抽屉原理的应用与推广

2024-04-20

抽屉原理的应用与推广(精选6篇)

篇1:抽屉原理的应用与推广

抽屉原理及其应用

张 志 修

摘要:抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。

关键词:代数 几何 染色 存在性

引言

抽屉原理最早是由德国数学家狄利克雷发现的,因此也叫狄利克雷重叠原则。抽屉原理是一条重要的理论。运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。

抽屉原理的内容

第一抽屉原理:

原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的nkk1,这不可能。

原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m1个或多于m1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉

至多放进mn个物体,与题设不符,故不可能。

原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。.原理1 2 3都是第一抽屉原理的表述 第二抽屉原理:

把mn﹣1个物体放入n个抽屉中,其中必有一个抽屉中至多有mn﹣1个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

一、应用抽屉原理解决代数问题

抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题,它易于接受,在数学问题中有重要的作用。

1、整除问题常用剩余类作为抽屉。把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用0,„,2,1,m﹣1表示。

例1:对于任意的五个自然数,证明其中必有3个数的和能被3整除。

证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:

0,1,2

①若这五个自然数除以3后所得余数分别分布在这3个抽屉中

(即抽屉中分别为含有余数为0,1,2,的数),我们从这三个抽屉中各取1个(如1到5中取3,4,5),其和34512 必能被3整除。

②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数。

③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除。

2、还有的以集合造抽屉

例2:从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

分析与解答:在这12个自然数中,差是7的自然数有以下5对:12,5 11,4 10,3 9,2 8,1。另外,还有2个不能配对的数是6 7。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为12,5 11,4 10,3

9,2 8,1 6 7,显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7。

二、应用抽屉原理解决几何问题

利用分割图形的方法构造抽屉

本方法主要用于解决点在几何图形中的位置分布和性质问题,通常我们把一个几何图形分割成几部分,然后把每一部分当做一个“抽屉”,每个抽屉里放入相应的元素。

例3:已知边长1为的等边三角形内有5个点,则至少有两个点

距离不大于1/2。

证明:用两边中点的连线将边长为1的等边三角形分成 四个边长为1/2的等边三角形,若规定边DE、EF、FD上的 点属于三角形DEF,则三角形ABC内的所有点被分为 4个全等的小等边三角形,由抽屉原理,三角形内的任意5个点至少有2个点属于同一小等边三角形,由“三角形内(包括边界)任意两点间的距离不大于其最大边长”知这两个点距离不大于1/2。

抽屉原理与中学数学的关系,常用抽屉原理的最值的思路解中学数学题。

例4:用柯西不等式及二元均值不等式证明了如下三角不等式: 在△ABC中,有sin2Asin2Bsin2C.证明:由抽屉原理知sinA,sinB,sinC中必有两个不大于或不小于3294,不妨设sinA33,sinB22或sinA33,sinB22则[sin2A(323)][sin2B()2]0,故 2243sin2Asin2Bsin2Asin2B

34于是

43sin2Asin2Bsin2Csin2Asin2Bsin2C

344cos(AB)cos(AB)23]sin2C =[32413(1cosC)21cos2C 34219(cosC)2 3249 4

三、应用抽屉原理解决染色问题

染色问题是数学中的重要内容之一,也是深受广大师生喜爱的的题目类型之一。染色问题是借用图论的思想心提高解决问题的能力,所涉及的各科数学知识都不是很难,但染色法解数学问题技巧性非常强,而且解题的途径都比较独特,难度往往在于寻求解决问题的关键所在或最佳方法.

平面染色问题为点染色或线染色问题。通常是根据各个物体所存在的状态,将它们的状态看作抽屉原理中的“抽屉”和“元素”,从而来解决问题的。

(1)点染色问题

例5:将平面上每点都任意地染上黑白两色之一。求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色。

证明:在这个平面上作一个边长为1的正三角形。如果A、B、C这三点同色,则结论成立,故不妨设A和B异色。以线段AB为底边,作一个腰长为2的等腰ABD。由于点A和B异色,故无论D为何色,总有一腰的两个端点异色。不妨设点A和D异色。设AD的中点为E,则AE=ED=1。不妨设点A和E为白色,点D为黑色。

以AE为一边,在直线AD两侧各作一个等边三角形:AEF与AEG。若点F和G中有一个是白点,则导致一个边长为1的等边三角形的三个顶点都是白点;否则,边长为3的等边DFG的三个顶点同为黑点。

(2)边染色问题

例6:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。

四、应用抽屉原理解决实际问题

在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例7:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?

