时间2.5h,在此最佳条件下,野木瓜出汁率可达56.7%,比空白样的出汁率13.7%高出43.0%。

4.2酶法作用于目标产物

对于有效成分中立体结构大的物质,可使用葡萄糖苷酶、转苷酶、淀粉酶等进行分解糖苷键等,改变理化性质,增大极性,减少有机溶剂的用量,降低成本,且改变生理生化性质,提高效用。

(1)转苷酶。许明淑等[10]在提取银杏叶黄酮时,使用Suhong475转苷酶和糖基配体对银杏叶进行处理,提高黄酮苷元、黄酮苷的极性,进而在30%乙醇溶剂中提取。此时的提取率相当于60%乙醇提取条件下的提取率。郁军等[11]使用淀粉酶和环糊精转糖苷酶(cGTase)处理甜菊糖作用于甜菊糖苷,破坏了甜菊苷的结构,与未用酶法处理过的甜菊糖相比较,有效地改善了甜菊糖的后苦味。

(2)葡萄糖苷酶。殷涌光等[12]从松针中提取松针黄酮,即8-葡萄糖苷酶松针总黄酮(PNF),使用葡萄糖苷酶酶解PNF,酶解温度40℃,酶添加量1/1000,底物质量浓度0.6g/L,酶解时间5h,经过修饰后的PNF对自由基清除率、羟基自由基清除率、超氧阴离子清除率及对铁离子的还原能力都有明显地提高。

(3)复合酶。两种以上的酶的应用,既可以对植物细胞壁进行作用,也可以对有效成分进行优化。董捷等[13]在研究油菜花粉萌发孔通透性时采用了复合酶法中温淀粉酶和复合纤维素酶的组合。结果表明:用中温淀粉酶和复合纤维素酶处理花粉后,每克花粉上清液中可溶性糖含量最高可达到(0.365±0.017g),与空白相比提高了53%。

5酶法提取技术与其他技术的联用

某些中药采用酶法提取时收率明显提高,具有较大的应用潜力,但该技术同时也存在着一定的局限性。酶法的最佳反应条件需要严格控制,条件微小的波动,也有可能引起酶活性的大大下降。实验中的酶有可能会与实验中其他的化学物质发生反应,会影响反应速率和产物的纯度。故实验室或工业生产中,多采用酶法与其他技术的联合进行中药提取,可扬长补短,发挥协同作用,提高有效成分的提取效率。

5.1酶法协同超声波

赵玉等[14]采用复合酶法协同超声波提取南瓜水溶性多糖,试验将两种独立的提取方法进行协同作用,考察协同作用对提取效果的影响,并与单一超声波法、复合酶解法相比较。原料经复合酶酶解处理,超声10min后,多糖提取率为25.94%,提取率明显高于单一使用超声波、复合酶法的提取。

5.2酶法协同超高压提取

超声波在使用时,在破碎细胞的同时,会引起温度急剧上升,费用较高。而超高压提取可在低温条件下应用,不会引起温度的剧烈变化,不会引起酶的活性降低,在热敏物质的提取中应用将会更为广泛。奚海燕等[15]在超高压辅助酶法提取大米蛋白的研究中,首先在400MPa下对大米进行预处理,后加碱性蛋白酶量1.4%,温度58℃,pH8.3,时间4h及液固比9︰1进行处理,大米蛋白质的提取率为78.72%,而只用碱性蛋白酶进行处理的提取率为70%,提取率提高显著。

5.3酶法协同微波提取

与传统的溶剂提取法相比,微波法批处理量较大,萃取效率高、省时,而且选择性较好,可提高萃取效率和产品纯度。王文平等[16]首次采用微波辅助酶法提取薏苡仁粗多糖,并对提取工艺进行了探讨。在单因素试验的基础上,采用正交试验优化其工艺,得到的最佳提取工艺为:微波功率560W,料液比1︰30,提取时间4min,提取得率达22.61%。

6酶法提取技术的应用前景

酶法强化中药提取由于反应特异性强、条件温和易获得、提取时间短、提取率高、绿色节能等已引起广泛的关注,必将成为中药开发的重要手段,具有较大的应用潜力,且随着对酶法技术的不断研究,酶法与其他技术如超声波、超高压、微波等技术的联用也将成为中药提取的另一个热点研究方向

篇2:酶工程原理与应用

新陈代谢包含了一些重要的有机化学,对于生命周期的循环起着重要的保障作用。作为常见的生物催化剂,酶的存在有利于加快新陈代谢速度,从根本上保证了相关化学反应的持续进行。最初的淀粉酶主要是从麦芽提取液中得到的。此后随着现代生物工程技术的不断发展,研究工作者对于各种生物酶的结构和特性有了更加深入的了解,为这些酶应用范围的扩大奠定了坚实的基础。

1 酶工程技术的研究的相关内容

1.1 生物酶的主要特点

生物酶本质上是一种蛋白质,主要产生于某些机体活细胞,在实际的应用中具有良好的催化效果。常见的酶促反应主要是指生物酶参与的反应,对相关物质代谢速度的加快带来了一定的保障作用。生物酶的主要特点包括:(1)高效的催化效率。相对而言,酶的催化效率远远高于一般的催化剂,最大为1013 倍;(2)稳定性差。作为机体活细胞的蛋白质,生物酶很容易受到各种存在因素的影响,导致蛋白质现象的出现,从而使酶失去了活性。这些内容客观地反映了生物酶稳定性差的特性;(3)专一性非常强。一般的催化剂在实际的应用中可能会有多种选择。而生物酶只针对一种化合物发挥自身的催化作用,具有高度的专一性;(4)酶活力可以随时调节。蛋白酶在存在的过程中有着良好的特性,不同类型蛋白酶通过一定的机制实现彼此间的有效结合,才能具有更好的催化活力。

1.2 工程技术中酶的基本原理

为了更好地了解酶的基本特性,可以从它在工程技术中的实际作用效果进行深入地分析。当酶与不同的物质之间发生一系列的反应时,将会加快物质分解的速度,客观地反映了它高效的催化效率。在某些重要的化学反应体系中,为了使不同的分子能够参与到具体的化学过程中,必须保持这些分析的活性。这些活性分子的数量的多少决定了化学反应速率的高低。在这样的反映机制中,酶的存在可以有效地降低化学反应的活化能,使得自身的催化效率始终保持在更高的层面上。

1.3 酶工程技术的研究

现代生物化工中对于酶工程技术的研究比较深入,主要是因为这种技术在实际的应用中包含着许多丰富的内容,像常见的酶分离提纯技术、酶源开发技术等。目前酶工程技术的发展速度非常快,为社会各行业经济效益的持续增加带来了积极的促进作用。为了提高酶的活力,可以充分地发挥基因工程的相关优势,将某些重要的生物酶通过一系列的反应导入到微生物中,加快催化效率。基因工程的技术优势可以改变酶的结构,增强酶的稳定性,形成具有特定顺序序列的氨基酸结构,生产出具有良好功能特性的生化产品。在生物化工的发展过程中,酶的存在也发挥着重要的作用。不同的条件限制,可能会影响酶的催化效率。因此,保持合理的临界状态,将会减少酶反应过程中的阻力,更好地发挥酶的实际作用。比如,为了消除二氧化碳的毒性,可以使它与酶处于超临界状态,加快它与反应物的分离速度。这样的过程中主要依赖于酶的催化作用。做好酶工程技术的研究工作,可以为社会的不断进步做出更大的贡献。在实际的研究过程中,相关的技术人员应该深入地了理解酶的结构,加强对它各种特性的全面认识。

2 不同领域内酶工程技术的应用

2.1 遗传育种中的应用

为了更好地掌握遗传学的相关规律,技术人员可以将某些酶作为动物遗传的标记物,从而确定它在种群中的亲缘系统。在亲子关系鉴定的过程中,相应的遗传标记也对酶工程技术的依赖程度非常高。随着生物化工酶技术的不断发展,动物遗传标记的`流程和方式方法都有了较大的改变,增强了相关研究工作的质量。这种良好的功能特性也会逐渐地应用在畜牧业的相关工作中,可以使研究工作者更高地掌握母鸡的产蛋性能。

2.2 医学中的应用

某些疾病的发生,与酶的特性有着重要的关系。像遗传学疾病的发生,往往与酶的缺陷有着必然的关系:减慢了人体内的新陈代谢速度。在不可逆抑制疾病的发生中,相关物质的不合理结合逐级地降低了酶的活性,使得神经传递物质无法在规定的时间内到达指定的位置,引起了疾病的发生。在疾病诊断的过程中,由于正常人体内酶的存在相对比较稳定,可以对疾病产生的机理进行科学地判断。因此,随着现代医学的不断发展,酶工程技术将会为某些疾病先进的治疗手段提供重要的参考依据,有利于加强疾病的预防效果。

3 结束语

篇3:酶工程原理与应用

在新陈代谢中主要是由一些有机化学组成的, 在确保人们生命周期的正常循环中起到了重要的作用。酶是一种叫为常见的生物催化剂, 其作用主要是确保化学反应的正常进行和将新陈代谢的速度提升。最开始人们是从麦芽中进行酶淀粉的提取, 在现阶段伴随着生物工程技术的不断进步, 研究人员更加了解了酶工程的特点和结构性质, 为酶工程的更好应用提供了坚实的理论基础和试验数据。

2 酶工程技术的研究的相关内容

2.1 生物酶的主要特点

生物酶其本质属于蛋白质, 在一些机体的活细胞中存活, 但是其作为一种催化剂被广泛的应用到了现实生活中。一般的工程酶主要是指的是有生物酶参加的反应, 在一定程度上确保了一些物质进行代谢的速度。生物酶具体的特点主要有以下几点:第一是可以随时调节酶的活力。存活的蛋白酶具有较好的特性, 类型不同的蛋白酶可以利用一定的机制来达到个体之间的彼此结合, 这样其催化活力就变得更加良好;第二是非常强的专一性。在实际的催化剂应用中, 其选择形式较多, 但是生物酶只是对于一种化合物将自身的催化作用作用于此, 其专一性能较好;第三是催化效率高, 和一般的催化剂相比, 酶的催化效率比其高1013倍, 是一般催化剂不可达到的效率;第四是, 酶的稳定性能较差, 生物酶是一种提及活细胞的蛋白质, 在其正常的催化作用中交易受到一些因素的影响, 使得其出现蛋白质问题, 进而使得酶其活性消失。

2.2 酶在工程技术中的基本原理

1) 研究物体和酶之转变和相互作用的过程就是生物酶的主要功能。在化学作用下, 作用物自身包含的能量值和其分子的值不在同一范围内, 因此, 在化学的作用下, 分子要想参与化学的作用历程就必须到达或超出水平线。其本质就是分子要想参与化学的转化过程就必须在充满活力的状态下进行。2) 导致酶加速反应速度慢的因素主要是:激活剂、抑制剂、底物浓度、生物酶的浓度和PH值数据、温度。根据抑制剂的功能和酶的反应途径是否可逆的作用主要分为了不可逆型作用和可逆性的抑制作用。3) 在一般情况下的生物实验过程中都要不能直接的将酶的生机数值加以测出, 只有确保条件想对的环境下, 并且酶的自身浓度和生机呈现出正比例的关系, 才能将最终的含量利用实验测量出。

3 不同领域内酶工程技术的应用

3.1 酶在疾病的防治上应用

除了在疾病的诊断中应用生物酶, 在疾病的治疗中也可以应用生物酶, 在相关的研究数据和应用过程中发现, 生物酶可以应用于以下情况:1) 在消化不良的辅助药物中应用, 主要应用的是水解酶的种类, 例如胃蛋白酶、多酶片等药物;2) 一些胰蛋白酶和胰凝乳蛋白酶可以应用于外伤的辅助治疗, 主要治疗的范围是外伤化脓伤口的清理。胸、腹腔粘膜的粘连等情况下;3) 弥漫性血栓、凝血等治疗中也可以使用生物酶, 主要的酶制剂方面的尿激酶、血纤维蛋白酶等;4) 天冬酰胺酶可以应用于对抗癌症的药物中;5) 生物酶中的弹性蛋白酶可以应用到导致蛋白血症的治疗过程中。

3.2 在医学上的应用

疾病和酶的关系分为三种, 一种是遗传性的疾病, 由于先天原因形成的酶缺陷, 进而导致酶代谢不能正常的进行, 例如白化病的患者, 其提眉没有形成黑色素的络氨酸酶, 导致患者的毛发和皮肤都呈现出宝色状态。二是一些由于不可逆抑制引发的疾病, 其抑制剂是一种特异性的不可逆尅性, 经常使用的是有机磷农药可以与胆碱酯酶活性内部的丝氨酸羟基进行结合, 致使酶丧失或减弱了其活性, 导致神经传递质不能正常的工作而发生疾病;三是诊断疾病与酶, 在有机体的组织内都分布和定位这酶, 酶在正常人体内的含量具有稳定性, 正常酶的活力都在一定范围内, 在一些疾病出现后发展的过程中, 在体液中, 例如血液中酶的活力就发生了明显的变化。因此, 在诊断和预防疾病的过程中, 可以对体液, 例如血清中的酶的高低进行测定, 从而达到目的。

3.3 酶对人体的作用

酶可以分解人体内的脂肪, 进行养分的催化, 还可以进行细胞的活化、抗菌消炎、抵抗瘤和癌, 进行血液净化。一些实验的数据表明, 生物酶可以进行人体免疫物质的补充, 将营养物质的利用和吸收加以提升。

3.4 在畜牧业上的应用

生物酶在畜牧的应用早在19世纪的后期就开始了。当前情况下, 在我国国内一些淀粉酶、微生物复合酶等畜牧饲料在不断的出现。生物酶饲料可以协助动物加快生长, 将饲料的使用效率加以提升, 提升动物抵抗疾病的能力, 在一定程度上将幼小动物的存活率提升了, 并且在减少兽医药费及降低动物生病率等方面都具有较大的作用。并且, 大量生活的污染物中都含有蛋白质的废弃物, 此类废弃物都是一些生活垃圾, 并且不能被食用, 将生物酶技术应用于废弃物中, 可以在发酵和堆肥制作中发挥较大的作用, 生物酶可以将垃圾废弃物转变为蛋白饲料应用于畜牧业中。

4 结束语

经过上文的叙述得知, 在生物化工的不断发展过程中, 生物酶技术在促进行业生产效率的提升中发挥了较为重要的作用。各种过程技术中依赖酶的程度越来越高, 主要是由于在一些重要反应速度的提升中蛋白质可以发挥着重要的作用。在减少资金投入的基础上提升了经济的效益。并且伴随着技术的发现, 生物酶技术其作用将会在越来越多的领域应用。

参考文献

[1]张久民.酶工程技术在乳品工业中的应用[J].养殖技术顾问, 2009 (3) .