解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。第一步先确保取出的筷子中

有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4711根筷子,就能保证达到目的。

例8:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n﹣1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n﹣2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n﹣2,还是后一种状态1、2、3、„、n-1,握手次数都只有n﹣1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。解决问题,抽屉原理是一个利器。我们在解题的过程中可以迅速代入,更多要思考怎样用抽屉原理让问题清晰化,简单化。通过学习,使我的逻辑思维能力得到了提高,扩展了我的知识面,掌握了“抽屉原理”的基本内容,懂得把所学知识运用到生活中去,运用“抽屉原理”解决生活中的许许多多以前不明白的现象。

参考文献:

[1] 殷志平、张德勤著《数学解题转化策略举要》

《中学教学教与学》1996.1 第19页 [2] 宿晓阳著《用抽屉原理巧证一个三角不等式》

《中学数学月刊》2010.6 第45页

[3] 其他参考:http:// http://baike.baidu.com/view/8899.htm http://wenku.baidu.com/view/4527ed3710661ed9ad51f30e.html http://wenku.baidu.com/view/158dd2***92ef78c.html http:///free/20101221/84545509713564.html http://wenku.baidu.com/view/4272e8f9941ea76e58fa0489.html 8

篇2:抽屉原理的应用与推广

摘 要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。关键词: 组合数学;抽屉原理;抽屉构造

1.引言

抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。

2.抽屉原理的基本形式与构造

2.1基本形式

陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。

原理Ⅱ 把m个元素任意放到n(mn)个集合里,则至少有一个集合里至少有k个元素,其中

m , 当n能整除m时,nkm  1 , 当n不能整除m时.n原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。

2.2基本构造

利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。构造抽屉是用抽屉原理解题的关键。有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。3.利用抽屉原理解题的常用方法

3.1利用划分数组构造抽屉

例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。

分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。现在的问题是如何对这12个自然数:1,2 ,„,12 进行分组, 注意到一个自然数, 它要么是奇数, 要么是偶数。若是偶数, 我们总能把它表达为奇数与2k(k1,2,3...)的乘积的形式,这样, 如果允许上述乘积中的因子2k的指数K可以等于零, 则每一个自然数都可表达成“ 奇数2k”(k1,2,3...)的形式, 于是, 把1,2,3„,12个自然数用上述表达式进行表达, 并把式中“奇数” 部分相同的自然数作为一组, 构成一个抽屉。

证明: 把前12个自然数划分为如下六个抽屉:

A1={120,121,122,123} A2={320,321,322} A3={520,521} A4={720} A5={920} A6={1120} 显然, 上述六个抽屉内的任意两个抽屉无公共元素, 且A1+A2+...+A6={1,2,3,...,12}.于是,由抽屉原理得,对于前12个自然数不论以何种方式从其中取出七个数,必定存在两个数同在上述六个抽屉的某一个抽屉内。设x、y是这两个数,因为A4、A5、A6都是单元素集,因此,x、y不可能同在这三个抽屉中的任何一个抽屉内。可见,x、y必同在A1、A2、A3的三个抽屉中的某一个之内,这样x和y两个数中,较大的数必是较小数的整数倍。例2 学校组织1993名学生参观天安门,人民大会堂和历史博物馆,规定每人必须去一处,最多去两处参观。那么至少有多少学生参观的地方完全相同?

分析:我们可以把某学生参观某处记作“1”,没有去参观记作“0”。并用有序数组{a,b,c}表示学生去参观天安门、人民大会堂和历史博物馆的不同情况。因为规定每人必须去一处,最多去两处,所以参观的方式,只有下列六种可能:

{1、1、0} {1、0、1} {0、1、1} {1、0、0} {0、1、0} {0、0、1} 把这六种情况作为六个抽屉,根据抽屉原理,在1993名学生中,至少有(1993)+1=333人参观的地方相同。63.2利用余数构造抽屉

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m1]表示。在研究与整除有关的问题时,常常用剩余类作为抽屉。

例3 对于任意的五个自然数,证明其中必有3 个数的和能被3 整除。

证明:任何数除以3 所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]

1、若这五个自然数除以3 后所得余数分别分布在这3 个抽屉中(即抽屉中分别为含有余数为0,1,2 的数),我们从这三个抽屉中各取1 个(如1到5中取3,4,5),其和(3+4+5=12)必能被3 整除。

2、若这5 个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3 个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3 个自然数之和是3 的倍数。

3、若这5 个余数分布在其中的一个抽屉中,很显然,必有3 个自然数之和能被3 整除。

3.3利用等分区间构造抽屉

所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子

1区间,它们之间的距离不大于这种构造法常用于处理一些不等式的证明。

n例4 已知11个数x1,x2,,x11,全满足0xi1 ,i=1, 2  ,11,证明必有两个xi,xj(ij)满足xixj1.101.由抽屉原理,10证明:如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就是10个等分区间,即10个抽屉),每一小段长为