篇4:限制酶与基因工程

一、限制酶的来源及功能

限制酶是DNA限制性内切酶的简称。限制酶只能将外源的DNA切断,就是能限制异源DNA的侵入并使之失去活力,但对自己的DNA无损害作用,这样可以保护细胞原有的遗传信息。由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶。限制酶主要存在于原核生物中,目前已发现有200多种,每一种限制酶只能识别DNA上特定的碱基序列,并在特定位点切断DNA。因此,对于拥有限制酶的某些低等生物而言,这是在进化过程中形成的一种保护性功能;而对于基因工程技术而言,它为从某种物生物DNA上提取目的基因创造了条件。

例1 关于限制酶的途述,正确的是( )

A.限制酶是一种保护自我遗传信息的酶,每一种生物的细胞中都含有,但具有不同的特异性。

B.限制酶是基因的“剪刀”,能识别DNA上目的基因的序列,并切取该目的基因。

C.限制酶能特异性识别单链DNA上的序列,并在特定位点“剪断”单链。

D.要想从某生物的DNA上获取目的基因,使用的限制酶必须在该DNA上具有至少两个能识别的序列及相应切点。

解析 高等生物细胞中不存在限制酶;在基因工程中,限制酶所要识别的是基因两边的序列并有切点,而不是“基因的序列”;限制酶只能识别双链DNA上的序列,该序列具有“回文”性质,不能识别单链DNA上的序列;要想把基因“取下来”,必须在基因两边各有一个切点。

答案 D

二、限制酶与其它DNA相关酶的区别

DNA水解酶的功能是破坏DNA上的每一个磷酶二脂键,其结果是使DNA水解成单个脱氧核苷酸;限制酶则只破坏DNA上特定序列特定位点的磷酸二脂键,其结果是使DNA被分割成不同的DNA片段。DNA聚合酶的功能主要是在DNA片段与单个脱氧核某酸之间或单个脱氧核苷酸与单个脱氧核苷酸之间成磷酸二脂键,在DNA分子的复制中起使用,在此过程中需要模板;DNA连接酶则是在DNA片段之间将双链上的两个缺口同时连接起来,在基因工程操作的目的基因与运载体结合过程中起作用,此过程不需要模板。由此可见,以上四种酶所发挥作用的条件或结果各不相同。相同的是,这四种酶的作用对象均为DNA分子结构上的磷酸二脂键。

例2 下图是DNA结构模式图,据图所作的下列判断,不正确的是( )

[①][②]

A.限制性内切酶能将①处切断;

B.DNA连接酶能将①处连接;

C.解旋酶能切断②处;

D.连接②处的酶为DNA聚合酶。

解析 ①处为磷酸二脂键,限制酶能破坏磷酸二脂键,DNA连接酶能连接生成磷酸二脂键;②处为氢键,解旋酶可破坏DNA双链间的氢键,连接酶作用对象不是氢键。

答案 D

三、限制酶对DNA的切割及黏性末端的产生

要用限制酶把目的基因从某DNA上切下来,目的基因序列的两边必须各有一个能被限制酶识别的序列及其切点,因DNA是双链,故需“切断”4个磷酸二脂键,由此会产生四个黏性末端。为把目的基因连接到运载体的DNA上,一般需要用同一种限制酶对运载体DNA进行切割(至少有一个识别序列及切点),因为只有这样才能与切下的目的基因两边形成相同的黏性末端,目的基因和运载体才能实现连接而重组。但也有两种不同的限制酶切割产生相同的黏性末端,如G↓ATTCG和↓ATTC

例3 下面是5种限制性内切酶对DNA分子的识别序列和剪切位点图(↓表示剪切点、切出的断面为黏性末端):

限制酶1:——↓GATC——

限制酶2:——CATG↓——

限制酶3:——G↓GATCC——

限制酶4:——CCGC↓GG——

限制酶5:——↓CCAGG——

请指出下列哪组表达正确( )

A.限制酶2和4识别的序列都包含4个碱基对

B.限制酶3和5识别的序列都包含5个碱基对

C.限制酶1和3剪出的黏性末端相同

D.限制酶1和2剪出的黏性末端相同

解析 限制酶2、3、4、5识别的序列分别包括4个、6个、6个、5个碱基对,故A、B错。限制酶1和2切割产生的黏性末端不同。限制酶1剪出的黏性末端是:

[C T A G][G A T C][G A T C][C T A G]

限制酶3切割产生的黏性末端是:

[C C T A G G][G G A T C C] [G A T C C][G] [G][C C T A G]

答案 C

【练习】

1.如图为DNA分子的某一片段,其中①②③分别表示某种酶的作用部位,则相应的酶依次是( )

[C T T A A G] [G A A T T C][C T T A A G][G G A T T C] [①][②][③]

A.DNA连接酶、限制性内切酶、解旋酶

B.限制性内切酶、解旋酶、DNA连接酶

C.解旋酶、限制性内切酶、DNA连接酶

D.限制性内切酶、DNA连接酶、解旋酶

2.现有一长度为3000碱基对(bp)的线性DNA分子,用限制性内切酶酶切后,进行凝胶电泳,使降解产物分开。用酶H单独酶切,结果如图1;用酶B单独酶切,结果如图2;用酶H和酶B同时酶切,结果如图3。则该DNA分子的结构及其酶切图谱是( )

3.人体细胞内含有抑制癌症发生的P53基因,生物技术可对此类基因的变化进行检测。

[G A A C C G G A G G][C T T G G C C T C C][G A A C T G G A G G][C T T G A C C T C C][正常人][患者][290对碱基][70对碱基][220对碱基][限制酶E

识别序列][限制酶E

识别序列][p53基因

部分区域]

①已知限制酶E识别序列为CCGG,若用限制酶E分别完成切割正常人和患者P53基因部分区域(见上图),那么正常人的会被切成 个片段;而患者的则被切割成长度为 对碱基和 对碱基的两种片段。

②如果某人的P53基因部分区域经限制酶E完全切割后,共出现170、220、290和460碱基对的四种片断,那么该人的基因型是 (以P+表示正常基因,P-表示异常基因)。

【参考答案】

1.C 2.A

3.①3、460、220 ②P+P-

篇5:基因工程药物的生产原理及其应用

摘要:近年来,基因工程药物在目的基因制备、载体的构建、基因转移技术、宿主表达系统和生物反应发生器等方面取得了令人瞩目的成就。本文简单介绍基因工程药物的生产原理及其重要应用。关键词:基因工程药物 生产原理 应用

随着基因研究的深入,人类已经可以生产出许多基因工程产品。基因工程药物引入医药产业,由此引起了医药工业的重大变革,使得医药产业成为最活跃、发展最快的产业之一,同时大大提高了21世纪人类的整体健康状况。

基因工程药物又称生物技术药物是指利用基因工程技术研制和生产的药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。主要种类有:胰岛素、单克隆抗体、荷尔蒙、干扰素、白细胞介素、组织型纤溶酶原激活因子、红细胞生成素、集落刺激因子。生产原理