1111个点(数)中至少有+1=2个点落在同一条小线段上,这两点相应的数之差

10的绝对值 1.100

图1 对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造方法来构造抽屉,正如上面的例子,在等分区间的基础上我们便很方便的构造了抽屉,从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受。

3.4利用几何元素构造抽屉

在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后用分割所得的小图形作抽屉。这种分割一般符合一个“分划”的定义,即抽屉间的元素既互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素。

例5 如果直径为5的圆内有10个点,求证其中有某两点的距离小于2。分析:把圆等分成9个扇形而构造出9个抽屉,是最先考虑到的,但显然是不行的(虽然有两个点在某一扇形内,但不能确认它们之间的距离小于2)。转而考虑先用一个与已知圆同心,半径为1 的不包含边界的小圆作为一个抽屉,然后把圆环部分等分成八个部分,如图二所示,这样就构成了9个抽屉。

证明:先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把已知的圆分成了9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区域内,只须证明每个区域中的两点的距离都小于2.显然,小圆内任两点间的距离小于2,又曲边扇形ABCD中,AB2,AD2,CD2,而任两点距离最大者AC,有

AC =OA2OC22OAOCcos45

=2.520.922.50.92=3.88<2.图2

3.5利用状态制构造抽屉

例6 设有六点,任意三点不共线,四点不共面,如果把这六个点两两用直线联系起来,并把这些直线涂以红色或者蓝色.求证:不论如何涂色,总可以找到三点,做成以它们为顶点的三角形,而这三角形三边涂有相同的颜色。

分析:设已知六点为A1,A2,A3,A4,A5,A6,由于任三点不共线,所以任三点均可作为某三角形的三个顶点。

证明:从六个点中任取一点A1,将A1与其余五点相连得到五条线段,线段如下所示: A1A2,A1A3,A1A4,A1A5,A1A6,这五条线段只有两种颜色即红色或者蓝色,由抽屉原理知,至少有三条涂有同一种颜色。颜色为抽屉,线段为元素,不妨设A1A2,A1A3,A1A4,涂有红色,这时我们考察△A2A3A4

(1)若△A2A3A4中有一条红色边,如A2A3,则△A1A2A3为三边同红的三角形;

(2)若△A2A3A4中无一条红色边,则△A2A3A4就是三边均为蓝色的三角形。4.抽屉原理的应用

4.1抽屉原理在高等数学中的应用

高等数学中一些问题抽象,复杂,解答比较困难,如果一些问题巧妙地运用抽屉原理会收到很好的效果,下列举例介绍抽屉原理在高等数学中的巧妙应用。

例7 设A为n阶方阵,证明:存在1in,使秩(Ai)=秩(Ai1)=秩(Ai2)

证明:因为n阶方阵的秩只能是0,1 , 2,  ,n这n+1个一,由抽屉原理可知,存在k,l满EA0,A,A2,,An,An1,E的个数多于秩的个数,足1k

秩(Ak)= 秩(Al), 但

秩(Ak)秩(Ak1)„秩(Al), 所以

秩(Ak)=秩(Ak1), 利用此式与秩的性质得

秩(ABC)秩(AB)+秩(BC)-秩(B), 这里的A,B,C是任意三个可乘矩阵,用数学归纳法可证

秩(Akm)=秩(Akm1).其中m为非负整数,故命题的结论成立。

4.2抽屉原理在初等数论中的应用

例8(中国剩余定理)令m和n为两个互素的正整数,并令a和b为整数,且0am1以及0bn1,则存在一个正整数x,使得x 除以m 的余数是a,并且x 除以n 的余数为b,即x可以写成xpma的同时又可以写成xqnb的形式,这里p 和q 是整数。

(n1)ma,证明: 为了证明这个结论考虑n 个整数a,ma,2ma,„,这些整数中的每一个除以m都余a.设其中的两个除以n 有相同的余数r. 令这两个数为ima 和jma,其中存在两整数qi和qj,使得imaqinr及jmaqjnr,0ijn1.因此,这两个方程相减可得(ji)m(qjqi)n.于是n是(ji)m的一个因子. 由于n和m没有除1 之外的公因子,因此n是ji的因子. 然而,0ijn1意味着,0jin1,也就是说n 不可能是ji的因子. 该矛盾产生于我们的假设: n个整数a,ma,2ma,...,(n1)ma中有两个除以n会有相同的余数。

因此这n个数中的每一个数除以n 都有不同的余数。

根据抽屉原理,n个数0,1,„,n1 中的每一个作为余数都要出现,特别地,数b也是如此。令p 为整数,满足0pn1,且使数xpma 除以n余数为b. 则对于某个适当的q,有xqnb.

因此,xpma且xqnb,从而x具有所要求的性质。

5.结束语

本文对抽屉原理的常见形式及其应用结合实例做了一些探讨,为数学解题提供了一种简便的方法.应用抽屉原理解题的难点在于如何恰当的构造抽屉,而制造抽屉的办法是灵活多变的, 不能生搬硬套某个模式, 需要灵活运用。

参考文献

[1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6 [2]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173 [3]钟颖.关于抽屉原理[J].成都教育学院学报,2003,17(7):75.[4]朱华伟,符开广.抽屉原理[J].数学通讯,2006,19(17):37.[5]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66 [6]刘否南.华夏文集.太原:高校联合出版社,1995.88-90 [7]魏鸿增等.抽屉原理在高等数学中的应用.数学通报,1995,2.3-4 [8]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11

The Principle And Application Of The Drawer

篇3:抽屉原理的应用

定理:如果将n+1个物体放进n个抽屉, 那么至少有一个抽屉中包含两个或更多的物体.

证明:如果这n个盒子中的每一个至多包含有一个物体, 那么物体的总数最多是n, 既然我们有n+1个物体, 于是某个盒子中就必然包含至少两个物体.

2.抽屉原理应用举例

例1:给定m个整数a1, a2, …, am, 存在0≤k

解:为了深入这个问题, 考虑m个和

a1, a1+a2, a1+a2+a3, …, a1+a2+a3+…+am

如果这些和当中的任意一个可被m整除, 那么结论就成立.因此, 我们可以设这些和中的每一个除以m都有一个非零余数, 余数等于1, 2, …, m-1.由于存在m个和而只有m-1个余数, 则必然有两个和数除以m有相同的余数.因此, 存在整数k和l, k

a1+a2+…+ak=bm+r, a1+a2+…+al=cm+r

二式相减, 我们发现ak+1+…+al= (c-b) m, 从而ak+1+…+al能够被m整除.

为了解释上面的论断, 令m=7, 并令整数为2, 4, 6, 3, 5, 5, 6.计算上面的和得到2, 6, 12, 15, 20, 25, 31, 其中当被7除时余数分别为2, 6, 5, 1, 6, 4, 3.有两个等于6的余数, 这意味着结论:6+3+5=14可被7整除.

例2:一位国际象棋大师有11周的时间备战一场锦标赛, 他决定每天至少下一盘棋, 但为了不使自己过于疲劳他还决定在每周不能下棋超过12盘.证明:存在连续若干天, 期间这位大师恰好下了21盘棋.

解:令a1是在第一天所下的盘数, a2是在第一天和第二天所下的总盘数, 而a3是在第一天、第二天和第三天所下的总盘数, 等等.由于每天至少要下一盘棋, 故数值序列a1, a2, …, a77是一个严格递增序列.此外, a1≥1, 而且由于每周下棋最多是12盘, a77≤12×11=132.

因此, 我们有

1≤a1

序列a1+21, a2+21, …, a77+21也是一个严格递增序列:

22≤a1+21

于是, 这154个数

a1, a2, …, a77, a1+21, a2+21, …, a77+21

中的每一个都是1到153之间的一个整数.由此可知, 它们中间有两个是相等的.既然a1, a2, …, a77中没有相等的数, 并且a1+21, a2+21, …, a77+21中也没有相等的数, 因此必然存在一个i和一个j使得ai=aj+21.从而, 这位国际象棋大师在第j+1, j+2, …, j+i天总共下了21盘棋.

例3:从整数1, 2, …, 200中, 我们选择101个整数.证明:在所选的这些整数之间存在两个这样的整数, 其中的一个可被另一个整除.

通过分解出尽可能多的2因子, 我们看到, 任一整数都可以写成2^k×a的形式, 其中k≥0并且a是奇数.对于1到200之间的一个整数, a是100个数1, 3, 5, …, 199中的一个.因此, 在所选的101个整数中存在两个整数, 当写成上述形式时这两个数具有相同的a值.令这两个数是2^r×a和2^s×a.如果rs, 那么第一个数就能被第二个数整除.

注意, 例3在这种意义下是最好的可能:从1, 2, …, 200中可以选择这样的100个数, 其中没有一个能被另一个整除, 比如, 101, 102, …, 199, 200就是这样的整数.

我们以另外的, 来自数论中的应用来结束本段.首先我们回忆, 如果两个正整数m和n的最大公约数为1, 我们就称它们为互数.

于是, 12和35互数, 而12和15则否, 因为3是12和15的公因子.

3.问题的总结

通过上述三个例题, 我们看到, 利用抽屉原理能够解决看起来很复杂的问题, 而得出解决问题的关键是为后面巧妙地构造抽屉.