基因工程制药技术分获取目标基因的上游技术和大量培养上游技术阶段。上游技术实质就是基因工程技术。下游技术则包括菌体培养,细胞破碎,大量培养以及分离纯化几个步骤。

1.1 基因工程制药的上游技术

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达。

基因工程研究采用的技术方法很多,以下介绍常见基本两种:聚合酶链反应技和Sanger双脱氢链终止法。

1.1.1 聚合酶链式反应

聚合酶链式反应,其英文Polymease Chain Reaction(PCR)是体外酶促合成特异DNA片段的一种方法。

类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:

① 模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

② 模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③ 引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍

作者简介:任灏诗,女,汉族,籍贯(广东佛山),大学本科,华南师范大学大二本科生, Email: 1030156661@qq.com 现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。1.1.2 双脱氢链终止法

核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,只要双脱氧碱基掺入链端,该链就停止延长,链端掺入单脱氧碱基的片段可继续延长。如此每管反应体系中便合成以共同引物为5’端,以双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳。以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3’端的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。主要步骤如下:

Sanger双脱氧链终止法(酶法)测序程序 操作程序是按DNA复制和RNA反转录的原理设计的。

1.分离待测核酸模板,模板可以是DNA,也可以是RNA,可以是双链,也可以是单链。

2.在4只试管中加入适当的引物、模板、4种dNTP(包括放射性标记dATP,例如?32 PdATP和DNA聚合酶(如以RNA为模板,则用反转录酶),再在上述4只管中分别加入一种一定浓度的ddNTP(双脱氧核苷酸)。

3.与单链模板(如以双链作模板,要作变性处理)结合的引物,在DNA聚合酶作用下从5’端向3’端进行延伸反应,32P随着引物延长掺入到新合成链中。当ddNTP掺入时,由于它在3’位置没有羟基,故不与下一个dNTP结合,从而使链延伸终止。ddNTP在不同位置掺入,因而产生一系列不同长度的新的DNA链。

4.用变性聚丙烯酰胺凝胶电泳同时分离4只反应管中的反应产物,由于每一反应管中只加一种ddNTP(如ddATP),则该管中各种长度的DNA都终止于该种碱基(如A)处。所以凝胶电泳中该泳道不同带的DNA 3’ 末端都为同一种双脱氧碱基。

5.放射自显影。根据四泳道的编号和每个泳道中DNA带的位置直接从自显影图谱上读出与模板链互补的新链序列。1.2 基因工程制药下游技术

1.2.1 基因工程菌的培养

基因工程菌的培养过程主要包括:

① 通过摇瓶操作了解工程菌生长的基础条件;

② 通过培养罐操作确定培养参数和控制的方案以及顺序。

由于细胞生长和异源基因表达之间有着较大的差异,各培养参数在全过程中必须分段控制。

培养方式主要有:

一、补料分批培养

补料分批培养是将种子接入发酵反应器中进行培养,经过一段时间后,间歇或连续地补加新鲜培养基,使菌体进一步生长的培养方法。

二、连续培养

连续培养是将种子接入发酵反应器中,搅拌培养至一定菌体浓度后,开动进料和出料的蠕动泵,以控制一定稀释率进行不间断的培养。连续培养可为微生物提供恒定的生活环境,控制其比生长速率。

三、透析培养

透析培养是利用膜的半透性原理使代谢产物和培养基分离,通过去除培养液中的代谢产物来解除其对生产菌的不利影响。采用膜透析装置是在发酵过程中用蠕动泵将发酵液打作者简介:任灏诗,女,汉族,籍贯广东佛山),大学本科,华南师范大学大二本科生, Email: 1030156661@qq.com.

入罐外的膜透析器的一侧循环,其另一侧通入透析液循环。

四、固定化培养

基因工程菌经固定化培养后,解决了质粒的稳定性问题,该培养方式对分泌型菌更为有利

1.2.2基因工程菌细胞的破碎

现今,在基因工程菌的研究中,主要涉及有细菌,酵母和藻类。微生物的细胞壁比较坚韧。

目前已发展了多种细胞破碎方法,以便适应不同用途和不同类型的细胞壁破碎。破碎方法可规纳为机械法和非机械法两大类。

机械法有很多类型,常见的有:高压匀浆破碎法(homogenization),振汤珠击破碎法(Skaking Bead),高速搅拌珠研磨破碎法(fine grinding),超声波破碎法(ultrasonication)。

非机械法有如下类型:渗透压冲击破碎法(osmotic shock),冻融破碎法(freezing and thawing),酶溶破碎法(enzyme lysis),化学破碎法(chemical treatment),去垢剂破碎(detergents)。

1.2.3基因工程蛋白的分离和纯化

基因重组产物均在其宿主细胞内克隆表达,且大多为胞内物质。基因重组蛋白的分离和纯化,由于目标产物的性质和对产品纯化要求不同,其分离和纯化的方法和选择的纯化路径也不同,但主要分为两个方面:1.目标产物的粗级分离,主要是在细胞培养后,将细胞从培养液中分离出来,然后再破碎细胞释放产物,溶解包含体,复原蛋白质以除去大部分杂质;2.目标产物的纯化,这是在分离的基础上,用各种具体高选择性的精密仪器,使产物的纯度和回收率。

主要分离技术: 1.离心及沉淀 离心分离的原理是在转子高速转动所产生的离心力的驱动下,利用固体及液体间的密度差来进行悬浮液,乳浊液的分离。沉淀原理是利用油和杂质的不同密度,借助策略的作用,达到自然分离才者的一种方法。

2.膜分离 膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。

3.双水相萃取 某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法,又称双水相分配法。20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化开辟了新的途径。

4.反胶团萃取 蛋白质溶解于小水池中(正萃,或称萃取),其周围有一层水膜及表面活性剂极性头的保护,使其避免与有机溶剂接触而失活。改变pH、盐浓度等条件蛋白质又可回到水相(反萃),实现了蛋白质的萃取分离、纯化目的。反胶团萃取蛋白质的机理目前尚不十分清楚。一般认为,萃取过程是静电力、疏水力、空间力、亲和力或几种力协同作用的结果,其中蛋白质与表面活性剂极性头间的静电相互作用是主要推动力。根据所用表面活性剂类型,通过控制水相pH高于或低于蛋白质的等电点(pI),达到正萃反萃的目的。

作者简介:任灏诗,女,汉族,籍贯广东佛山),大学本科,华南师范大学大二本科生, Email: 1030156661@qq.com.

基因工程药物应用事例

2.1胰岛素

胰岛素是基因工程药物最重要的代表。胰岛素是由胰产生的一种蛋白。它在人体新陈代谢中起着重要作用,如果体内不足就会引发糖尿病,因此胰岛素是治疗糖尿病的特效药。这种病发病率很高,困扰着上千万人。过去从猪、牛胰中提取胰岛素,产量低,满足不了患者的需求。现在利用基因工程技术,有两种方法可以让微生物发酵产生胰岛素。一种是先在大肠杆菌中分别合成胰岛素A链和B链,然后再在体外用化学方法将两条链连接成胰岛素。美国Eli lilly公司采用这种方法生产胰岛素。另一种是采用分泌型载体表达胰岛素原,然后再将其转化为胰岛素。丹麦Novo Nordisk公司就是采用重组酵母分泌产生胰岛素原,再用酶法转化为人胰岛素。2.2干扰素