参考文献

[1]Richard.Brualdi著.罗平等译.组合数学.北京:机械工业出版社, 2005.2.

篇4:抽屉原理的简单应用

一、抽屉原理

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则至少有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

原理2也可以变为:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至多要有k个元素。其中k=〔m/n〕,这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。

二、应用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

利用上述原理容易证明:

“任意7个整数中,至少有3个数的两两之差是3的倍数。”

因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

三、应用抽屉原理解题例举:

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意

再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种;

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定

有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这

50個同学看作苹果50÷9=5……5

由抽屉原理2k=[m/n]+1可得,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。

解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=

46(人)抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

1958年6/7月号的《美国数学月刊》上有这样一道题目:

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。

篇5:抽屉原理设计与说课

开发区西园小学 乔海燕

2011.4.6 “抽屉原理”是六年级数学第十二册的一个新增的教学内容。这教材通过直观例子,借助实际操作,在向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于学生数学思维的发展,注重为为学生提供自主探索的空间,运用“创设情境---建立模型---解释应用”的教学模式,创设了一些活动,通过猜测、验证、观察、分析归纳等数学活动,引导学生自主探究,经历探究“抽屉原理”的过程,建立数学模型,初步了解了“抽屉原理”,并能够应用于实际,在此过程中学会科学地探究解决问题的方法,培养学生迁移类推的数学思想。教学环节,分为三部分:

一、创设情景,初步感知

兴趣是最好的老师。通常老师们都会以情景导入来开课。但我们不能忽略情景导入的有效性。本节课设计的“抢凳子”游戏,其实就是一个能真实反映“抽屉原理”本质的现象,不单单只起到导入新课的作用,更重要的是要为本节课的学习做好铺垫。这节课最大的难点在于理解和准确描述“抽屉原理”。“总有一个杯子里至少放两根小 棒”,这句话将贯穿于整个课堂教学过程中,但这句话却很“拗口”,而且难以理解。怎样让学生在理解的基础上自然而然地来运用它呢?突破了这一点,后面的教学才能顺利地展开。于是,我就通过“抢凳子”游戏,来帮助学生理解“总有”和“至少”这两个关键词,为后面的教学做好铺垫。游戏结束,告诉学生,这个游戏蕴涵着有趣的数学原理叫做“抽屉原理”,明确本节课的教学目标和学生的学习任务。对照《高效课堂22条》第7条中高效课堂的五项策略中的首项:预习先行,先学后“交”,实现两个前置,学习前置和问题前置。课前我尝试让学生进行了预习,这时又提出“看到这个课题,你想知道什么?”让学生提出自己的疑问,带着问题来学习,也激发了学生探究的兴趣和学习积极性。

二、合作探究,建立模型

这一环节是本节的重点。高效课堂的理念是自主、合作、探究,课堂的效益公式是:1×?=效益。“1”即教师,并假定为“恒数”,那么学生即为“?”,学生投入状态的“?”,即收获正倍或负倍的效益。如何体现高效课堂的这几个重要指标,体现学生的主体地位是我思考和设计的重点。

新课程标准明确:学生是学习活动的主体,教师是学生学习的合作者,引导者。这个环节的设计,我注重让学生经历知识产生、形成的过程。化繁为简,用小棒和杯子来研究这个原理,明确学习目标。从最简单的数据入手,采用列举法,让学生把3根小棒放入2个杯子里的情况都一一列举出来,初步感知抽屉原理,再通过把4根小棒放 入3个杯子里的操作熟练列举法。让学生动手摆一摆、想一想、组内议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。教学中,为了让学生的小组探究活动有效、不盲目,我设计了几个问题来进行引导。你是怎样放的?有几种不同的方法?你发现了什么?让学生围绕这几个问题进行操作探究和汇报展示,为学生自主探究抽屉原理做好必要的引导,并提供给学生充分交流与展示的空间与时间,避免了小组活动的形式化。接着,引导学生理解抽屉原理的一般化模型。先让学生类推猜测6根小棒放入5个杯子里会有什么结果,然后提出如何验证,让学生借助直观操作发现,把小棒尽量多的“平均分”到各个杯子里,看每个杯子里能分到多少根小棒,剩下的小棒不管放到哪个杯子里,总有一个杯子比平均分得的小棒数多1根,还可以用有余数的除法来表示这一数学规律。大量列举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,即“小棒数比杯子数多1时,总有一个杯子里至少有2根小棒”。

在此基础上,我又提问:小棒数比杯子数多2或其它数会怎么样?来继续开展探究活动,通过学生归纳总结的规律:求至少数的方法到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,在小组交流与全班交流的过程中,充分展示学生的思维过程,建立数学模型,培养了学生的推理能力和初步的逻辑能力,加深学生对知识的理解的同时,各项能力得到发展。

三、解释应用,回归生活

当研究结束,告诉学生我们所研究的这个规律就是“抽屉原理”,这个时候,学生对于课前提出的问题已找到了答案。然后再出示其它简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

四、课堂总结,注重方法回顾

你有什么收获?我们是通过什么方法研究得到的?不但对学习的只是进行梳理,还对这节课所开展的学习方法进行了回顾总结。

把学生的课内实践与课外实践紧密结合起来?