干扰素是病毒入侵人体或其他动物后,机体产生的可以对多种病毒具有抵抗能力,抑制它们复制、增殖的一种蛋白质。它是一类在同种细胞上具有广谱抗病毒活性的蛋白质,其活性受细胞基因组的调控。在一般生理状态下,细胞的干扰素基因呈静止状态,只有在干扰素诱导剂作用下,干扰素基因才进行转录并翻译出具有种属特异性的干扰素。干扰素本身不能直接杀灭活病毒,但是它能使细胞产生许多抗病毒蛋白质,使病毒的mRNA不能和核酸体结合,因而无法合成病毒蛋白质,从而减少了新病毒粒子的合成,阻断了病毒的增殖。它在临床上主要用于恶性肿瘤和病毒性疾病的治疗。

过去,干扰素一般只能从感染病毒的人血液中的白细胞或纤维中提取,量少价昂,难以应用于临床。1980年美国基因技术公司把人体血细胞干扰素基因转移到大肠杆菌或酵母菌中,成功表达。其中a、β、r种干扰素已工业化生产,产品已投放市场。我国也已生产出a型和r型干扰素。2.3重组疫苗

所谓重组疫苗就是利用重组DNA技术,克隆并表达抗原基因的编码序列,并将表达产物用作疫苗。重组疫苗的重要性在于它可以替代灭活或无感染力的病原微生物来进行免疫。第一个应用于人体的重组疫苗是用酵母菌生产的乙肝疫苗。它是将乙肝表面蛋白抗原基因在酵母菌 中克隆和表达,生产出来的蛋白及其聚合物与在感染体内发现的十分相似,将这些聚合物纯化,制成乙肝疫苗,可以用于使人体产生对乙肝病毒的免疫力。

在生物技术总的发展趋势下,基因工程制药仍是21世纪生物制药中最具活力的研究领域.随着人类基因组中更多基因的功能被研究清楚和药物基因组学的不断完善,将可能有数以千计的具有特殊疗效的蛋白质药物问世。这将使传统的医药业发生革命性变化。药物的生产和使用将会更加趋于种族化、家族化甚至个体化。参考文献

篇6:采油工程原理与设计

:油井流入动态与井筒多相流动计算

油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油能力。动态曲线:表示产量与流压关系的曲线,简称IPR曲线。三种流动状态:地层渗流(地层到井底)井口多相管流(井底到井口)

地面水平或倾斜管流(井口到分离器)采油指数:单位生产压差下的油井产油量。(单相流动时的IPR曲线为直线,其斜率的负倒数便是采油指数)

流动效率FE:该井的理想生产压差与实际生产压差之比。

油井的不完善:打开性质不完善井;打开程度不完善井;双重不完善井 S=0,FE=1 完善井 S<0,FE>1 超完善井 S>0,FE<1 不完善井

单相液流:当油井的井口压力高于原油的饱和压力时井筒内的液流 气液两相流动:当自喷井的井底压力低于饱和压力时 泡流:在井筒中从低于饱和压力的深度起,溶解气开始从油中分离出来,这时,由于气量少,压力高,气体都以小气泡分散在液相中,气泡直径相对于油管直径要小很多,这种结构混合物的流动称为泡流。

滑脱:由于油、气密度的差异和泡流的混合物的平均流速小,因此,在混合物向上流动的同时,气泡上升速度大于液体流速,气泡将从油中超越而过,这种气体超越液体上升的现象称为滑脱。

泡流的特点:气体是分散相,液体是连续相;气体主要影响混合物密度,对摩擦阻力的影响不大;滑脱现象比较严重。

段塞流:当混合物继续向上流动时,压力逐渐降低,气体不断膨胀,小气泡将合成大气泡,直到能过占据整个油管断面时,在井筒内将形成一段油一段气的结构,这种混合物的流动称为段塞流。

环流:随着混合物继续向上流动,压力不断下降,气相体积继续增大,泡弹状的气泡不断加长,并逐渐由油管中间突破,形成油管中心是连续的气流而管壁为油环的流动结构。

雾流:在油气混合物继续上升过程中,当压力下降使气体的体积流量增加到足够大时,油管中流动的气流芯子将变得很粗,沿管壁流动的油环变得很薄,此时,绝大部分油都以小油滴分散在气流中,这种流动结构称为雾流。

雾流特点:气体是连续相,液体为分散相;气体以很高的速度携带液滴喷出井口;气、液之间的相对运动速度很小;气相是整个流动的控制因素。自下而上:纯液流、泡流、段塞流、环流、雾流

滑脱损失的实质:液相的流动断面增大将引起混合物密度的增加。

滞留率:多相流动的某一管段中某相流体体积与管段容积之比(存容比):自喷与气举采油

自喷:油层能量充足时,利用油层本身的能量就将油举升到地面的方式

(p54)自喷井生产系统的组成:地层到井底—地层渗流 井底到井口—井口多相管流

井口到分离器—地面水平或倾斜管流 嘴流:生产流体通过油嘴的流动 自喷井节点分析:以油井生产系统为对象把从油藏到地面分离器所构成的整个油井生产系统按不同的流动规律分成若干个流动子系统,在每个流动子系统的起始及衔接处设置节点。在分析研究各子系统流动规律的基础上分析各子系统的相互关系及其各自对整个系统工作的影响,为优化系统运行参数和进行系统的调控提供依据。

以井底为求解点:油藏到井底、井底到分离器(井底流压即油管鞋压力)以井口为求解点:油藏到井口、井口到分离器

以分离器为求解点:油藏到井底、井底到井口、井口到分离器

(P63)临界流动:指流体的流速达到压力波在流体介质中的传播速度即声波速度时的流动状态 油嘴系统分为:油嘴、井下安全阀、井下节流器 功能节点:压力不连续即存在压差的节点系统 功能节点分析过程:当以功能节点为求解点时,先要以系统两端为起点分别计算不同流量下节点的上、下游压力,并求得节点压差和绘出压差—流量曲线;然后,根据描述节点设备(油嘴、安全阀)的流量—压差公式或相关式,求得设备工作曲线。由两条压差—流量曲线的交点便可求得问题的解,即节点设备产生的压差及相应的油井产量。(对油嘴的生产系统,必须以油嘴为求解点)

气举:是利用从地面注入高压气体将井内原油举升至地面的一种人工举升方式(条件:必须有足够的气源;原理:依靠从地面注入井内的高压气体与油层产出的流体在井筒中的混合,利用气体的膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面。)

气举按注气方式分为:连续气举:将高压气体连续注入井内,排井筒中液体的举升方式 间歇气举:向井筒周期性地注入气体,推动停注期间在井筒内聚集的 油层流体段塞升至地面从而排出井中液体的举起方式 沉没度:表示泵沉没在动液面以下的深度

启动压力:随着压缩机压力的不断提高,环形空间内的液面最终将达到管鞋(注气点)处,此时,井口注入压力达到的最高值称为启动压力。气举设计:根据给定的设备条件(可提供的注气压力及注气量)和油井流入动态确定的。(包 括气举方式和气举装置类型;气举点深度、气液比和产量;阀位置、尺寸、类型 及装配要求)

气举阀的作用:降低启动压力和排出油套环形空间中的液体。气举装置:开式装置(仅限于连续气举)、半闭式装置、闭式装置、箱式装置(后三种既可用于连续气举也可用于间歇气举):有杆泵采油

有杆泵采油包括游梁式抽油井有杆泵采油和地面驱动螺杆泵采油 抽油装置系统:抽油机、抽油杆、抽油泵

抽油机工作原理:工作时,动力机将高速旋转运动通过皮带和减速箱传给曲柄轴,带动曲柄做低速旋转,曲柄通过连杆经横梁带动游梁作上下摆动,挂在驴头上的悬绳器便带动抽油杆柱作往复运动。P94 游梁式抽油机:游梁—连杆—曲柄机构—减速箱—动力设备—辅助装置 按结构分为:普通式、前置式(区别:游梁和连杆的连接位置不同;平衡方 式不同,普通式多采用机械平衡,支架在驴头和曲柄连杆之间,其上、下冲程的时间相等。前置式多采用气动平衡)

抽油泵满足条件:

1、结构简单,强度高,质量好,连接部分密封可靠。

2、制造材料耐磨和抗腐蚀性好,使用寿命长。

3、规格类型能满足油井排液量的需要,适应性强。

4、便于起下

5、在结构上应考虑防砂、防气,病带有必要的辅助设备。抽油泵可分为管式泵和杆式泵

管式泵:结构简单、成本低、在相同油管直径下允许下入的泵径较杆式泵大,因而排量大。但检泵时必须起出油管,修井工作量大,故适用于下泵深不很大、产量较高的油井。

杆式泵:检泵方便,结构复杂,制造成本高,在相同油管直径下允许下入的泵径比管式小。适用于泵深度大、产量较小的油井。

冲程:活塞上下运动一次称为一个冲程分为上冲程和下冲程 冲次:每分钟内完成上下冲程的次数

光杆冲程:悬点在上下死点间的位移用S来表示 活塞冲程:活塞在上下死点间的位移用Sp来表示 泵吸入的条件:泵内压力(吸入压力)<沉没压力

泵排出液体的条件:泵内压力(排出压力)>柱塞以上的液柱压力

泵的工作过程:柱塞在泵内让出容积、井内液体进泵、泵内排出井内液体

四连杆机构:以游梁支点和曲柄轴中心的连线做固定杆,以曲柄、连杆、游梁后臂为三个活 动杆。

悬点载荷:抽油杆柱载荷Wr,柱塞上的液柱载荷Wl,惯性载荷 上冲程抽油杆柱载荷—抽油杆柱在空气中的重力 下冲程抽油杆柱载荷—抽油杆柱在液体中的重力 上冲程中柱塞上的液柱载荷—柱塞以上的液柱重力 下冲程过程中无液柱载荷—等于零

吸入压力:上冲程中,在沉没压力作用下,井内液体克服泵的入口设备的阻力进入泵内,此 时液流所具有的压力

井口回压对悬点载荷的影响:上冲程中增加悬点载荷;下冲程中减小抽油杆柱载荷 上冲程中:前半冲程加速度为正,即加速度向上,则惯性力向下,增加悬点载荷 后半冲程加速度为负,即加速度向下,则惯性力向上,减小悬点载荷 下冲程中:前半冲程惯性力向上,减小悬点载荷 后半冲程惯性力向下,增大悬点载荷 抽油机不平衡的原因和后果:上冲程中悬点承受着最大载荷,所以电动机必须作很大的功才能使驴头上行;下冲程中,抽油杆在其自身重力作用下克服浮力下行,这是电动机不仅不需要对外做功,反而接受外来的能量做负功,造成抽油机在上、下冲程中的不平衡。(上、下冲程中悬点载荷不同,造成电动机在上、下冲程中所做的功不想等。)后果: 上冲程中电动机和承受着极大的负荷,下冲程中抽油机反而带着电动机运转,从而造成功率的浪费,降低电动机的效率和寿命。

由于负荷极不均匀,会使抽油机发生激烈振动,而影响抽油装置的寿命。会破坏曲柄旋转速度的均匀性,而影响抽油杆和泵的正常工作。抽油机平衡原理:在下冲程中把能量储存起来;在上冲程中利用储存的能量来帮助电动机做功。

抽油机平衡方式:气动平衡

机械平衡:游梁平衡、曲柄平衡、复合平衡

抽油机平衡检验方法:

1、测量驴头上、下冲程的时间(如果上冲程快、下冲程慢,说明平衡过量,则应减小平衡重量或平衡半径)

2、测量上、下冲程中的电流(如果上冲程的电流峰值大于下冲程大 的电流峰值,则说明平衡不够,应增加平衡重量或增大平衡半径)

3、观察法

目前国产抽油机所选配的电动机大多是:高启动转矩系列的三相异步封闭式鼠笼型电动机。等值扭矩:用一个不变化的固定扭矩代替变化的实际扭矩,两种扭矩下电动机发热条件相同,则此固定扭矩即为实际变化的扭矩的等值扭矩。

水力功率:指在一定时间内将一定量的液体提升一定距离所需要的功率 光杆功率:通过光杆来提升液体和克服井下损耗所需要的功率 泵效:实际产量/理论产量

影响泵效的因素:抽油杆柱和油管柱的弹性伸缩 气体和充不满的影响 漏失影响

影响泵效的漏失的因素:排出部分漏失、吸入部分漏失、其他部分漏失 提高泵效的措施:

1、选择合理的工作方式。

2、确定合理沉没度,以降低泵口气液比,减少进泵气量,从而提高泵的充满程度。

3、改善泵的结构,提高泵的抗磨、抗腐蚀性能,采取防砂、防腐蚀、防蜡及定期检查泵等 措施。

4、使用油管锚减少冲程损失。

5、合理利用气体能量及减少气体影响。

有杆油井生产系统:油层、井筒流动、机—杆—泵和地面出油管线到油气分离器。静液面:关井后环形空间中液面恢复到静止(与地层压力相平衡)时的液面。动液面:油井生产时油套环形空间的液面。

地面示功图:表示悬点载荷与位移的示功图称为地面示功图

P157

第五章:注水

油田注水要求:水源的水量充足、水质稳定

水源种类:地面水源、来自河床等冲积层的水源、地层水水源、油层采出水 注入水处理技术:

1、沉淀(聚凝剂:硫酸铁、三氯化铁和偏铝酸钠)

2、过滤

3、杀菌(杀菌剂:次氯酸、次氯酸盐及氟化钙、甲醛既有杀菌作用又有 防腐作用)

4、脱氧

5、曝晒

6、含油污水处理

污水回注的优点:(1)污水中含表面活性物质,能提高洗油能力。

(2)高矿化度污水回注后,不会使粘土颗粒膨胀而降低渗透率。

(3)污水回注保护了环境,提高了水的利用率。污水回注应解决的问题:(1)处理后的污水应达到注水水质标准。

(2)水在设备和管线中既不产生堵塞性结垢,又不产生严重腐蚀。

(3)和地层水不起化学反应生成沉淀,以免堵塞油层。注水地面系统:水源泵站、水处理站、注水站、配水间和注水井 注水站作用:将来水升压,以满足注水井对注入压力的要求。储水罐作用:

1、储备作用:为注水泵储备一定水量,防止因停水而造成缺水停泵现象。

2、缓冲作用:避免因供水管网压力不稳定而影响注水泵正常工作及其它系统的 供水量及水质。

3、分离作用:可使水中较大的固体颗粒物质、砂石等沉降于罐底,含油污水中 较大颗粒的油滴可浮于,便于集中回收处理。注水井投注程序:

排液(目的在于清除油层内的堵塞物,在井底附近造成适当的低压带,为注水创造 有利条件,并利用部分弹性储量,减少注水井排或注水井附近的能量损失,有利于 注水井排拉成水线。)

洗井(目的是把井筒内的腐蚀物、杂质等污物冲洗出来,避免油层被污物堵塞,影 响注水。)