经过研讨,参与的教师明确了抽屉原理研究的是是物体数最多的一个抽屉里最少会有几个物体。所以要想真正理解抽屉原理,首先要使学生明白的是:把3个物体放进两个抽屉里,是放物体最多的抽屉里至少有2个物体。“抽屉原理”教学设计

【教学内容】

《义务教育课程标准实验教科书·数学》六年级下册第68页。【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。3. 通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教具、学具准备】

每组都有相应数量的小棒和杯子。【教学过程】

一、游戏引入。

师:同学们,在上课之前,我们先做一起做个小游戏:请5个同学上来,谁愿来?(学生上来后)

师:听清要求,这里准备了4把椅子,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。

生第一次按要求坐。

师:有一把椅子上坐了两个同学,对吧!再坐几次,但每次的坐法都要跟前面的坐法不同。

不管怎么坐,总有一把椅子上至少坐两个同学。你们同意吗?

这其中蕴含着一个有趣的数学原理。同学们想知道吗?这节课我们就用小棒和杯子一起来研究这个原理。

【设计意图】从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、自主操作,探究新知

(一)教学例1 5 1.出示题目:有3根小棒,2个杯子,把3根小棒放进2个杯子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

师:还有其它不同的摆法吗?

观察这所有的摆法,想一想:五个人坐四把椅子,不管怎么坐,总有一把椅子上至少坐两个同学。那么,把3根小棒放进2个杯子里,不管怎么放......你有什么发现?

生:3根小棒放进2个杯子里,不管怎么放总有一个杯子里放两根或两根以上的小棒。

生:3根小棒放进2个杯子里,不管怎么放总有一个杯子里至少放两根小棒。师:是每个杯子里都有两根小棒吗?谁再来说一说?

师:说的真好!说的既清楚又简洁。老师把同学们的发现记录下来。那么,依此推想下去,把4根小棒放进3个杯子里,又有什么结果呢?同学们再摆一摆,看有什么发现?要求边摆边把摆的情况记录下来。

师:哪个小组愿意把你们摆的情况来展示一下?(指名摆)根据学生摆的情况,师板书各种情况(4,0,0)(3,1,0)(2,2,0)(2,1,1)

那么,把4根小棒放进3个杯子里,不管怎么放......你有什么发现? “总有”是什么意思?“至少”是什么意思?

师:刚才,同学们把各种摆放的情况一一列举出来,得到了这样的结论。那么我们再想想:把6根小棒放进5个杯子里,你感觉会有什么结果?

我的感觉也和大家的是一样的。可是我们想的对不对呢?那就需要我们通过实验去验证。可是杯子和小棒越来越多了,我们还像刚才一样把所有的方法都一一列举出来吗?我们能不能想出一种简便的方法,直接就能证明这个结论是对的还是不对的呢?我们来试试看。小组内讨论交流。

谁来说说,你们小组想出什么办法来了? 学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个杯子里放1根小棒,最多放3根,剩下的1根不管放进哪一个杯子里,总有一个杯子里至少有2根小棒。

师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗? 师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分呢?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 用算式怎么表示呢?剩余的“1”怎么办呢?(放到任意一个杯子里)师:同学们真不简单!这么快就找到这样一种方法来证明这个结论。我们一起再来看一看这样分的过程。

电脑演示。强调:不管怎么分,总有一个杯子里至少有两根小棒。

师:那么,运用这种方法来判断,7根小棒放进6个杯子里会怎么样?理由是什么?谁想再说说?能说说为什么吗?

10根小棒放进9个杯子里呢?100根小棒放进99个杯子里会有什么结果呢? 师:这么大的数字同学们这么快就得出了结论,你是不是发现了其中的规律了呢?同桌先说说,再回答。

如果小棒的个数比杯子的个数多1,不管怎么放,总有一个杯子里至少有两根小棒。

【设计意图】关注“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。扎实有效的教学活动,可以让学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

(二)教学例2 刚才我们研究的都是小棒的个数比杯子的个数多1,那小棒的个数比杯子的个数多

2、多

3、多4的情况下,有会出现怎样的结果呢?来,试试吧!

1、出示:把5根小棒放进3个杯子里会怎样? 先讨论,再摆摆看。22.学生汇报展示。

把5根小棒放进3个杯子里,不管怎么放,总有一个杯子里至少有两根小棒。7根小棒放进4个杯子里呢?为什么呢?

9根小棒放进4个杯子里呢?15根小棒放进4个杯子里呢?会有什么样的结果呢?讨论讨论。

同学们,我们研究到这儿了,看看有什么规律?把你的想法先说给别的同学听。

生:小棒的个数÷ 杯子的个数所得的商+余数,就得到总有一个杯子里至少有多少根小棒

生:小棒的个数÷杯子的个数所得的“商+1”,就得到总有一个杯子里至少有多少根小棒

你同意谁的意见呢?能说出理由吗?

同学们,知道吗?我们今天所研究的这个原理就是数学中有名的“抽屉原理”。我们所用的小棒就看作被分的物体,杯子就看作抽屉。有关抽屉原理,我们一起来了解一下。(电脑出示)

【设计意图】在这一环节的教学中,抓住假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

三、灵活应用,解决问题

运用今天我们所研究的抽屉原理,你能解决有关的数学问题吗?

1、出示:8只鸽子飞回3个鸽笼,至少有3只鸽子要飞进同一个鸽笼里,为什么?

根据抽屉原理,8÷3=2„„2 商2+1 2、15个苹果放进4个盘子里,会怎样?

3、游戏:玩扑克牌 4、32个同学中,至少有两个同学是同一天的生日。对吗?

四、回顾总结,畅谈收获

今天你都学到了什么?有哪些收获与大家分享?

1.学生复习“平均分”

2.游戏理解“总有”“至少”两个词的意思,能说 3、2说的真好!说的既清楚又简洁。老师把同学们的发现记录下来。那么,依此推想下去,把4根小棒放进3个杯子里,又有什么结果呢? 4、3 我们用一一列举的方法得到了这样的结论,想一想,感觉„„ 6、5 讨论、验证,平均分 9、8 100、99 5、3 那么,运用这种方法来判断 7、4 9、4 师:同学们真不简单!这么快就找到这样一种方法来证明这个结论。我们一起再来看一看这样分的过程。

选课想法:

作为研讨课,我觉得教学内容不重要,重要的是我们设计教学时的理念和教学时所采用的教学方法。

风险:

抽屉原理指的是在某些数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课把4个苹果放进3个盘子中的操作情境,介绍了一类较简单的“抽屉原理”,即把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题的 “证明”主要涉及的方法是 “枚举法”、“反证法”、“假设法”等方法,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。

教材不仅是涉及到最简单的“抽屉原理”:把 m个物体任意分放进n 个空抽屉里(m> n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。还涉及了了“抽屉原理”更为一般的形式:教材的例2涉及的就是,把多于 kn个物体任意分放进 n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。如果问题所讨论的对象有无限多个,“抽屉原理”还有另一种表述:把无限多个物体任意分放进 n个空抽屉,那么一定有一个抽屉中放进了无限多个物体。抽屉原理是很难的,其中原理也是难理解,本节课所要解决的问题是:

1. 使学生初步了解抽屉原理

2. 通过动手操作、画图、推理等活动初步让学生经历“数学证明”的过程。3. 在学习中能发现一定的规律,培养学生的“模型”思想。

把4只苹果放进3个盘子中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个盘子里至少放进2只苹果,从而产生疑问,激起寻求答案的欲望。在这里,“4只苹果”就是“4个要分放的物体”,“3个盘子”就是“3个盘子”,这个问题用“盘子问题”的语言来描述就是:把4个物体放进3个盘子,总有一个盘子至少有2个物体。

为了解释这一现象,本课呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆苹果,发现把4只苹果分配到3个盘子中一共只有四种情况(在这里,只考虑存在性问题,即把4只苹果不管放进哪个盘子,都视为同一种情况)。在每一种情况中,都一定有一个盘子中至少有2只苹果。通过罗列实验的所有结果,就可以解释前面提出的疑问。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“反证法”或“假设法”的思路,即假设先在每个盘子中放1只苹果,3个盘子里就放了3只苹果。还剩下1只,放入任意一个盘子,那么这个盘子中就有2只苹果了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n +1)只苹果放进 n个盘子,总有一个盘子里至少放进2只苹果”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。

教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。学生在解决了“4只苹果放进3个盘子”的问题以后,可以让学生继续思考:把5只苹果放进4个盘子,总有一个盘子里至少放进2只苹果,为什么?如果把6只苹果放进5个盘子,结果是否一样呢?把7只苹果放进6个盘子呢?把10只苹果放进9个盘子呢?把100只苹果放进99个盘子呢?引导学生得出一般性的结论:只要放的苹果数比盘子的数量多1,总有一个盘子里至少放进2只苹果。接着,可以继续提问:如果要放的苹果数比盘子的数量 10 多2,多3,多4呢?引导学生发现:只要苹果数比盘子的数量多,这个结论都是成立的。通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