试注(目的在于确定能否将水注入油层并取得油层吸水启动压力指数等资料,根据 要求注入量选定注入压力。)

4、转注(注水井通过排液、洗井、试注,取全准试注的资料,并绘出注水指示曲线,在经过配水就可以转为正常注水。)

吸水指数:单位注水压差下的日注水量,单位为m3/(d*MPa)比吸水指数:地层吸水指数除以油层有效厚度的数值 视吸水指数:日注水量/井口压力

(未进行分层注水时若采用油管取水,则井口压力取套管压力;若采用套管注水,则井口压力取油管压力。)

影响吸水能力的因素:

分层注水作用:解决层间矛盾,调整油层平面上注入水分布不均匀的状况,以控制油井含水 上升和油田综合含水率的上升速度,提高油田的开采效果。

封隔器失效的原因:

1、封隔器胶皮筒变形或破裂,使胶皮筒无法密封

2、配水器弹簧失灵及管柱底部阀密封不严,使油管内外压差达不到封 隔器胶皮筒胀开所需要的压力差。

表现:油套压平衡;注水压力不变(或下降),而注入量上升。欠注:设计配注量大于实际注水量使配注误差为正 超注:设计配注量小于实际注水量使配注误差为负

嘴损曲线:配水嘴尺寸、配水量和通过配水嘴的节流损失三者之间的定量关系曲线。

注水井调剖:为了调整注水井的吸水剖面,提高注入水的波及系数,改善水驱效果,向地层 的高渗透层注入堵剂,堵剂凝固或膨胀后,降低高渗透层的渗透率,迫使注入 水增加对低含水部位的驱油作用的工艺措施称为注水井调剖。

调剖方法:

1、单液法:向油层注入一种液体,液体进入油层后,依靠自身发生反应,随后 变成的物质可封堵高渗透层,降低渗透率,实现堵水。

堵水剂:石灰乳、硅酸溶液、络冻胶、硫酸、水包稠油

2、双液法:向油层注入由隔离液隔开的两种可反应(或作用)的液体。堵水剂:沉淀性堵剂、冻胶型堵剂、胶体分散体型堵剂 注水井调剖的选井条件:

1、位于综合含水高、采出程度较低、剩余油饱和度较高的注水井

2、与井组内油井连通情况好的注水井

3、吸水和注水状况良好的注水井

4、固井质量好、无窜槽和层间窜漏现象的注水井 调剖是否有效判断条件:

1、处理层吸水指数较调剖前下降50%以上

2、吸水剖面发生明显合理变化,高吸水层降低吸水量,低吸水层增 加吸水量10%以上

3、压降曲线明显变缓

示踪剂:指能随流体运动,易溶且在低浓度下仍可被检测,用以指示溶解它的液体在多孔介 质中的存在、流动方向或渗透速度的物质。常用的水示踪剂:放射性示踪剂、化学示踪剂 第六章:水力压裂技术

水力压裂:利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。(原理主要是通过降低降低附近地层中流体的渗流阻力和改变流体的渗流状态。)

破裂梯度:指地层破裂压力与地层深度的比值

1、一般认为β小于15-18时形成垂直裂缝,而大于23时则是水平裂缝。因此深地层出现的多为垂直裂缝,浅地层出现水平裂缝的几率多。

2、如果地层破裂压力过高,难以进行正常施工,可进行预处理以降低破裂压。这些方法的实质是降低井底附近地层的应力,如高效射孔、密集射孔、水力喷砂射孔及小规模酸化。压裂液:前置液:作用是破裂地层并造成一定几何尺寸的裂缝,以备后面的携砂液进入。携砂液:作用是将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上。

顶替液:将携砂液送到预定位置,并有预防砂卡的作用;注完携砂液后要用顶替液 将井筒中全部携砂液替入裂缝中,以提高携砂液的效率和防止井筒沉砂。压裂液的性能要求:

1、滤失少

2、悬砂能力强

3、摩阻低

4、稳定性

5、配伍性

6、低残渣

7、易返排

8、货源广、便于配制、价钱便宜

压裂液类型:水基压裂液、酸基压裂液、油基压裂液、乳状及泡沫压裂液。

压裂液到地层受三种机理控制:压裂液的粘度、油藏岩石和流体的压缩性及压裂液的造壁 性。

初滤失量:形成滤饼前的滤失量用Vsp表示。幂律液体流动从地面到地下裂缝中的四种过程:地面管线、井筒、射孔孔眼和裂缝中的流动。导流率:指油层条件下填砂裂缝渗透率与裂缝宽度的乘积,常用FRCD表示。

支撑剂的性能要求:

1、粒径均匀,密度小

2、强度大、破碎率小

3、圆度和球度高

4、杂质含量少

5、来源广,廉价

支撑剂的类型:脆性支撑剂,韧性支撑剂(按力学性质分)树脂包层支撑剂的优点:

树脂薄膜包裹砂粒,增加了砂粒间的接触面积,从而提高了支撑剂抗闭合压力的能力。树脂薄膜可将压碎的砂粒小块或粉砂包裹起来,减少了微粒的运移与堵塞孔道的机会,从而改善了填砂裂缝的导流能力。

树脂包层砂总的体积密度比上述中强度与高强度陶粒要低很多,便于选否,因而降低了对携砂液的要求。

树脂包层支撑剂具有可变形的特点,这使其接触面积有所增加,可防止支撑剂在软地层中的嵌入。

裂缝内的砂浓度:指单位体积裂缝内所含支撑剂质量。

裂缝闭合后的砂浓度:指单位面积裂缝上所铺的支撑剂质量。地面砂比:单位体积混砂液中所含的支撑剂质量。(支撑剂体积与压裂液体积之比)

平衡状态:液体的流速逐渐达到使颗粒处于悬浮状态的能力,此时颗粒停止沉降,这种状态称为平衡状态。颗粒在垂直剖面上的分布:区域1是沉降下来的沙堤,在平衡状态下沙堤的高度为平衡高度。区域2是在沙堤面上的颗粒滚流区

区域3则是悬浮区,颗粒都处于悬浮状态,存在浓度梯度 区域4是无砂区

支撑剂的选择依据:支撑剂的类型和粒径

影响支撑剂选择的因素:

1、支撑剂的强度;

2、粒径及其分布;

3、支撑剂类型;

4、其他因素(支撑剂的质量、密度以及颗粒圆度、球度也都会影响裂缝的导流能力。)影响压裂井增产幅度的原因:油层特性和裂缝的几何参数

(油层特性只要是指压裂层的渗透率、孔隙度、流体物性、油层能量、含油丰度和泄油面积等;裂缝参数是指填砂裂缝的长、宽、高和导流能力)麦克奎尔—西克拉曲线结论: 在低渗油藏中,增加裂缝长度比增加裂缝导流能力对增产更有利。因为对低渗油层容易得到高的导流能力,要提高增产倍数,应以加大裂缝长度为主,这是当前在压裂特低渗透层时,强调增加裂缝长度的依据。而对高渗地层正好相反,应以增加导流能力为主。

对一定的裂缝长度,存在一个最佳的裂缝导流能力。因为对一定的油层条件,油层的供液能力是有限的,所要求的渗流条件(导流能力)也是有限的,过分追求高导流能力是不必要的。压裂效果预测:

1、增产倍数;

2、产量预测 ::酸处理技术

酸化原理:通过酸液对岩石胶结物或地层孔隙、裂缝内堵塞物等的溶解和溶蚀作用,恢复或提高地层孔隙和裂缝的渗透性。酸化分为:

1、酸洗:将少量酸液注入井筒内,清除井筒孔眼中酸溶性颗粒和钻屑及结垢等,并疏通射孔孔眼。

2、基质酸化:在低于岩石破裂压力下将酸注入地层,依靠酸液的溶蚀作用恢复 或提高井筒附近较大范围内油层的渗透性。

3、压裂酸化:在高于岩石破裂压力下将酸注入地层,在地层内形成裂缝,通过酸液对裂缝壁面物质的不均匀溶蚀形成搞导流能力的裂缝。酸岩反应速度:在数值上酸岩反应速度可用单位时间内酸浓度的降低值表示,也可用单位时间内岩石单位反应面积的溶蚀量来表示。酸岩反应的三个步骤:

1、酸液中H+传递到碳酸盐岩表面;

2、H+在岩面与碳酸盐进行反应;

3、反应生成物Ca2+、Mg2+和CO2气泡离开岩面 酸液中的H+透过边界层传递到岩面的方式:对流和扩散 面容比:岩石反应表面积与酸液体积之比,简称面容比。影响酸岩复相反速度的因素分析:P297 面容比:当其他条件不变时,面容比越大,单位体积酸液中的H+传递到岩石表面的数量就越多,反应速度也越快。

酸液的流速:随着酸液流速的增加,酸液的流动可能会由层流变为紊流,从而导致H+的传质速度显著增加,反应速度也相应增加。

酸液的类型:酸岩反应速度近似与酸溶液内部的H+浓度成正比,采用强酸时反应速度快,采用弱酸时反应速度慢。

盐酸的质量分数:盐酸质量分数在24%—25%之前,随盐酸质量分数的增加,反应速度也增加;超过这个范围后,随盐酸质量分数的增加,反应速度反而降低。温度:温度升高,H+的热运动加剧,H+传质速度加快,酸岩反应速度也随之加快。

压力:当压力小于3MPa时,压力对反应速度的影响显著;压力超过5—6MPa,压力对反应速度影响甚微。

其他因素:岩石化学组分、物理化学性质、酸液粘度 酸化压裂:用酸液作为压裂液实施不加支撑剂的压裂。

原理:

1、酸压过程中一方面靠水力作用形成裂缝

2、靠酸液的溶蚀作用把裂缝的壁面溶蚀成凹凸不平的表面,停泵卸压后,裂缝壁面不能完全闭合,具有较高的导流能了,可达到提高底层渗透性的目的。

提高酸压裂缝的有效长度和酸压效率: 固相防滤失剂 前置液酸压 胶化酸

残酸:当酸浓度降低到一定浓度时,酸液基本上失去溶蚀能力的酸液。

有效作用距离(裂缝的有效长度):酸液由活性酸变为残酸之前所流经裂缝的距离。增加酸液有效作用距离的方法: 在地层中产生较宽的裂缝 较低的氢离子有效传质系数 较高的排量

尽可能小的滤失速度

土酸:由10%—15%的盐酸及3%—8%的氢氟酸混合而成 土酸酸化设计步骤:

确信处理井是由于油气层损害造成的地产或低注入量 选择适宜的处理液配方

确定注入压力或注入排量,以便在低于破裂压力条件下施工 确定处理液量

提高土酸处理效果的方法:

同时将氟化铵水溶液与有机脂注入地层,一定时间后有机脂水解生成有机酸,有机酸与氟化铵作用生成氢氟酸。

利用粘土矿物的离子交换性质,在粘土颗粒上就地产生氢氟酸 高质量分数盐酸处理的好处:

酸岩反应速度相对变慢,有效作用范围增大

单位体积盐酸可产生较多的CO2,利于废酸的排出

单位体积盐酸可产生较多的氯化钙、氯化镁,提高了废酸的粘度,控制了酸岩反应速递,并有利于悬浮、携带固体颗粒从底层中排出 受到地层水稀释的影响较小

盐酸处理的缺点:与石灰岩反应速度快,特别是高温深井,由于地层温度高,盐酸与地层作用太快,因而处理不到地层深部;此外,盐酸会使金属坑蚀成许多麻点状斑痕,腐蚀严重 多组分酸:一种或几种有机酸与盐酸的混合物 油酸乳化作用:

有利于延缓酸岩的反应速度

可把活性酸携带到油气层深部,扩大了酸处理的范围 解决防腐问题

稠化酸:指在盐酸中加入增稠剂,使酸液粘度增加。缓蚀剂作用: 抑制阴极腐蚀 抑制阳极腐蚀

在金属表面形成一层保护膜

稳定剂:为防止氢氧化铁沉淀,避免发生地层堵塞现象而加入的某些化学物质 第八章:复杂条件下的开采技术 油层出砂的危害:

砂埋油层或井筒砂堵造成油井停产 出砂使地面和井下设备严重磨蚀、砂卡 冲砂检泵、地面清罐等维修工作量剧增 出砂严重时还会引起井壁坍塌而损坏套管 出砂的原因: 地质因素(内因)

1、应力状态

2、岩石的胶结状态

3、渗透率的影响

二、开采因素(外因)

1、固井质量

2、射孔密度

3、油井工作制度

4、其它因素 防砂方法:

制定合理的开采措施 采取合理的防砂工艺方法 砾石填充防砂方法 化学防砂方法 清砂方法:

冲砂:通过冲管、油管或油套环空向井底注入高速流体冲散砂堵,由循环上返的液体将砂粒带到地面,以解除油水井砂堵的工艺措施

捞砂:用钢丝绳向井内下入专门捞砂工具,将井底积存的砂粒捞到地面上来的方法 冲砂方式:正冲砂;反冲砂;正反冲砂;联合冲砂P347 石蜡:固相物质主要是含碳原子数为16—64的烷烃

结蜡现象:在开采过程中,随着温度、压力的降低和气体的析出,溶解的石蜡便以结晶体析出、长大聚集和沉积在管壁等固相表面上 影响结蜡的因素: 原油的性质及含蜡量 原油中的胶质、沥青质 压力和溶解气油比 原油中的水和机械杂质

液流速度、管壁粗糙度及表面性质 油井防蜡方法:

1、阻止蜡晶的析出

2、抑制石蜡结晶的聚集

3、创造不利于石蜡结晶的条件 油井清蜡方法:

机械清蜡:用专门的工具刮除油管壁上的蜡,并靠液流将蜡带至地面的方法 热力清蜡:利用热力学能提高液流和沉积表面的温度,熔化沉积于井筒中的蜡

1、热流体循环清蜡法

2、电热清蜡法

3、热化学清蜡法

油井出水:注入水、边水、底水、上层水、下层水、夹层水 油井防水措施:

制定合理的油藏工程方案,合理部署井网和划分注采系统,建立合理的注、采井工作制度和采取合适的工程措施以控制油水边界均匀推进。

提高固井和完井质量,以保证油井的封闭条件,防止油层与水层串通 加强油水井日常管理、分析,及时调整分层注采强度,保持均衡开采 找水:指油气井出水后,通过各种方法确定出水层位和流量的工作 稠油特点:

1、粘度高、密度大、流动性差

2、稠油的粘度对温度敏感

3、稠油中轻质组分含量低,而胶质、沥青质含量高 高凝油:指蜡含量高、凝固点高的原油

上一篇:开滦集团融入京津冀一体化进程的调查报告下一篇:学校班级板报评比活动方案