教学时应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5个苹果放2个盘子”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导。假设法最核心的思路就是把书尽量多地“平均分”给各个盘子,看每个盘子能分到多少本书,剩下的书不管放到哪个盘子,总有一个盘子比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

当学生利用有余数除法解决了本例中的三个具体问题后,教师应引导学生总结归纳这一类“盘子问题”的一般规律,要把某一数量(奇数)的苹果放进2个盘子,只要用这个数除以2,总有一个盘子至少放进数量比商多1的书。例如,要把40个苹果放进9个盘子,40÷9=4„„4,因此,总有一个盘子至少放进5个苹果。如果进一步一般化的话,就是:要把 a个物体放进n个盘子,如果a÷n=b„„c(c≠0),那么一定有一个盘子至少可以放(b+1)个物体。这一结论与前文提到的“把多于kn 个物体任意分放进 n个空盘子(k 是正整数),那么一定有一个盘子中放进了至少(k+1)个物体”意思是完全一致的。

通过这节课的教学使我也认识到:在教学时应放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,只要是合理的,都应给予鼓励。只有这样才有助于培养学生具体情况具体分析的数学思维;只有这样才鼓励学生用多样化的方法解决问题。

探究知识的过程是学生在兴趣的引导下,积极地动脑思考、探究获得的。同时也少不了老师的恰到好处的引导。首先让学生理解“总有”和“至少”的含义。这对学生将自己发现描述得简练准确有重要意义。之后,通过多次实践与发现,引导学生总结一般规律。以及应用知识中的找准“物体数”与“抽屉数”。这些都是必不可少的引导,教师适当的引导使学生能茅塞顿开。当然这引导是有时机的,是在学生独立思考后,能够迸射智慧火花的时候。

教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,特别是在学生叙述的过程中,学生用比较凌乱的语言的进行描述,教师指导不够,因为数学语言精简性直接影响着学生对新知识的理解与掌握,也就是没有很好地强化理解“总有”“至少”的含义。

篇6:抽屉原理的应用与推广

基本介绍

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

抽屉原理-表述

抽屉原理的一种更一般的表述为:

“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

应用抽屉原理解题

例1:同年出生的400人中至少有2个人的生日相同。

解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同.400/365=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要

作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。

制造抽屉是运用原则的一大关键

例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。分析与解答 我们用题目中的15个偶数制造8个抽屉:

此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。

例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。

另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。

例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):

{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。

从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握

过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例5:15个网球分成数量不同的4堆,数量最多的一堆至少有多少个球? 分析与解答 此题实际是求出15可分拆多少种4个互不相同的整数之和,而15=1+2+3+9=1+2+4+8=1+2+5+7=1+3+4+7=1+3+5+6=2+3+4+6,所以最多一堆的球数可能是9、8、7、6,其中至少有6个。[1]

整除问题

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。

例1 证明:任取8个自然数,必有两个数的差是7的倍数。

分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉: [0],[1],[2] ①若这五个自然数除以3后所得余数分别分布在这3个抽屉中(即抽屉中分别为含有余数为

0,1,2的数),我们从这三个抽屉中各取1个(如1~5中取3,4,5),其和(3+4+5=12)必能被3整除.②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉至少包含有3个余数(抽屉原理),即一个抽屉包含1个余数,另一个包含4个,或者一个包含2个余数另一个抽屉包含3个。从余数多的那个抽屉里选出三个余数,其代数和或为0,或为3,或为6,均为3的倍数,故所对应的3个自然数之和是3的倍数.③若这5个余数分布在其中的一个抽屉中,很显然,从此抽屉中任意取出三个余数,同情况②,余数之和可被3整除,故其对应的3个自然数之和能被3整除.例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.证明:设这11个整数为:a1,a2,a3……a11 又6=2×3 ①先考虑被3整除的情形

由例2知,在11个任意整数中,必存在: 3|a1+a2+a3,不妨设a1+a2+a3=b1;

同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2; 同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3 ②再考虑b1、b2、b3被2整除.依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2 则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6 ∴任意11个整数,其中必有6个数的和是6的倍数.例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析:注意到这些数除以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.面积问题

例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等,故它们的面积之比等于中位线长的比,即|MH|:|NH|。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3).由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.应该是 [(物体数-1)÷抽屉数]+1 染色问题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:正方形有6个面 由最多[(m-1)÷n]+1 得出[(6-1)÷2]+1=[2.5]+1=3 例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。

例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。

解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。

若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。

若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这

上一篇:化工企业劳动纪律管理办法下一篇:车让人活动倡议书